Files @ c2e3074a729b
Branch filter:

Location: CSY/reowolf/src/protocol/eval/store.rs - annotation

c2e3074a729b 9.1 KiB application/rls-services+xml Show Source Show as Raw Download as Raw
mh
Implement byte string, TCP socket, HTTP request test. Fix escape character parsing. Refactor component code
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
fe0efc81bd4e
fe0efc81bd4e
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
665aa326769e
665aa326769e
665aa326769e
665aa326769e
665aa326769e
665aa326769e
665aa326769e
665aa326769e
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
9b32fa307ceb
cf4f87a2d85b
3845071002b0
3845071002b0
3845071002b0
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
d36ad4f5458b
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
e914af987c85
3845071002b0
9b32fa307ceb
3845071002b0
7f9b23076d66
3845071002b0
3845071002b0
3845071002b0
3845071002b0
9b32fa307ceb
9b32fa307ceb
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0
3845071002b0

use std::collections::VecDeque;

use super::value::{Value, ValueId, HeapPos};

#[derive(Debug, Clone)]
pub(crate) struct HeapAllocation {
    pub values: Vec<Value>,
}

#[derive(Debug, Clone)]
pub(crate) struct Store {
    // The stack where variables/parameters are stored. Note that this is a
    // non-shrinking stack. So it may be filled with garbage.
    pub(crate) stack: Vec<Value>,
    // Represents the place in the stack where we find the `PrevStackBoundary`
    // value containing the previous stack boundary. This is so we can pop from
    // the stack after function calls.
    pub(crate) cur_stack_boundary: usize,
    // A rather ridiculous simulated heap, but this allows us to "allocate"
    // things that occupy more then one stack slot.
    pub(crate) heap_regions: Vec<HeapAllocation>,
    pub(crate) free_regions: VecDeque<HeapPos>,
}

impl Store {
    pub(crate) fn new() -> Self {
        let mut store = Self{
            stack: Vec::with_capacity(64),
            cur_stack_boundary: 0,
            heap_regions: Vec::new(),
            free_regions: VecDeque::new(),
        };

        store.stack.push(Value::PrevStackBoundary(-1));
        store
    }

    /// Resizes(!) the stack to fit the required number of values. Any
    /// unallocated slots are initialized to `Unassigned`. The specified stack
    /// index is exclusive.
    pub(crate) fn reserve_stack(&mut self, unique_stack_idx: u32) {
        let new_size = self.cur_stack_boundary + unique_stack_idx as usize + 1;
        if new_size > self.stack.len() {
            self.stack.resize(new_size, Value::Unassigned);
        }
    }

    /// Clears values on the stack and removes their heap allocations when
    /// applicable. The specified index itself will also be cleared (so if you
    /// specify 0 all values in the frame will be destroyed)
    pub(crate) fn clear_stack(&mut self, unique_stack_idx: usize) {
        let new_size = self.cur_stack_boundary + unique_stack_idx + 1;
        for idx in new_size..self.stack.len() {
            let heap_pos = self.stack[idx].get_heap_pos();
            self.drop_value(heap_pos);

            // TODO: @remove, somewhat temporarily not clearing pure stack
            //  values for testing purposes.
            if heap_pos.is_some() {
                self.stack[idx] = Value::Unassigned;
            }
        }
    }

    /// Reads a value and takes ownership. This is different from a move because
    /// the value might indirectly reference stack/heap values. For these kinds
    /// values we will actually return a cloned value.
    pub(crate) fn read_take_ownership(&mut self, value: Value) -> Value {
        match value {
            Value::Ref(ValueId::Stack(pos)) => {
                let abs_pos = self.cur_stack_boundary + 1 + pos as usize;
                return self.clone_value(self.stack[abs_pos].clone());
            },
            Value::Ref(ValueId::Heap(heap_pos, value_idx)) => {
                let heap_pos = heap_pos as usize;
                let value_idx = value_idx as usize;
                return self.clone_value(self.heap_regions[heap_pos].values[value_idx].clone());
            },
            _ => value
        }
    }

    /// Reads a value from a specific address. The value is always copied, hence
    /// if the value ends up not being written, one should call `drop_value` on
    /// it.
    pub(crate) fn read_copy(&mut self, address: ValueId) -> Value {
        match address {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return self.clone_value(self.stack[cur_pos].clone());
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return self.clone_value(self.heap_regions[heap_pos as usize].values[region_idx as usize].clone())
            }
        }
    }

