Files @ 58aa1c3c4197
Branch filter:

Location: CSY/reowolf/src/runtime/ecs.rs - annotation

58aa1c3c4197 11.7 KiB application/rls-services+xml Show Source Show as Raw Download as Raw
Christopher Esterhuyse
fiddling
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
331ce29f6db7
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
79edbf0bebd7
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
331ce29f6db7
79edbf0bebd7
79edbf0bebd7
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
58aa1c3c4197
79edbf0bebd7
58aa1c3c4197
79edbf0bebd7
use crate::common::*;
use crate::runtime::ProtocolS;

use std::collections::HashMap;

/// invariant: last element is not zero.
/// => all values out of bounds are implicitly absent.
/// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.

#[derive(Debug, Default)]
struct BitSet(Vec<u32>);
impl BitSet {
    fn as_slice(&self) -> &[u32] {
        self.0.as_slice()
    }
    fn iter(&self) -> impl Iterator<Item = u32> + '_ {
        self.0.iter().copied()
    }
    fn is_empty(&self) -> bool {
        // relies on the invariant: no trailing zero u32's
        self.0.is_empty()
    }
    fn clear(&mut self) {
        self.0.clear();
    }
    fn set_ones_until(&mut self, mut end: usize) {
        self.0.clear();
        loop {
            if end >= 32 {
                // full 32 bits of 1
                self.0.push(!0u32);
            } else {
                if end > 0 {
                    // #end ones, with a (32-end) prefix of zeroes
                    self.0.push(!0u32 >> (32 - end));
                }
                return;
            }
        }
    }
    #[inline(always)]
    fn index_decomposed(index: usize) -> [usize; 2] {
        // [chunk_index, chunk_bit]
        [index / 32, index % 32]
    }
    fn set(&mut self, at: usize) {
        let [chunk_index, chunk_bit] = Self::index_decomposed(at);
        if chunk_index >= self.0.len() {
            self.0.resize(chunk_index + 1, 0u32);
        }
        let chunk = unsafe {
            // SAFE! previous line ensures sufficient size
            self.0.get_unchecked_mut(chunk_index)
        };
        *chunk |= 1 << chunk_bit;
    }
    fn unset(&mut self, at: usize) {
        let [chunk_index, chunk_bit] = Self::index_decomposed(at);
        if chunk_index < self.0.len() {
            let chunk = unsafe {
                // SAFE! previous line ensures sufficient size
                self.0.get_unchecked_mut(chunk_index)
            };
            *chunk &= !(1 << chunk_bit);
            while let Some(0u32) = self.0.iter().copied().last() {
                self.0.pop();
            }
        }
    }
}

#[derive(Debug, Default)]
struct BitMasks(HashMap<(ChannelId, bool), BitSet>);

struct BitChunkIter<I: Iterator<Item = u32>> {
    chunk_iter: I,
    next_bit_index: usize,
    cached: Option<u32>, // None <=> iterator is done
}

impl<I: Iterator<Item = u32>> BitChunkIter<I> {
    fn new(mut chunk_iter: I) -> Self {
        let cached = chunk_iter.next();
        Self { chunk_iter, next_bit_index: 0, cached }
    }
}
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
    type Item = usize;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            println!("LOOP");
            // get cached chunk. If none exists, iterator is done.
            let mut chunk = self.cached?;
            if chunk == 0 {
                // self.next_bit_index jumps to next multiple of 32
                self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
                self.cached = self.chunk_iter.next();
                continue;
            }
            // this chunk encodes 1+ Items to yield
            // shift the contents of chunk until the least significant bit is 1

            #[inline(always)]
            fn shifty(chunk: &mut u32, shift_by: usize, next_bit_index: &mut usize) {
                if *chunk & ((1 << shift_by) - 1) == 0 {
                    *next_bit_index += shift_by;
                    *chunk >>= shift_by;
                }
                println!("{:#032b}", *chunk);
            }
            shifty(&mut chunk, 16, &mut self.next_bit_index);
            shifty(&mut chunk, 08, &mut self.next_bit_index);
            shifty(&mut chunk, 04, &mut self.next_bit_index);
            shifty(&mut chunk, 02, &mut self.next_bit_index);
            shifty(&mut chunk, 01, &mut self.next_bit_index);
            // assert(chunk & 1 == 1)

            self.next_bit_index += 1;
            self.cached = Some(chunk >> 1);
            if chunk > 0 {
                return Some(self.next_bit_index - 1);
            }
        }
    }
}

