Changeset - 113e4349a706
[Not reviewed]
1 32 12
Max Henger - 3 years ago 2022-04-13 14:57:03
henger@cwi.nl
feat: Builtin internet component
12 files changed:
0 comments (0 inline, 0 general)
Cargo.toml
Show inline comments
 
[package]
 
name = "reowolf_rs"
 
version = "1.2.0"
 
authors = [
 
	"Max Henger <henger@cwi.nl>",
 
	"Christopher Esterhuyse <esterhuy@cwi.nl>",
 
	"Hans-Dieter Hiep <hdh@cwi.nl>"
 
]
 
edition = "2021"
 

	
 
[dependencies]
 
# convenience macros
 
maplit = "1.0.2"
 
derive_more = "0.99.2"
 

	
 
# runtime
 
bincode = "1.3.1"
 
serde = { version = "1.0.114", features = ["derive"] }
 
getrandom = "0.1.14" # tiny crate. used to guess controller-id
 

	
 
# network
 
mio = { version = "0.7.0", package = "mio", features = ["udp", "tcp", "os-poll"] }
 
socket2 = { version = "0.3.12", optional = true }
 
[features]
 
default=["internet"]
 
internet=["libc"]
 

	
 
# protocol
 
backtrace = "0.3"
 
lazy_static = "1.4.0"
 

	
 
# ffi
 
[dependencies]
 

	
 
# socket ffi
 
libc = { version = "^0.2", optional = true }
 
os_socketaddr = { version = "0.1.0", optional = true }
 
libc = { version = "^0.2", optional = true } # raw sockets
 
mio = { version = "0.8", features = ["os-poll"] } # cross-platform IO notification queue
 

	
 
# randomness
 
rand = "0.8.4"
 
rand_pcg = "0.3.1"
 

	
 
[lib]
 
crate-type = [
 
	"rlib", # for use as a Rust dependency.
 
]
 
\ No newline at end of file
bin-compiler/src/main.rs
Show inline comments
 
use std::fs::File;
 
use std::io::Read;
 

	
 
use clap::{App, Arg};
 
use reowolf_rs as rw;
 

	
 
fn main() {
 
    let app = App::new("rwc")
 
        .author("Henger, M.")
 
        .version(env!("CARGO_PKG_VERSION"))
 
        .about("Reowolf compiler")
 
        .arg(
 
            Arg::new("input")
 
                .long("input")
 
                .short('i')
 
                .help("input files")
 
                .required(true)
 
                .takes_value(true)
 
                .multiple_occurrences(true)
 
        )
 
        .arg(
 
            Arg::new("threads")
 
                .long("threads")
 
                .short('t')
 
                .help("number of runtime threads")
 
                .default_value("1")
 
                .takes_value(true)
 
        )
 
        .arg(
 
            Arg::new("debug")
 
                .long("debug")
 
                .short('d')
 
                .help("enable debug logging")
 
        )
 
        .arg(
 
            Arg::new("stdlib")
 
                .long("stdlib")
 
                .short('s')
 
                .help("standard library directory (overrides default)")
 
                .takes_value(true)
 
        );
 

	
 
    // Retrieve arguments and convert
 
    let app = app.get_matches();
 
    let input_files = app.values_of("input");
 
    if input_files.is_none() {
 
        println!("ERROR: Expected at least one input file");
 
        return;
 
    }
 

	
 
    let num_threads = app.value_of("threads").unwrap();
 
    let num_threads = match num_threads.parse::<i32>() {
 
        Ok(num_threads) => {
 
            if num_threads < 0 || num_threads > 255 {
 
                println!("ERROR: Number of threads must be a number between 0 and 256");
 
                return;
 
            }
 

	
 
            num_threads as u32
 
        },
 
        Err(err) => {
 
            println!("ERROR: Failed to parse number of threads\nbecause: {}", err);
 
            return;
 
        }
 
    };
 

	
 
    let debug_enabled = app.is_present("debug");
 

	
 
    let standard_library_dir = app.value_of("stdlib")
 
        .map(|v| v.to_string());
 

	
 
    // Add input files to file buffer
 
    let input_files = input_files.unwrap();
 
    assert!(input_files.len() > 0); // because arg is required
 

	
 
    let mut builder = rw::ProtocolDescriptionBuilder::new();
 
    let mut builder = rw::ProtocolDescriptionBuilder::new(standard_library_dir)
 
        .expect("create protocol description builder");
 
    let mut file_buffer = Vec::with_capacity(4096);
 

