Files
@ 58aa1c3c4197
Branch filter:
Location: CSY/reowolf/src/runtime/ecs.rs
58aa1c3c4197
11.7 KiB
application/rls-services+xml
fiddling
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | use crate::common::*;
use crate::runtime::ProtocolS;
use std::collections::HashMap;
/// invariant: last element is not zero.
/// => all values out of bounds are implicitly absent.
/// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
#[derive(Debug, Default)]
struct BitSet(Vec<u32>);
impl BitSet {
fn as_slice(&self) -> &[u32] {
self.0.as_slice()
}
fn iter(&self) -> impl Iterator<Item = u32> + '_ {
self.0.iter().copied()
}
fn is_empty(&self) -> bool {
// relies on the invariant: no trailing zero u32's
self.0.is_empty()
}
fn clear(&mut self) {
self.0.clear();
}
fn set_ones_until(&mut self, mut end: usize) {
self.0.clear();
loop {
if end >= 32 {
// full 32 bits of 1
self.0.push(!0u32);
} else {
if end > 0 {
// #end ones, with a (32-end) prefix of zeroes
self.0.push(!0u32 >> (32 - end));
}
return;
}
}
}
#[inline(always)]
fn index_decomposed(index: usize) -> [usize; 2] {
// [chunk_index, chunk_bit]
[index / 32, index % 32]
}
fn set(&mut self, at: usize) {
let [chunk_index, chunk_bit] = Self::index_decomposed(at);
if chunk_index >= self.0.len() {
self.0.resize(chunk_index + 1, 0u32);
}
let chunk = unsafe {
// SAFE! previous line ensures sufficient size
self.0.get_unchecked_mut(chunk_index)
};
*chunk |= 1 << chunk_bit;
}
fn unset(&mut self, at: usize) {
let [chunk_index, chunk_bit] = Self::index_decomposed(at);
if chunk_index < self.0.len() {
let chunk = unsafe {
// SAFE! previous line ensures sufficient size
self.0.get_unchecked_mut(chunk_index)
};
*chunk &= !(1 << chunk_bit);
while let Some(0u32) = self.0.iter().copied().last() {
self.0.pop();
}
}
}
}
#[derive(Debug, Default)]
struct BitMasks(HashMap<(ChannelId, bool), BitSet>);
struct BitChunkIter<I: Iterator<Item = u32>> {
chunk_iter: I,
next_bit_index: usize,
cached: Option<u32>, // None <=> iterator is done
}
impl<I: Iterator<Item = u32>> BitChunkIter<I> {
fn new(mut chunk_iter: I) -> Self {
let cached = chunk_iter.next();
Self { chunk_iter, next_bit_index: 0, cached }
}
}
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
loop {
println!("LOOP");
// get cached chunk. If none exists, iterator is done.
let mut chunk = self.cached?;
if chunk == 0 {
// self.next_bit_index jumps to next multiple of 32
self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
self.cached = self.chunk_iter.next();
continue;
}
// this chunk encodes 1+ Items to yield
// shift the contents of chunk until the least significant bit is 1
#[inline(always)]
fn shifty(chunk: &mut u32, shift_by: usize, next_bit_index: &mut usize) {
if *chunk & ((1 << shift_by) - 1) == 0 {
*next_bit_index += shift_by;
*chunk >>= shift_by;
}
println!("{:#032b}", *chunk);
}
shifty(&mut chunk, 16, &mut self.next_bit_index);
shifty(&mut chunk, 08, &mut self.next_bit_index);
shifty(&mut chunk, 04, &mut self.next_bit_index);
shifty(&mut chunk, 02, &mut self.next_bit_index);
shifty(&mut chunk, 01, &mut self.next_bit_index);
// assert(chunk & 1 == 1)
self.next_bit_index += 1;
self.cached = Some(chunk >> 1);
if chunk > 0 {
return Some(self.next_bit_index - 1);
}
}
}
}
/// Returns an iterator over chunks of bits where ALL of the given
/// bitsets have 1.
struct AndChunkIter<'a> {
// this value is not overwritten during iteration
// invariant: !sets.is_empty()
sets: &'a [&'a [u32]],
next_chunk_index: usize,
}
impl<'a> AndChunkIter<'a> {
fn new(sets: &'a [&'a [u32]]) -> Self {
let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
Self { sets, next_chunk_index: 0 }
}
}
impl Iterator for AndChunkIter<'_> {
type Item = u32;
fn next(&mut self) -> Option<u32> {
let old_chunk_index = self.next_chunk_index;
self.next_chunk_index += 1;
self.sets.iter().fold(Some(!0u32), move |a, b| {
let a = a?;
let b = *b.get(old_chunk_index)?;
Some(a & b)
})
}
}
/// Returns an iterator over chunks for bits in range 0..bits_to_go but skipping
/// indices for which ANY of the given bitsets has a 1
struct NoneChunkIter<'a> {
// this value is not overwritten during iteration
// invariant: !sets.is_empty()
sets: &'a [&'a [u32]],
next_chunk_index: usize,
bits_to_go: usize,
}
impl<'a> NoneChunkIter<'a> {
/// a set of bitsets. the u32s of each are in ascending order of significant digits
/// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
fn new(sets: &'a [&'a [u32]], max_bit: usize) -> Self {
let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
Self { sets, next_chunk_index: 0, bits_to_go: max_bit }
}
}
impl Iterator for NoneChunkIter<'_> {
type Item = u32;
fn next(&mut self) -> Option<u32> {
let neutral = match self.bits_to_go {
0 => None,
x @ 1..=31 => Some(!0u32 >> (32 - x)),
_ => Some(!0u32),
};
self.bits_to_go = self.bits_to_go.saturating_sub(32);
let old_chunk_index = self.next_chunk_index;
self.next_chunk_index += 1;
self.sets.iter().fold(neutral, move |a, b| {
let a = a?;
let b = *b.get(old_chunk_index)?;
Some(a & !b)
})
}
}
#[test]
fn test_bit_iter() {
static SETS: &[&[u32]] = &[
//
&[0b101001, 0b101001],
&[0b100001, 0b101001],
];
let _ = BitChunkIter::new(AndChunkIter::new(SETS));
let iter = BitChunkIter::new(NoneChunkIter::new(SETS, 9));
let indices = iter.collect::<Vec<_>>();
println!("indices {:?}", indices);
}
enum Entity {
Payload(Payload),
State(ProtocolS),
}
#[derive(Default)]
struct Ecs {
entities: Vec<Entity>,
assignments: HashMap<(ChannelId, bool), BitSet>,
ekeys: HashMap<Key, BitSet>,
csb: ComponentStatusBits,
}
#[derive(Default)]
struct ComponentStatusBits {
inconsistent: BitSet,
blocked: BitSet,
sync_ended: BitSet,
to_run_r: BitSet, // read from and drained while...
