Files
@ d36ad4f5458b
Branch filter:
Location: CSY/reowolf/src/protocol/eval/executor.rs - annotation
d36ad4f5458b
29.7 KiB
application/rls-services+xml
WIP on fixing evaluator bugs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 d36ad4f5458b 3845071002b0 3845071002b0 d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 3845071002b0 9b32fa307ceb d36ad4f5458b 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 3845071002b0 d36ad4f5458b 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb d36ad4f5458b 9b32fa307ceb d36ad4f5458b 9b32fa307ceb d36ad4f5458b d36ad4f5458b 9b32fa307ceb d36ad4f5458b 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb d36ad4f5458b d36ad4f5458b 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 3845071002b0 d36ad4f5458b 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 9b32fa307ceb 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 3845071002b0 |
use std::collections::VecDeque;
use super::value::*;
use super::store::*;
use crate::protocol::*;
use crate::protocol::ast::*;
macro_rules! debug_enabled { () => { true }; }
macro_rules! debug_log {
($format:literal) => {
enabled_debug_print!(true, "exec", $format);
};
($format:literal, $($args:expr),*) => {
enabled_debug_print!(true, "exec", $format, $($args),*);
};
}
#[derive(Debug, Clone)]
pub(crate) enum ExprInstruction {
EvalExpr(ExpressionId),
PushValToFront,
}
#[derive(Debug, Clone)]
pub(crate) struct Frame {
definition: DefinitionId,
position: StatementId,
expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
}
impl Frame {
/// Creates a new execution frame. Does not modify the stack in any way.
pub fn new(heap: &Heap, definition_id: DefinitionId) -> Self {
let definition = &heap[definition_id];
let first_statement = match definition {
Definition::Component(definition) => definition.body,
Definition::Function(definition) => definition.body,
_ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
};
Frame{
definition: definition_id,
position: first_statement.upcast(),
expr_stack: VecDeque::with_capacity(128),
expr_values: VecDeque::with_capacity(128),
}
}
/// Prepares a single expression for execution. This involves walking the
/// expression tree and putting them in the `expr_stack` such that
/// continuously popping from its back will evaluate the expression. The
/// results of each expression will be stored by pushing onto `expr_values`.
pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
debug_assert!(self.expr_stack.is_empty());
self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
self.serialize_expression(heap, expr_id);
}
/// Prepares multiple expressions for execution (i.e. evaluating all
/// function arguments or all elements of an array/union literal). Per
/// expression this works the same as `prepare_single_expression`. However
/// after each expression is evaluated we insert a `PushValToFront`
/// instruction
pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
debug_assert!(self.expr_stack.is_empty());
self.expr_values.clear();
for expr_id in expr_ids {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *expr_id);
}
}
/// Performs depth-first serialization of expression tree. Let's not care
/// about performance for a temporary runtime implementation
fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
match &heap[id] {
Expression::Assignment(expr) => {
self.serialize_expression(heap, expr.left);
self.serialize_expression(heap, expr.right);
},
Expression::Binding(expr) => {
todo!("implement binding expression");
},
Expression::Conditional(expr) => {
self.serialize_expression(heap, expr.test);
},
Expression::Binary(expr) => {
self.serialize_expression(heap, expr.left);
self.serialize_expression(heap, expr.right);
},
Expression::Unary(expr) => {
self.serialize_expression(heap, expr.expression);
},
Expression::Indexing(expr) => {
self.serialize_expression(heap, expr.index);
self.serialize_expression(heap, expr.subject);
},
Expression::Slicing(expr) => {
self.serialize_expression(heap, expr.from_index);
self.serialize_expression(heap, expr.to_index);
self.serialize_expression(heap, expr.subject);
},
Expression::Select(expr) => {
self.serialize_expression(heap, expr.subject);
},
Expression::Literal(expr) => {
// Here we only care about literals that have subexpressions
match &expr.value {
Literal::Null | Literal::True | Literal::False |
Literal::Character(_) | Literal::String(_) |
Literal::Integer(_) | Literal::Enum(_) => {
// No subexpressions
},
Literal::Struct(literal) => {
for field in &literal.fields {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, field.value);
}
},
Literal::Union(literal) => {
for value_expr_id in &literal.values {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *value_expr_id);
}
},
Literal::Array(value_expr_ids) => {
for value_expr_id in value_expr_ids {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *value_expr_id);
}
}
}
},
Expression::Call(expr) => {
for arg_expr_id in &expr.arguments {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *arg_expr_id);
}
},
Expression::Variable(expr) => {
// No subexpressions
}
}
}
}
type EvalResult = Result<EvalContinuation, ()>;
pub enum EvalContinuation {
Stepping,
Inconsistent,
Terminal,
SyncBlockStart,
SyncBlockEnd,
NewComponent(DefinitionId, ValueGroup),
BlockFires(Value),
BlockGet(Value),
Put(Value, Value),
}
// Note: cloning is fine, methinks. cloning all values and the heap regions then
// we end up with valid "pointers" to heap regions.