	
 
    for input_file in input_files {
 
        print!("Adding file: {} ... ", input_file);
 
        let mut file = match File::open(input_file) {
 
            Ok(file) => file,
 
            Err(err) => {
 
                println!("FAILED (to open file)\nbecause:\n{}", err);
 
                return;
 
            }
 
        };
 

	
 
        file_buffer.clear();
 
        if let Err(err) = file.read_to_end(&mut file_buffer) {
 
            println!("FAILED (to read file)\nbecause:\n{}", err);
 
            return;
 
        }
 

	
 
        if let Err(err) = builder.add(input_file.to_string(), file_buffer.clone()) {
 
            println!("FAILED (to tokenize file)\nbecause:\n{}", err);
 
        }
 

	
 
        println!("Success");
 
    }
 

	
 
    // Compile the program
 
    print!("Compiling program ... ");
 
    let protocol_description = match builder.compile() {
 
        Ok(pd) => pd,
 
        Err(err) => {
 
            println!("FAILED\nbecause:\n{}", err);
 
            return;
 
        }
 
    };
 

	
 
    println!("Success");
 

	
 
    // Start runtime
 
    print!("Startup of runtime ... ");
 
    let runtime = rw::runtime2::Runtime::new(num_threads, debug_enabled, protocol_description);
 
    if let Err(err) = &runtime {
 
        println!("FAILED\nbecause:\n{}", err);
 
    }
 
    println!("Success");
 

	
 
    // Make sure there is a nameless module with a main component
 
    print!("Creating main component ... ");
 
    let runtime = rw::runtime2::Runtime::new(num_threads, debug_enabled, protocol_description);
 
    let runtime = runtime.unwrap();
 
    if let Err(err) = runtime.create_component(b"", b"main") {
 
        use rw::ComponentCreationError as CCE;
 
        let reason = match err {
 
            CCE::ModuleDoesntExist => "Input files did not contain a nameless module (that should contain the 'main' component)",
 
            CCE::DefinitionDoesntExist => "Input files did not contain a component called 'main'",
 
            CCE::DefinitionNotComponent => "Input file contained a 'main' function, but not a 'main' component",
 
            _ => "Unexpected error"
 
        };
 
        println!("FAILED\nbecause:\n{} (raw error: {:?})", reason, err);
 
        return;
 
    }
 

	
 
    println!("Success");
 
    println!("Now running until all components have exited");
 
    println!("--------------------------------------------\n\n");
 
}
 
\ No newline at end of file
src/collections/scoped_buffer.rs
Show inline comments
 
@@ -83,129 +83,132 @@ impl<T: Sized> ScopedSection<T> {
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn len(&self) -> usize {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        return vec.len() - self.start_size as usize;
 
    }
 

	
 
    #[inline]
 
    #[allow(unused_mut)] // used in debug mode
 
    pub(crate) fn forget(mut self) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(self.cur_size = self.start_size);
 
        vec.truncate(self.start_size as usize);
 
    }
 

	
 
    #[inline]
 
    #[allow(unused_mut)] // used in debug mode
 
    pub(crate) fn into_vec(mut self) -> Vec<T> {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(self.cur_size = self.start_size);
 
        let section = Vec::from_iter(vec.drain(self.start_size as usize..));
 
        section
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn check_length(&self) {
 
        hide!({
 
            let vec = unsafe{&*self.inner};
 
            debug_assert_eq!(
 
                vec.len(), self.cur_size as usize,
 
                "incorrect use of ScopedSection: underlying storage vector has changed size"
 
            )
 
        })
 
    }
 
}
 

	
 
impl<T: Sized + PartialEq> ScopedSection<T> {
 
    #[inline]
 
    pub(crate) fn push_unique(&mut self, value: T) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        for item in &vec[self.start_size as usize..] {
 
            if *item == value {
 
                // item already exists
 
                return;
 
            }
 
        }
 

	
 
        vec.push(value);
 
        hide!(self.cur_size += 1);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn contains(&self, value: &T) -> bool {
 
        self.check_length();
 
        let vec = unsafe{&*self.inner};
 
        for index in self.start_size as usize..vec.len() {
 
            if &vec[index] == value {
 
                return true;
 
            }
 
        }
 

	
 
        return false;
 
    }
 
}
 

	
 
impl<T: Copy> ScopedSection<T> {
 
    pub(crate) fn iter_copied(&self) -> ScopedIter<T> {
 
        return ScopedIter{
 
            inner: self.inner,
 
            cur_index: self.start_size,
 
            last_index: unsafe{ (*self.inner).len() as u32 },
 
        }
 
    }
 
}
 

	
 
impl<T> std::ops::Index<usize> for ScopedSection<T> {
 
    type Output = T;
 

