Files
@ 7dbca3656ee1
Branch filter:
Location: AENC/switchchain/triangle_gcm_initial_analysis.m
7dbca3656ee1
7.4 KiB
application/vnd.wolfram.mathematica.package
Add proper creationfreq simulation and plots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_ccm_initialtris.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtriangles when mixed
3: {GCM1 starting triangles average, GCM1 number of successes} <-- CCMu: get new highest degree vertex every time
4: {GCM2 starting triangles average, GCM2 number of successes} <-- CCMb: finish vertex completely
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
(* ::Subsection:: *)
(*New data format import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_ccm_constructionrate.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata2=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
3: CCMdu construction rate <-- CCMdu: get new highest degree vertex every time
4: CCMd construction rate <-- CCMd: finish vertex completely
*)
(* ::Section:: *)
(*Greedy configuration model*)
(* ::Subsection:: *)
(*Distribution of initial #triangles for GCM1,GCM2,EG compared to average #triangles.*)
(* Consider all runs *)
getIt[x_,avg_]:=If[x[[2]]>=5, x[[1]]/avg,0]
getAverage[run_]:=Module[{avg},
avg=run[[2]];
If[avg>0,
{ getIt[run[[3]],avg], getIt[run[[4]],avg] }
, {3,3}]
]
getTotalStats[runs_]:=Transpose[Map[getAverage,runs]];
totalStats=Map[getTotalStats,gdata,{2}];
(* Yellow: CCMu (take new highest everytime *)
(* Blue: CCMb (finish highest first, more similar to EG) *)
histogramsTotal=Map[Histogram[#,{0.05},PlotRange->{{-0.5,2},Automatic},ImageSize->300,AxesOrigin->{0,0}]&,totalStats,{2}];
TableForm[histogramsTotal,TableHeadings->{taulabels,nlabels}]
(* ::Subsubsection:: *)
(*Exporting plots*)
makeHistogram[datasets_,n_,tau_]:=Histogram[datasets,{0.05},"Probability",
PlotRange->{{0,1.3},{0,0.5}},
ImageSize->300,AxesOrigin->{0,0},
AspectRatio->3/5,
Frame->True,
FrameLabel->{"fraction of average #triangles at CCM start","frequency"},
ChartLegends->Placed[{"CCMu avg = "<>ToString[NumberForm[N[Mean[datasets[[1]]]],2]],"CCMb avg = "<>ToString[NumberForm[N[Mean[datasets[[2]]]],2]]},Center],
(*LabelingFunction->(Placed[NumberForm[#,{2,3}],Above]&),*)
(*LabelingFunction\[Rule](Placed[If[#2[[2]]\[Equal]1,NumberForm[#1,{2,3}],""],Above]&),*)
PlotLabel->n<>", "<>tau];
histogramsTotal=MapIndexed[makeHistogram[#1,nlabels[[#2[[2]]]],taulabels[[#2[[1]]]]]&,totalStats,{2}];
tauIndices={1,5,9};
nIndices={1};
(* TableForm[histogramsTotal[[tauIndices,nIndices]],TableHeadings->{taulabels[[tauIndices]],nlabels[[nIndices]]}]*)
plotgrid1=GraphicsGrid[histogramsTotal[[tauIndices,nIndices]],ImageSize->350,ItemAspectRatio->3/5]
Export[NotebookDirectory[]<>"plots/ccm_initialtris.pdf",plotgrid1]
(* ::Subsection:: *)
(*GCM1 vs GCM2 success rates*)
successrates=Map[{#[[3,2]]/100,#[[4,2]]/100}&,gdata,{3}];
successrates=Map[Transpose,successrates,{2}];
successratesDelta=Map[#[[3,2]]-#[[4,2]]&,gdata,{3}];
successratesAvg=Map[{Mean[#[[1]]],Mean[#[[2]]]}&,successrates,{2}];
rateHistograms=Map[Histogram[#,{0.1},"Probability",PlotRange->{{0,1},Automatic}]&,successrates,{2}];
rateDeltaHistograms=Map[Histogram[#,{10},"Probability",PlotRange->{{-100,100},Automatic}]&,successratesDelta,{2}];
TableForm[rateHistograms,TableHeadings->{taulabels,nlabels}]
TableForm[rateDeltaHistograms,TableHeadings->{taulabels,nlabels}]
(*TableForm[Transpose[rateHistograms],TableHeadings->{nlabels,taulabels}]*)
(* For export *)