#[derive(Debug, Clone)]
pub struct Prompt {
pub(crate) frames: Vec<Frame>,
pub(crate) store: Store,
}
impl Prompt {
pub fn new(heap: &Heap, def: DefinitionId, args: ValueGroup) -> Self {
let mut prompt = Self{
frames: Vec::new(),
store: Store::new(),
};
prompt.frames.push(Frame::new(heap, def));
args.into_store(&mut prompt.store);
prompt
}
pub(crate) fn step(&mut self, heap: &Heap, ctx: &mut EvalContext) -> EvalResult {
// Helper function to transfer multiple values from the expression value
// array into a heap region (e.g. constructing arrays or structs).
fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
let heap_pos = store.alloc_heap();
// Do the transformation first (because Rust...)
for val_idx in 0..num_values {
cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
}
// And now transfer to the heap region
let values = &mut store.heap_regions[heap_pos as usize].values;
debug_assert!(values.is_empty());
values.reserve(num_values);
for _ in 0..num_values {
values.push(cur_frame.expr_values.pop_front().unwrap());
}
heap_pos
}
// Checking if we're at the end of execution
let cur_frame = self.frames.last_mut().unwrap();
if cur_frame.position.is_invalid() {
if heap[cur_frame.definition].is_function() {
todo!("End of function without return, return an evaluation error");
}
return Ok(EvalContinuation::Terminal);
}
debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier().value.as_str());
// Execute all pending expressions
while !cur_frame.expr_stack.is_empty() {
let next = cur_frame.expr_stack.pop_back().unwrap();
debug_log!("Expr stack: {:?}", next);
match next {
ExprInstruction::PushValToFront => {
cur_frame.expr_values.rotate_right(1);
},
ExprInstruction::EvalExpr(expr_id) => {
let expr = &heap[expr_id];
match expr {
Expression::Assignment(expr) => {
// TODO: Stuff goes wrong here, either make these
// utilities do the alloc/dealloc, or let it all be
// done here.
let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
let rhs = cur_frame.expr_values.pop_back().unwrap();
// let rhs_heap_pos = rhs.get_heap_pos();
apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
cur_frame.expr_values.push_back(self.store.read_copy(to));
// self.store.drop_value(rhs_heap_pos);
},
Expression::Binding(_expr) => {
todo!("Binding expression");
},
Expression::Conditional(expr) => {
// Evaluate testing expression, then extend the
// expression stack with the appropriate expression
let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
if test_result {
cur_frame.serialize_expression(heap, expr.true_expression);
} else {
cur_frame.serialize_expression(heap, expr.false_expression);
}
},
Expression::Binary(expr) => {
let lhs = cur_frame.expr_values.pop_back().unwrap();
let rhs = cur_frame.expr_values.pop_back().unwrap();
let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
cur_frame.expr_values.push_back(result);
self.store.drop_value(lhs.get_heap_pos());
self.store.drop_value(rhs.get_heap_pos());
},
Expression::Unary(expr) => {
let val = cur_frame.expr_values.pop_back().unwrap();
let result = apply_unary_operator(&mut self.store, expr.operation, &val);
cur_frame.expr_values.push_back(result);
self.store.drop_value(val.get_heap_pos());
},
Expression::Indexing(expr) => {
// TODO: Out of bounds checking
// Evaluate index. Never heap allocated so we do
// not have to drop it.
let index = cur_frame.expr_values.pop_back().unwrap();
let index = self.store.maybe_read_ref(&index);
debug_assert!(index.is_integer());
let index = if index.is_signed_integer() {
index.as_signed_integer() as u32
} else {
index.as_unsigned_integer() as u32
};
// TODO: This is probably wrong, we're dropping the
// heap while refering to an element...