	
 
    fn index(&self, index: usize) -> &Self::Output {
 
        let vec = unsafe{&*self.inner};
 
        return &vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
impl<T> std::ops::IndexMut<usize> for ScopedSection<T> {
 
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
 
        let vec = unsafe{&mut *self.inner};
 
        return &mut vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
#[cfg(debug_assertions)]
 
// note: this `Drop` impl used to be debug-only, requiring the programmer to
 
// call `into_vec` or `forget`. But this is rather error prone. So we'll check
 
// in debug mode, but always truncate in release mode (even though this is a
 
// noop in most cases).
 
impl<T: Sized> Drop for ScopedSection<T> {
 
    fn drop(&mut self) {
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(debug_assert_eq!(vec.len(), self.cur_size as usize));
 
        vec.truncate(self.start_size as usize);
 
    }
 
}
 

	
 
/// Small utility for iterating over a section of the buffer. Same conditions as
 
/// the buffer apply: each time we retrieve an element the buffer must have the
 
/// same size as the moment of creation.
 
pub(crate) struct ScopedIter<T: Copy> {
 
    inner: *mut Vec<T>,
 
    cur_index: u32,
 
    last_index: u32,
 
}
 

	
 
impl<T: Copy> Iterator for ScopedIter<T> {
 
    type Item = T;
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        hide!(debug_assert_eq!(self.last_index as usize, unsafe { (*self.inner).len() }));
 
        if self.cur_index >= self.last_index {
 
            return None;
 
        }
 

	
 
        let vec = unsafe{ &*self.inner };
 
        let index = self.cur_index as usize;
 
        self.cur_index += 1;
 
        return Some(vec[index]);
 
    }
 
}
 
\ No newline at end of file
src/protocol/ast.rs
Show inline comments
 
@@ -149,193 +149,193 @@ define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpress
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Expression::Cast, expressions), alloc(alloc_cast_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
define_aliased_ast_id!(ScopeId, Id<Scope>, index(Scope, scopes), alloc(alloc_scope));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
    pub(crate) scopes: Arena<Scope>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            scopes: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Memory(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Channel(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    // pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
    pub fn get_definition_by_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value.as_bytes() == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule),
 
}
 

	
 
impl Pragma {
 
    pub(crate) fn as_module(&self) -> &PragmaModule {
 
        match self {
 
            Pragma::Module(pragma) => pragma,
 
            _ => unreachable!("Tried to obtain {:?} as PragmaModule", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub value: Identifier,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn span(&self) -> InputSpan {
 
        match self {
 
            Import::Module(v) => v.span,
 
            Import::Symbols(v) => v.span,
 
        }
 
    }
 

	
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
    pub(crate) fn as_symbols_mut(&mut self) -> &mut ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub alias: Identifier,
 
    pub module_id: RootId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AliasedSymbol {
 
    pub name: Identifier,
 
    pub alias: Option<Identifier>,
 
    pub definition_id: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
@@ -839,364 +839,390 @@ impl Definition {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_union(&self) -> bool {
 
        match self {
 
            Definition::Union(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_union(&self) -> &UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result, 
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 

	
 
    pub fn is_procedure(&self) -> bool {
 
        match self {
 
            Definition::Procedure(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> &ProcedureDefinition {
 
        match self {
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure_mut(&mut self) -> &mut ProcedureDefinition {
 
        match self {
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 

	
 
    pub fn defined_in(&self) -> RootId {
 
        match self {
 
            Definition::Struct(def) => def.defined_in,
 
            Definition::Enum(def) => def.defined_in,
 
            Definition::Union(def) => def.defined_in,
 
            Definition::Procedure(def) => def.defined_in,
 
        }
 
    }
 

	
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
            Definition::Enum(def) => &def.identifier,
 
            Definition::Union(def) => &def.identifier,
 
            Definition::Procedure(def) => &def.identifier,
 
        }
 
    }
 
    pub fn poly_vars(&self) -> &Vec<Identifier> {
 
        match self {
 
            Definition::Struct(def) => &def.poly_vars,
 
            Definition::Enum(def) => &def.poly_vars,
 
            Definition::Union(def) => &def.poly_vars,
 
            Definition::Procedure(def) => &def.poly_vars,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructFieldDefinition {
 
    pub span: InputSpan,
 
    pub field: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructDefinition {
 
    pub this: StructDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
impl StructDefinition {
 
    pub(crate) fn new_empty(
 
        this: StructDefinitionId, defined_in: RootId, span: InputSpan,
 
        this: StructDefinitionId, defined_in: RootId,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, fields: Vec::new() }
 
