Files
@ c9c22e41130d
Branch filter:
Location: AENC/switchchain/cpp/switchchain_dsp.cpp
c9c22e41130d
4.6 KiB
text/x-c++src
Move degree sequence generation to separate file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
double getDSTN(const DegreeSequence& ds) {
std::vector<std::vector<double>> vals(ds.size());
for (auto& v : vals) {
v.resize(ds.size(), 0);
}
auto D = 0u;
for (auto d : ds)
D += d;
double factor = 1.0 / double(D);
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
vals[i][j] = 1.0 - std::exp(-(ds[i] * ds[j] * factor));
}
}
double result = 0.0;
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
for (auto k = j + 1; k < ds.size(); ++k) {
result += vals[i][j] * vals[j][k] * vals[i][k];
}
}
}
return result;
}
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 100;
const int numVerticesMax = 1000;
const int numVerticesStep = 100;
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
const int totalDegreeSamples = 2000;
auto getMixingTime = [](int n, float tau) {
return int(30.0f * (50.0f - 30.0f * (tau - 2.0f)) * n);
};
constexpr int measurements = 50;
constexpr int measureSkip = 200; // Take a sample every ... steps
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_dsp.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "degreeSamples: " << totalDegreeSamples << std::endl;
outfile << "mixingTime: 30 * (50 - 30 (tau - 2)) n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: avgTriangles\n";
outfile << "3: dstn\n";
outfile << "*)" << std::endl;
outfile << '{';
bool outputComma = false;
std::mt19937 rng(std::random_device{}());
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
// For a single n,tau take samples over several instances of
// the degree distribution.
for (int degreeSample = 0; degreeSample < totalDegreeSamples;
++degreeSample) {
DegreeSequence ds;
generatePowerlawGraph(numVertices, tau, g, ds, rng);
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
int movesDone = 0;
int mixingTime = getMixingTime(numVertices,tau);
long long trianglesTotal = 0;
for (int i = 0; i < mixingTime; ++i) {
if (chain.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
trianglesTotal += chain.g.countTriangles();
}
float avgTriangles =
float(trianglesTotal) / float(measurements);
std::cout << movesDone << '/'
<< mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
std::cout << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << ',' << getDSTN(ds);
outfile << '}' << std::flush;
std::cout << std::endl;
}
}
}
outfile << '}';
return 0;
}
|