let subject = cur_frame.expr_values.pop_back().unwrap();
let subject_heap_pos = subject.get_heap_pos();
let heap_pos = match subject {
Value::Ref(value_ref) => {
println!("DEBUG: Called with {:?}", subject);
let result = self.store.read_ref(value_ref);
println!("DEBUG: And got {:?}", result);
result.as_array()
},
val => val.as_array(),
};
cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, index)));
self.store.drop_value(subject_heap_pos);
},
Expression::Slicing(expr) => {
// TODO: Out of bounds checking
todo!("implement slicing")
},
Expression::Select(expr) => {
let subject= cur_frame.expr_values.pop_back().unwrap();
let heap_pos = match &subject {
Value::Ref(value_ref) => self.store.read_ref(*value_ref).as_struct(),
subject => subject.as_struct(),
};
cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, expr.field.as_symbolic().field_idx as u32)));
self.store.drop_value(subject.get_heap_pos());
},
Expression::Literal(expr) => {
let value = match &expr.value {
Literal::Null => Value::Null,
Literal::True => Value::Bool(true),
Literal::False => Value::Bool(false),
Literal::Character(lit_value) => Value::Char(*lit_value),
Literal::String(lit_value) => {
let heap_pos = self.store.alloc_heap();
let values = &mut self.store.heap_regions[heap_pos as usize].values;
let value = lit_value.as_str();
debug_assert!(values.is_empty());
values.reserve(value.len());
for character in value.as_bytes() {
debug_assert!(character.is_ascii());
values.push(Value::Char(*character as char));
}
Value::String(heap_pos)
}
Literal::Integer(lit_value) => {
use ConcreteTypePart as CTP;
debug_assert_eq!(expr.concrete_type.parts.len(), 1);
match expr.concrete_type.parts[0] {
CTP::UInt8 => Value::UInt8(lit_value.unsigned_value as u8),
CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
CTP::SInt8 => Value::SInt8(lit_value.unsigned_value as i8),
CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
_ => unreachable!(),
}
}
Literal::Struct(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.fields.len()
);
Value::Struct(heap_pos)
}
Literal::Enum(lit_value) => {
Value::Enum(lit_value.variant_idx as i64)
}
Literal::Union(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.values.len()
);
Value::Union(lit_value.variant_idx as i64, heap_pos)
}
Literal::Array(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.len()
);
Value::Array(heap_pos)
}
};
cur_frame.expr_values.push_back(value);
},
Expression::Call(expr) => {
// Push a new frame. Note that all expressions have
// been pushed to the front, so they're in the order
// of the definition.
let num_args = expr.arguments.len();
// Determine stack boundaries
let cur_stack_boundary = self.store.cur_stack_boundary;
let new_stack_boundary = self.store.stack.len();
// Push new boundary and function arguments for new frame
self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
for _ in 0..num_args {
let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
self.store.stack.push(argument);
}
// Push the new frame
self.frames.push(Frame::new(heap, expr.definition));
self.store.cur_stack_boundary = new_stack_boundary;
// To simplify the logic a little bit we will now
// return and ask our caller to call us again
return Ok(EvalContinuation::Stepping);
},
Expression::Variable(expr) => {
let variable = &heap[expr.declaration.unwrap()];
cur_frame.expr_values.push_back(Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos)));
}
}
}
}
}
debug_log!("Frame [{:?}] at {:?}, stack size = {}", cur_frame.definition, cur_frame.position, self.store.stack.len());
if debug_enabled!() {
debug_log!("Stack:");
for (stack_idx, stack_val) in self.store.stack.iter().enumerate() {
debug_log!(" [{:03}] {:?}", stack_idx, stack_val);
}
debug_log!("Heap:");
for (heap_idx, heap_region) in self.store.heap_regions.iter().enumerate() {
let is_free = self.store.free_regions.iter().any(|idx| *idx as usize == heap_idx);
debug_log!(" [{:03}] in_use: {}, len: {}, vals: {:?}", heap_idx, !is_free, heap_region.values.len(), &heap_region.values);
}
}
// No (more) expressions to evaluate. So evaluate statement (that may
// depend on the result on the last evaluated expression(s))
let stmt = &heap[cur_frame.position];
let return_value = match stmt {
Statement::Block(stmt) => {
// Reserve space on stack, but also make sure excess stack space
// is cleared
self.store.clear_stack(stmt.first_unique_id_in_scope as usize);
self.store.reserve_stack(stmt.next_unique_id_in_scope as usize);
cur_frame.position = stmt.statements[0];
Ok(EvalContinuation::Stepping)
},
Statement::EndBlock(stmt) => {
let block = &heap[stmt.start_block];
self.store.clear_stack(block.first_unique_id_in_scope as usize);
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::Local(stmt) => {
match stmt {
LocalStatement::Memory(stmt) => {
let variable = &heap[stmt.variable];
self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
cur_frame.position = stmt.next;
},
LocalStatement::Channel(stmt) => {
let [from_value, to_value] = ctx.new_channel();
