Files
@ 28df9835906f
Branch filter:
Location: CSY/reowolf/testdata/parser/positive/8.pdl - annotation
28df9835906f
1.6 KiB
text/plain
Reimplement namespaced identifier to support polymorphic args
This is somewhat of a temporary hack, as a namespaced identifier should
not really refer to types or polymorphic arguments. But we need a
tokenizer and a prepass to properly distinguish identifiers from types.
So it works, but error messages may be cryptic.
This is somewhat of a temporary hack, as a namespaced identifier should
not really refer to types or polymorphic arguments. But we need a
tokenizer and a prepass to properly distinguish identifiers from types.
So it works, but error messages may be cryptic.
1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 1b7b852c3395 | #version 100
/*
Suggested by Luc Edixhoven.
Source: https://en.wikipedia.org/wiki/Thue%E2%80%93Morse_sequence
In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence,
is the binary sequence (an infinite sequence of 0s and 1s) obtained by
starting with 0 and successively appending the Boolean complement of the
sequence obtained thus far.
To compute the nth element t_n, write the number n in binary. If the
number of ones in this binary expansion is odd then t_n = 1, if even
then t_n = 0. For this reason John H. Conway et al. call numbers n
satisfying t_n = 1 odious (for odd) numbers and numbers for which
t_n = 0 evil (for even) numbers. In other words, t_n = 0 if n is
an evil number and t_n = 1 if n is an odious number.
*/
import std.reo;
composite main(out x) {
channel ao -> ai;
channel bo -> bi;
channel co -> ci;
new evil_or_odious(ai, bo);
new replicator(bi, {co, x});
new recorder(ao, ci);
}
primitive evil_or_odious(in x, out y) {
while (true) {
synchronous {
if (fires(x) && fires(y)) {
msg a = get(x);
msg result = create(1);
boolean even = true;
int i = 0;
while (i < a.length) {
if (a[i++] == '1')
even = !even;
}
result[0] = even ? '1' : '0';
put(y, result);
} else {
assert !fires(x);
assert !fires(y);
}
}
}
}
primitive recorder(out h, in a) {
msg c = create(0);
while (true) {
synchronous {
if (fires(h) && fires(a)) {
put(h, c);
{
msg x = get(a);
msg n = create(c.length + 1);
int i = 0;
while (i < c.length) {
n[i] = c[i];
i++;
}
n[c.length] = x[0];
c = n;
}
}
}
}
}
|