Files
@ f8cbbd135cc1
Branch filter:
Location: AENC/switchchain/cpp/switchchain.cpp
f8cbbd135cc1
3.8 KiB
text/x-c++src
Add triangle counting
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | #include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
#include "graph.hpp"
#include "exports.hpp"
// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge &e1, const Edge &e2) {
return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}
class SwitchChain {
public:
SwitchChain() : mt(std::random_device{}()), permutationDistribution(0, 2) {
// random_device uses hardware entropy if available
// std::random_device rd;
// mt.seed(rd());
}
~SwitchChain() {}
bool initialize(const Graph &gstart) {
if (gstart.edgeCount() == 0)
return false;
g = gstart;
edgeDistribution.param(
std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
return true;
}
bool doMove() {
Edge e1 = g.getEdge(edgeDistribution(mt));
Edge e2 = g.getEdge(edgeDistribution(mt));
// Keep regenerating while conflicting edges
int timeout = 0;
while (edgeConflicts(e1, e2)) {
e1 = g.getEdge(edgeDistribution(mt));
e2 = g.getEdge(edgeDistribution(mt));
++timeout;
if (timeout % 100 == 0) {
std::cerr << "Warning: sampled " << timeout
<< " random edges but they keep conflicting.\n";
}
}
// Consider one of the three possible permutations
// 1) e1.u - e1.v and e2.u - e2.v (original)
// 2) e1.u - e2.u and e1.v - e2.v
// 3) e1.u - e2.v and e1.v - e2.u
// Note that it might be that these new edges already exist
// in which case we also reject the move
// This is checked in exchangeEdges
int perm = permutationDistribution(mt);
if (perm == 0) // Original permutation
return false;
return g.exchangeEdges(e1, e2, perm == 1);
}
Graph g;
std::mt19937 mt;
std::uniform_int_distribution<> edgeDistribution;
std::uniform_int_distribution<> permutationDistribution;
};
int main() {
Graph g;
// Generate a random degree sequence
std::mt19937 gen(std::random_device{}());
// 50 nodes with average degree 12
DegreeSequence ds(50);
std::poisson_distribution<> degDist(7);
// Try at most 10 times to generate a valid sequence
bool validGraph = false;
for (int i = 0; i < 10; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &gen] { return degDist(gen); });
if (g.createFromDegreeSequence(ds)) {
validGraph = true;
break;
}
}
if (!validGraph) {
std::cerr << "Could not create graph from degree sequence.\n";
return 1;
}
std::sort(ds.begin(), ds.end());
std::cout << "Degree sequence:";
for (auto i : ds)
std::cout << ' ' << i;
std::cout << std::endl;
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::ofstream outfile("graphdata.m");
outfile << '{';
outfile << '{' << g;
std::cout << "Starting switch Markov chain" << std::endl;
int movesDone = 0;
constexpr int movesTotal = 10000;
int triangles[movesTotal];
for (int i = 0; i < movesTotal; ++i) {
if (chain.doMove())
++movesDone;
triangles[i] = chain.g.countTriangles();
if (i % (movesTotal / 50) == (movesTotal / 50 - 1))
outfile << ',' << chain.g;
}
outfile << '}' << ',' << '{' << triangles[0];
for (int i = 1; i < movesTotal; ++i)
outfile << ',' << triangles[i];
outfile << '}' << '}';
std::cout << movesDone << '/' << movesTotal << " moves succeeded."
<< std::endl;
return 0;
}
|