self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), from_value);
self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), to_value);
cur_frame.position = stmt.next;
}
}
Ok(EvalContinuation::Stepping)
},
Statement::Labeled(stmt) => {
cur_frame.position = stmt.body;
Ok(EvalContinuation::Stepping)
},
Statement::If(stmt) => {
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
if test_value {
cur_frame.position = stmt.true_body.upcast();
} else if let Some(false_body) = stmt.false_body {
cur_frame.position = false_body.upcast();
} else {
// Not true, and no false body
cur_frame.position = stmt.end_if.upcast();
}
Ok(EvalContinuation::Stepping)
},
Statement::EndIf(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::While(stmt) => {
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
if test_value {
cur_frame.position = stmt.body.upcast();
} else {
cur_frame.position = stmt.end_while.upcast();
}
Ok(EvalContinuation::Stepping)
},
Statement::EndWhile(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::Break(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::Continue(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::Synchronous(stmt) => {
cur_frame.position = stmt.body.upcast();
Ok(EvalContinuation::SyncBlockStart)
},
Statement::EndSynchronous(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::SyncBlockEnd)
},
Statement::Return(stmt) => {
debug_assert!(heap[cur_frame.definition].is_function());
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
// The preceding frame has executed a call, so is expecting the
// return expression on its expression value stack. Note that
// we may be returning a reference to something on our stack,
// so we need to read that value and clone it.
let return_value = cur_frame.expr_values.pop_back().unwrap();
println!("DEBUG: Pre-ret val {:?}", &return_value);
let return_value = match return_value {
Value::Ref(value_id) => self.store.read_copy(value_id),
_ => return_value,
};
println!("DEBUG: Pos-ret val {:?}", &return_value);
// Pre-emptively pop our stack frame
self.frames.pop();
// Clean up our section of the stack
self.store.clear_stack(0);
let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
// TODO: Temporary hack for testing, remove at some point
if self.frames.is_empty() {
debug_assert!(prev_stack_idx == -1);
debug_assert!(self.store.stack.len() == 0);
self.store.stack.push(return_value);
return Ok(EvalContinuation::Terminal);
}
debug_assert!(prev_stack_idx >= 0);
// Return to original state of stack frame
self.store.cur_stack_boundary = prev_stack_idx as usize;
let cur_frame = self.frames.last_mut().unwrap();
cur_frame.expr_values.push_back(return_value);
// Immediately return, we don't care about the current frame
// anymore and there is nothing left to evaluate
return Ok(EvalContinuation::Stepping);
},
Statement::Goto(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::New(stmt) => {
let call_expr = &heap[stmt.expression];
debug_assert!(heap[call_expr.definition].is_component());
debug_assert_eq!(
cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
"mismatch in expr stack size and number of arguments for new statement"
);
// Note that due to expression value evaluation they exist in
// reverse order on the stack.
// TODO: Revise this code, keep it as is to be compatible with current runtime
let mut args = Vec::new();
while let Some(value) = cur_frame.expr_values.pop_front() {
args.push(value);
}
// Construct argument group, thereby copying heap regions
let argument_group = ValueGroup::from_store(&self.store, &args);
// Clear any heap regions
for arg in &args {
self.store.drop_value(arg.get_heap_pos());
}
cur_frame.position = stmt.next;
todo!("Make sure this is handled correctly, transfer 'heap' values to another Prompt");
Ok(EvalContinuation::NewComponent(call_expr.definition, argument_group))
},
Statement::Expression(stmt) => {
// The expression has just been completely evaluated. Some
// values might have remained on the expression value stack.
cur_frame.expr_values.clear();
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
};
// If the next statement requires evaluating expressions then we push
// these onto the expression stack. This way we will evaluate this
// stack in the next loop, then evaluate the statement using the result
// from the expression evaluation.
if !cur_frame.position.is_invalid() {
let stmt = &heap[cur_frame.position];
match stmt {
Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
Statement::Return(stmt) => {
debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
},
Statement::New(stmt) => {
// Note that we will end up not evaluating the call itself.
// Rather we will evaluate its expressions and then
// instantiate the component upon reaching the "new" stmt.
let call_expr = &heap[stmt.expression];
cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
},
Statement::Expression(stmt) => {
cur_frame.prepare_single_expression(heap, stmt.expression);
}
_ => {},
}
}
return_value
}
}
|