        Self{ this, defined_in, identifier, poly_vars, fields: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumVariantDefinition {
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumDefinition {
 
    pub this: EnumDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
impl EnumDefinition {
 
    pub(crate) fn new_empty(
 
        this: EnumDefinitionId, defined_in: RootId, span: InputSpan,
 
        this: EnumDefinitionId, defined_in: RootId,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
        Self{ this, defined_in, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionVariantDefinition {
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub value: Vec<ParserType>, // if empty, then union variant does not contain any embedded types
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionDefinition {
 
    pub this: UnionDefinitionId,
 
    pub defined_in: RootId,
 
    // Phase 1: symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Phase 2: parsing
 
    pub variants: Vec<UnionVariantDefinition>,
 
}
 

	
 
impl UnionDefinition {
 
    pub(crate) fn new_empty(
 
        this: UnionDefinitionId, defined_in: RootId, span: InputSpan,
 
        this: UnionDefinitionId, defined_in: RootId,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
        Self{ this, defined_in, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum ProcedureKind {
 
    Function, // with return type
 
    Primitive, // without return type
 
    Composite,
 
}
 

	
 
/// Monomorphed instantiation of a procedure (or the sole instantiation of a
 
/// non-polymorphic procedure).
 
#[derive(Debug)]
 
pub struct ProcedureDefinitionMonomorph {
 
    pub argument_types: Vec<TypeId>,
 
    pub expr_info: Vec<ExpressionInfo>
 
}
 

	
 
impl ProcedureDefinitionMonomorph {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self{
 
            argument_types: Vec::new(),
 
            expr_info: Vec::new(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct ExpressionInfo {
 
    pub type_id: TypeId,
 
    pub variant: ExpressionInfoVariant,
 
}
 

	
 
impl ExpressionInfo {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self{
 
            type_id: TypeId::new_invalid(),
 
            variant: ExpressionInfoVariant::Generic,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ExpressionInfoVariant {
 
    Generic,
 
    Procedure(TypeId, u32), // procedure TypeID and its monomorph index
 
    Select(i32), // index
 
}
 

	
 
impl ExpressionInfoVariant {
 
    pub(crate) fn as_select(&self) -> i32 {
 
        match self {
 
            ExpressionInfoVariant::Select(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> (TypeId, u32) {
 
        match self {
 
            ExpressionInfoVariant::Procedure(type_id, monomorph_index) => (*type_id, *monomorph_index),
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum ProcedureSource {
 
    FuncUserDefined,
 
    CompUserDefined,
 
    // Builtin functions, available to user
 
    FuncGet,
 
    FuncPut,
 
    FuncFires,
 
    FuncCreate,
 
    FuncLength,
 
    FuncAssert,
 
    FuncPrint,
 
    // Buitlin functions, not available to user
 
    FuncSelectStart,
 
    FuncSelectRegisterCasePort,
 
    FuncSelectWait,
 
    // Builtin components, available to user
 
    CompRandomU32, // TODO: Remove, temporary thing
 
    CompTcpClient,
 
}
 

	
 
impl ProcedureSource {
 
    pub(crate) fn is_builtin(&self) -> bool {
 
        match self {
 
            ProcedureSource::FuncUserDefined | ProcedureSource::CompUserDefined => false,
 
            _ => true,
 
        }
 
    }
 
}
 

	
 

	
 
/// Generic storage for functions, primitive components and composite
 
/// components.
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug)]
 
pub struct ProcedureDefinition {
 
    pub this: ProcedureDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub builtin: bool,
 
    pub kind: ProcedureKind,
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub source: ProcedureSource,
 
    pub return_type: Option<ParserType>, // present on functions, not components
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Monomorphization of typed procedures
 
    pub monomorphs: Vec<ProcedureDefinitionMonomorph>,
 
}
 

	
 
impl ProcedureDefinition {
 
    pub(crate) fn new_empty(
 
        this: ProcedureDefinitionId, defined_in: RootId, span: InputSpan,
 
        this: ProcedureDefinitionId, defined_in: RootId,
 
        kind: ProcedureKind, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            builtin: false,
 
            span,
 
            kind, identifier, poly_vars,
 
            source: ProcedureSource::FuncUserDefined,
 
            return_type: None,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            monomorphs: Vec::new(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    EndBlock(EndBlockStatement),
 