makeHistogram2[datasets_,label_]:=Histogram[datasets,{0.1},"Probability",
PlotRange->{{0,1},{0,1}},
ImageSize->300,AxesOrigin->{0,0},
Frame->True,
FrameLabel->{"successrate of CCM construction","frequency"},
ChartLegends->Placed[{"CCMu avg = "<>ToString[NumberForm[N[Mean[datasets[[1]]]],2]],"CCMb avg = "<>ToString[NumberForm[N[Mean[datasets[[2]]]],2]]},Center],(*LabelingFunction->(Placed[NumberForm[#,{2,3}],Above]&),*)
(*LabelingFunction\[Rule](Placed[If[#2[[2]]\[Equal]1,NumberForm[#1,{2,3}],""],Above]&),*)
PlotLabel->label];
plot1=makeHistogram2[successrates[[1,1]],"n = 1000, \[Tau] = 2.1"]
plot2=makeHistogram2[successrates[[5,1]],"n = 1000, \[Tau] = 2.5"]
plot3=makeHistogram2[successrates[[9,1]],"n = 1000, \[Tau] = 2.9"]
(* columnplot1=GraphicsColumn[{plot1,plot2,plot3}] *)
Export[NotebookDirectory[]<>"plots/ccm_construction_successrate.pdf",columnplot1]
Export[NotebookDirectory[]<>"plots/ccm_construction_successrate1.pdf",plot1]
Export[NotebookDirectory[]<>"plots/ccm_construction_successrate5.pdf",plot2]
Export[NotebookDirectory[]<>"plots/ccm_construction_successrate9.pdf",plot3]
(* ::Section:: *)
(*CCMu rates only*)
successrates=Map[#[[3,2]]/100&,gdata,{3}]; (* Old datafile *)
legends=Map["\[Tau] = "<>ToString[#[[1,1,2]]]<>" ; avg = "<>ToString[NumberForm[N[Mean[#[[All,3,2]]/100]],3]]&,gdata,{2}];
successrates=gdata2[[All,All,All,2]]; (* New datafile *)
legends=Map["\[Tau] = "<>ToString[#[[1,1,2]]]<>" ; avg = "<>ToString[NumberForm[N[Mean[#[[All,2]]]],{4,4}]]&,gdata2,{2}];
successrates=Map[Clip[#,{0,0.99999}]&,successrates,{3}];
datasets={successrates[[1,1]], successrates[[2,1]], successrates[[3,1]]};
selectedLegends={legends[[1,1]],legends[[2,1]],legends[[3,1]]};
plot1=Histogram[datasets,{-0.025,1.025,0.05},"Probability",
PlotRange->{{0,1},{0,1}},
ChartStyle->Directive[FaceForm[Opacity[0.8]],EdgeForm[Thickness[0.001]]],
ImageSize->300,AxesOrigin->{0,0},
Frame->True,
FrameLabel->{"successrate of CCMdu construction\n(distribution over sampled degree sequences)","Probability"},
ChartLegends->Placed[selectedLegends,Center],
PlotLabel->"n = 1000"]
histogramlist = Map[Last[HistogramList[#,{-0.05,1.05,0.1},"Probability"]]&,datasets];
histogramlist = Transpose[histogramlist];
(* labels=ConstantArray["",Ceiling[1/0.05]];
labels[[2;;-1;;2]]=Map[ToString,Range[0.1,1,0.1]]; *)
labels=Map[ToString,Range[0,1,0.1]];
plot2=BarChart[histogramlist,
PlotRange->{All,{0,1}},
BarSpacing->{None,Medium},
ChartLabels->{labels,None},
ImageSize->300,AxesOrigin->{0,0},
Frame->True,
FrameLabel->{"successrate of CCMdu construction\n(distribution over sampled degree sequences)","Probability"},
ChartLegends->Placed[selectedLegends,Center],
PlotLabel->"n = 1000"]
plot3=SmoothHistogram[datasets,{0.01,"Gaussian"},"PDF",
PlotRange->{{0,1},All},
ImageSize->300,AxesOrigin->{0,0},
Frame->True,
FrameLabel->{"successrate of CCMdu construction\n(distribution over sampled degree sequences)","PDF"},
PlotLegends->Placed[selectedLegends,Center],
PlotLabel->"n = 1000"]
(*
Table[
SmoothHistogram[datasets,{0.01,weightKernel},"PDF",
PlotRange->{{0,1},All},
(*ChartStyle\[Rule]Directive[FaceForm[Opacity[0.5]],EdgeForm[Thickness[0.007]]],*)
ImageSize->300,AxesOrigin->{0,0},
Frame->True,
FrameLabel->{"successrate of CCMdu construction\n over sampled degree sequences","CDF"},
PlotLegends->Placed[selectedLegends,Center],
PlotLabel->"n = 1000"],{weightKernel,{"Biweight","Gaussian","Rectangular","Cosine","SemiCircle"}}]
*)
Export[NotebookDirectory[]<>"plots/ccm_construction_successrates.pdf",plot2]
|