/// Returns an iterator over chunks of bits where ALL of the given
/// bitsets have 1.
struct AndChunkIter<'a> {
    // this value is not overwritten during iteration
    // invariant: !sets.is_empty()
    sets: &'a [&'a [u32]],

    next_chunk_index: usize,
}
impl<'a> AndChunkIter<'a> {
    fn new(sets: &'a [&'a [u32]]) -> Self {
        let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
        Self { sets, next_chunk_index: 0 }
    }
}
impl Iterator for AndChunkIter<'_> {
    type Item = u32;
    fn next(&mut self) -> Option<u32> {
        let old_chunk_index = self.next_chunk_index;
        self.next_chunk_index += 1;
        self.sets.iter().fold(Some(!0u32), move |a, b| {
            let a = a?;
            let b = *b.get(old_chunk_index)?;
            Some(a & b)
        })
    }
}

/// Returns an iterator over chunks for bits in range 0..bits_to_go but skipping
/// indices for which ANY of the given bitsets has a 1
struct NoneChunkIter<'a> {
    // this value is not overwritten during iteration
    // invariant: !sets.is_empty()
    sets: &'a [&'a [u32]],
    next_chunk_index: usize,
    bits_to_go: usize,
}
impl<'a> NoneChunkIter<'a> {
    /// a set of bitsets. the u32s of each are in ascending order of significant digits
    /// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
    fn new(sets: &'a [&'a [u32]], max_bit: usize) -> Self {
        let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
        Self { sets, next_chunk_index: 0, bits_to_go: max_bit }
    }
}
impl Iterator for NoneChunkIter<'_> {
    type Item = u32;
    fn next(&mut self) -> Option<u32> {
        let neutral = match self.bits_to_go {
            0 => None,
            x @ 1..=31 => Some(!0u32 >> (32 - x)),
            _ => Some(!0u32),
        };
        self.bits_to_go = self.bits_to_go.saturating_sub(32);

        let old_chunk_index = self.next_chunk_index;
        self.next_chunk_index += 1;

        self.sets.iter().fold(neutral, move |a, b| {
            let a = a?;
            let b = *b.get(old_chunk_index)?;
            Some(a & !b)
        })
    }
}

#[test]
fn test_bit_iter() {
    static SETS: &[&[u32]] = &[
        //
        &[0b101001, 0b101001],
        &[0b100001, 0b101001],
    ];
    let _ = BitChunkIter::new(AndChunkIter::new(SETS));
    let iter = BitChunkIter::new(NoneChunkIter::new(SETS, 9));
    let indices = iter.collect::<Vec<_>>();
    println!("indices {:?}", indices);
}

enum Entity {
    Payload(Payload),
    State(ProtocolS),
}

#[derive(Default)]
struct Ecs {
    entities: Vec<Entity>,
    assignments: HashMap<(ChannelId, bool), BitSet>,
    ekeys: HashMap<Key, BitSet>,
    csb: ComponentStatusBits,
}

#[derive(Default)]
struct ComponentStatusBits {
    inconsistent: BitSet,
    blocked: BitSet,
    sync_ended: BitSet,
    to_run_r: BitSet, // read from and drained while...
    to_run_w: BitSet, // .. written to and populated.
}
impl ComponentStatusBits {
    fn clear_all(&mut self) {
        self.blocked.clear();
        self.inconsistent.clear();
        self.to_run_r.clear();
        self.to_run_w.clear();
        self.sync_ended.clear();
    }
}
struct Msg {
    assignments: Vec<(ChannelId, bool)>, // invariant: no two elements have same ChannelId value
    payload: Payload,
}
impl Ecs {
    fn round(&mut self) {
        // 1. at the start of the round we throw away all assignments.
        //    we are going to shift entities around, so all bitsets need to be cleared anyway.
        self.assignments.clear();
        self.csb.clear_all();
        self.ekeys.clear();