    /// Potentially reads a reference value. The supplied `Value` might not
    /// actually live in the store's stack or heap, but live on the expression
    /// stack. Generally speaking you only want to call this if the value comes
    /// from the expression stack due to borrowing issues.
    pub(crate) fn maybe_read_ref<'a>(&'a self, value: &'a Value) -> &'a Value {
        match value {
            Value::Ref(value_id) => self.read_ref(*value_id),
            _ => value,
        }
    }

    /// Returns an immutable reference to the value pointed to by an address
    pub(crate) fn read_ref(&self, address: ValueId) -> &Value {
        match address {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return &self.stack[cur_pos];
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return &self.heap_regions[heap_pos as usize].values[region_idx as usize];
            }
        }
    }

    /// Returns a mutable reference to the value pointed to by an address
    pub(crate) fn read_mut_ref(&mut self, address: ValueId) -> &mut Value {
        match address {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return &mut self.stack[cur_pos];
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return &mut self.heap_regions[heap_pos as usize].values[region_idx as usize];
            }
        }
    }

    /// Writes a value
    pub(crate) fn write(&mut self, address: ValueId, value: Value) {
        match address {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                self.drop_value(self.stack[cur_pos].get_heap_pos());
                self.stack[cur_pos] = value;
            },
            ValueId::Heap(heap_pos, region_idx) => {
                let heap_pos = heap_pos as usize;
                let region_idx = region_idx as usize;
                self.drop_value(self.heap_regions[heap_pos].values[region_idx].get_heap_pos());
                self.heap_regions[heap_pos].values[region_idx] = value
            }
        }
    }

    /// This thing takes a cloned Value, because of borrowing issues (which is
    /// either a direct value, or might contain an index to a heap value), but
    /// should be treated by the programmer as a reference (i.e. don't call
    /// `drop_value(thing)` after calling `clone_value(thing.clone())`.
    pub(crate) fn clone_value(&mut self, value: Value) -> Value {
        // Quickly check if the value is not on the heap
        let source_heap_pos = value.get_heap_pos();
        if source_heap_pos.is_none() {
            // We can do a trivial copy, unless we're dealing with a value
            // reference
            return match value {
                Value::Ref(ValueId::Stack(stack_pos)) => {
                    let abs_stack_pos = self.cur_stack_boundary + stack_pos as usize + 1;
                    self.clone_value(self.stack[abs_stack_pos].clone())
                },
                Value::Ref(ValueId::Heap(heap_pos, val_idx)) => {
                    self.clone_value(self.heap_regions[heap_pos as usize].values[val_idx as usize].clone())
                },
                _ => value,
            };
        }

        // Value does live on heap, copy it
        let source_heap_pos = source_heap_pos.unwrap() as usize;
        let target_heap_pos = self.alloc_heap();
        let target_heap_pos_usize = target_heap_pos as usize;

        let num_values = self.heap_regions[source_heap_pos].values.len();
        for value_idx in 0..num_values {
            let cloned = self.clone_value(self.heap_regions[source_heap_pos].values[value_idx].clone());
            self.heap_regions[target_heap_pos_usize].values.push(cloned);
        }

        match value {
            Value::Message(_) => Value::Message(target_heap_pos),
            Value::String(_) => Value::String(target_heap_pos),
            Value::Array(_) => Value::Array(target_heap_pos),
            Value::Union(tag, _) => Value::Union(tag, target_heap_pos),
            Value::Struct(_) => Value::Struct(target_heap_pos),
            Value::Tuple(_) => Value::Tuple(target_heap_pos),
            _ => unreachable!("performed clone_value on heap, but {:?} is not a heap value", value),
        }
    }

    pub(crate) fn drop_value(&mut self, value: Option<HeapPos>) {
        if let Some(heap_pos) = value {
            self.drop_heap_pos(heap_pos);
        }
    }

    pub(crate) fn drop_heap_pos(&mut self, heap_pos: HeapPos) {
        let num_values = self.heap_regions[heap_pos as usize].values.len();
        for value_idx in 0..num_values {
            if let Some(other_heap_pos) = self.heap_regions[heap_pos as usize].values[value_idx].get_heap_pos() {
                self.drop_heap_pos(other_heap_pos);
            }
        }

        self.heap_regions[heap_pos as usize].values.clear();
        self.free_regions.push_back(heap_pos);
    }

    pub(crate) fn alloc_heap(&mut self) -> HeapPos {
        if self.free_regions.is_empty() {
            let idx = self.heap_regions.len() as HeapPos;
            self.heap_regions.push(HeapAllocation{ values: Vec::new() });
            return idx;
        } else {
            let idx = self.free_regions.pop_back().unwrap();
            return idx;
        }
    }
}