to_run_w: BitSet, // .. written to and populated.
}
impl ComponentStatusBits {
fn clear_all(&mut self) {
self.blocked.clear();
self.inconsistent.clear();
self.to_run_r.clear();
self.to_run_w.clear();
self.sync_ended.clear();
}
}
struct Msg {
assignments: Vec<(ChannelId, bool)>, // invariant: no two elements have same ChannelId value
payload: Payload,
}
impl Ecs {
fn round(&mut self) {
// 1. at the start of the round we throw away all assignments.
// we are going to shift entities around, so all bitsets need to be cleared anyway.
self.assignments.clear();
self.csb.clear_all();
self.ekeys.clear();
// 2. We discard all payloads; they are all stale now.
// All components are now contiguous in the vector.
self.entities.retain(|entity| if let Entity::State(_) = entity { true } else { false });
// 3. initially, all the components need a chance to run in MONO mode
self.csb.to_run_r.set_ones_until(self.entities.len());
// 4. INVARIANT established:
// for all State variants in self.entities,
// exactly one bit throughout the fields of csb is set.
// 5. Run all machines in (csb.to_run_r U csb.to_run_w).
// Single, logical set is broken into readable / writable parts to allow concurrent reads / writes safely.
while !self.csb.to_run_r.is_empty() {
for _entity_index in self.csb.to_run_r.iter() {
// TODO run and possbibly manipulate self.to_run_w
}
self.csb.to_run_r.clear();
std::mem::swap(&mut self.csb.to_run_r, &mut self.csb.to_run_w);
}
assert!(self.csb.to_run_w.is_empty());
#[allow(unreachable_code)] // DEBUG
'recv_loop: loop {
let ekey: Key = todo!();
let msg: Msg = todo!();
// 1. check if this message is redundant, i.e., there is already an equivalent payload with predicate >= this one.
// ie. starting from all payloads
// 2. try and find a payload whose predicate subsumes this one
if let Some(_entity_index) = self.ekeys.get(&ekey).map(|ekey_bitset| {
let mut slice_builder = vec![];
for &(channel_id, boolean) in msg.assignments.iter() {
if let Some(bitset) = self.assignments.get(&(channel_id, !boolean)) {
slice_builder.push(bitset.as_slice());
}
}
NoStricterPayloadIter {
next_chunk_index: 0,
in_here: ekey_bitset.as_slice(),
but_in_none_of: slice_builder.as_slice(),
}
.next()
}) {
continue 'recv_loop;
}
// receive incoming messages
}
}
}
struct NoStricterPayloadIter<'a> {
next_chunk_index: usize,
in_here: &'a [u32],
but_in_none_of: &'a [&'a [u32]],
}
impl<'a> Iterator for NoStricterPayloadIter<'a> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
let i = self.next_chunk_index;
self.next_chunk_index += 1;
let init = self.in_here.get(i).copied();
self.but_in_none_of.iter().fold(init, |folding, slice| {
let a = folding?;
let b = slice.get(i).copied()?;
Some(a & !b)
})
}
}
/*
The idea is we have a set of component machines that fork whenever they reflect on the oracle to make concrete their predicates.
their speculative execution procedure BLOCKS whenever they reflect on the contents of a message that has not yet arrived.
the promise is, therefore, never to forget about these blocked machines.
the only event that unblocks a machine
operations needed:
1. FORK
given a component and a predicate,
create and retain a clone of the component, and the predicate, with one additional assignment
2. GET
when running a machine with {state S, predicate P}, it may try to get a message at K.
IF there exists a payload at K with predicate P2 s.t. P2 >= P, feed S the message and continue.
ELSE list (S,P,K) as BLOCKED and...
for all payloads X at K with predicate P2 s.t. P2 < P, fork S to create S2. store it with predicate P2 and feed it X and continue
2. RECV
when receiving a payload at key K with predicate P,
IF there exists a payload at K with predicate P2 where P2 >= P, discard the new one and continue.
ELSE if there exists a payload at K with predicate P2 where P2 < P, assert their contents are identical, overwrite P2 with P try feed this payload to any BLOCKED machines
ELSE insert this payload with P and K as a new payload, and feed it to any compatible machines blocked on K
====================
EXTREME approach:
1. entities: {states} U {payloads}
2. flags: {}
==================
*/
|