        // 2. We discard all payloads; they are all stale now.
        //    All components are now contiguous in the vector.
        self.entities.retain(|entity| if let Entity::State(_) = entity { true } else { false });

        // 3. initially, all the components need a chance to run in MONO mode
        self.csb.to_run_r.set_ones_until(self.entities.len());

        // 4. INVARIANT established:
        //    for all State variants in self.entities,
        //        exactly one bit throughout the fields of csb is set.

        // 5. Run all machines in (csb.to_run_r U csb.to_run_w).
        //    Single, logical set is broken into readable / writable parts to allow concurrent reads / writes safely.
        while !self.csb.to_run_r.is_empty() {
            for _entity_index in self.csb.to_run_r.iter() {
                // TODO run and possbibly manipulate self.to_run_w
            }
            self.csb.to_run_r.clear();
            std::mem::swap(&mut self.csb.to_run_r, &mut self.csb.to_run_w);
        }
        assert!(self.csb.to_run_w.is_empty());

        #[allow(unreachable_code)] // DEBUG
        'recv_loop: loop {
            let ekey: Key = todo!();
            let msg: Msg = todo!();
            // 1. check if this message is redundant, i.e., there is already an equivalent payload with predicate >= this one.
            //    ie. starting from all payloads

            // 2. try and find a payload whose predicate subsumes this one
            if let Some(_entity_index) = self.ekeys.get(&ekey).map(|ekey_bitset| {
                let mut slice_builder = vec![];
                for &(channel_id, boolean) in msg.assignments.iter() {
                    if let Some(bitset) = self.assignments.get(&(channel_id, !boolean)) {
                        slice_builder.push(bitset.as_slice());
                    }
                }
                NoStricterPayloadIter {
                    next_chunk_index: 0,
                    in_here: ekey_bitset.as_slice(),
                    but_in_none_of: slice_builder.as_slice(),
                }
                .next()
            }) {
                continue 'recv_loop;
            }

            // receive incoming messages
        }
    }
}

struct NoStricterPayloadIter<'a> {
    next_chunk_index: usize,
    in_here: &'a [u32],
    but_in_none_of: &'a [&'a [u32]],
}
impl<'a> Iterator for NoStricterPayloadIter<'a> {
    type Item = u32;
    fn next(&mut self) -> Option<Self::Item> {
        let i = self.next_chunk_index;
        self.next_chunk_index += 1;
        let init = self.in_here.get(i).copied();
        self.but_in_none_of.iter().fold(init, |folding, slice| {
            let a = folding?;
            let b = slice.get(i).copied()?;
            Some(a & !b)
        })
    }
}

/*
The idea is we have a set of component machines that fork whenever they reflect on the oracle to make concrete their predicates.
their speculative execution procedure BLOCKS whenever they reflect on the contents of a message that has not yet arrived.
the promise is, therefore, never to forget about these blocked machines.
the only event that unblocks a machine

operations needed:
1. FORK
given a component and a predicate,
create and retain a clone of the component, and the predicate, with one additional assignment

2. GET
when running a machine with {state S, predicate P}, it may try to get a message at K.
IF there exists a payload at K with predicate P2 s.t. P2 >= P, feed S the message and continue.
ELSE list (S,P,K) as BLOCKED and...
for all payloads X at K with predicate P2 s.t. P2 < P, fork S to create S2. store it with predicate P2 and feed it X and continue

2. RECV
when receiving a payload at key K with predicate P,
IF there exists a payload at K with predicate P2 where P2 >= P, discard the new one and continue.
ELSE if there exists a payload at K with predicate P2 where P2 < P, assert their contents are identical, overwrite P2 with P try feed this payload to any BLOCKED machines
ELSE insert this payload with P and K as a new payload, and feed it to any compatible machines blocked on K



====================
EXTREME approach:
1. entities: {states} U {payloads}
2. flags: {}

==================
*/