    Local(LocalStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Fork(ForkStatement),
 
    EndFork(EndForkStatement),
 
    Select(SelectStatement),
 
    EndSelect(EndSelectStatement),
 
    Return(ReturnStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 

	
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            Statement::Block(v) => v.span,
 
            Statement::Local(v) => v.span(),
 
            Statement::Labeled(v) => v.label.span,
 
            Statement::If(v) => v.span,
 
            Statement::While(v) => v.span,
 
            Statement::Break(v) => v.span,
 
            Statement::Continue(v) => v.span,
 
            Statement::Synchronous(v) => v.span,
 
            Statement::Fork(v) => v.span,
 
            Statement::Select(v) => v.span,
 
            Statement::Return(v) => v.span,
 
            Statement::Goto(v) => v.span,
 
            Statement::New(v) => v.span,
 
            Statement::Expression(v) => v.span,
 
            Statement::EndBlock(_)
 
            | Statement::EndIf(_)
 
            | Statement::EndWhile(_)
 
            | Statement::EndSynchronous(_)
 
            | Statement::EndFork(_)
 
            | Statement::EndSelect(_) => unreachable!(),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => stmt.next = next,
 
            Statement::EndBlock(stmt) => stmt.next = next,
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = next,
 
                LocalStatement::Memory(stmt) => stmt.next = next,
 
            },
 
            Statement::EndIf(stmt) => stmt.next = next,
 
            Statement::EndWhile(stmt) => stmt.next = next,
 
            Statement::EndSynchronous(stmt) => stmt.next = next,
 
            Statement::EndFork(stmt) => stmt.next = next,
 
            Statement::EndSelect(stmt) => stmt.next = next,
 
            Statement::New(stmt) => stmt.next = next,
 
            Statement::Expression(stmt) => stmt.next = next,
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Fork(_)
 
            | Statement::Select(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 

	
 
}
 

	
 
#[derive(Debug, Clone)]
 
@@ -1720,240 +1746,245 @@ pub enum UnaryOperator {
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub operation: UnaryOperator,
 
    pub expression: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IndexingExpression {
 
    pub this: IndexingExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub subject: ExpressionId,
 
    pub index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SlicingExpression {
 
    pub this: SlicingExpressionId,
 
    // Parsing
 
    pub slicing_span: InputSpan, // from '[' to ']'
 
    pub full_span: InputSpan, // includes subject
 
    pub subject: ExpressionId,
 
    pub from_index: ExpressionId,
 
    pub to_index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum SelectKind {
 
    StructField(Identifier),
 
    TupleMember(u64), // u64 is overkill, but space is taken up by `StructField` variant anyway
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectExpression {
 
    pub this: SelectExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan, // of the '.'
 
    pub full_span: InputSpan, // includes subject and field
 
    pub subject: ExpressionId,
 
    pub kind: SelectKind,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CastExpression {
 
    pub this: CastExpressionId,
 
    // Parsing
 
    pub cast_span: InputSpan, // of the "cast" keyword,
 
    pub full_span: InputSpan, // includes the cast subject
 
    pub to_type: ParserType,
 
    pub subject: ExpressionId,
 
    // Validator/linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Parsing
 
    pub func_span: InputSpan, // of the function name
 
    pub full_span: InputSpan, // includes the arguments and parentheses
 
    pub parser_type: ParserType, // of the function call, not the return type
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub procedure: ProcedureDefinitionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum Method {
 
    // Builtin, accessible by programmer
 
    // Builtin function, accessible by programmer
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Length,
 
    Assert,
 
    Print,
 
    // Builtin, not accessible by programmer
 
    // Builtin function, not accessible by programmer
 
    SelectStart, // SelectStart(total_num_cases, total_num_ports)
 
    SelectRegisterCasePort, // SelectRegisterCasePort(case_index, port_index, port_id)
 
    SelectWait, // SelectWait() -> u32
 
    // Builtin component,
 
    ComponentRandomU32,
 
    ComponentTcpClient,
 
    // User-defined
 
    UserFunction,
 
    UserComponent,
 
}
 

	
 
impl Method {
 
    pub(crate) fn is_public_builtin(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            Get | Put | Fires | Create | Length | Assert | Print => true,
 
            ComponentRandomU32 | ComponentTcpClient => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn is_user_defined(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            UserFunction | UserComponent => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Parsing
 
    pub span: InputSpan,
 
    pub value: Literal,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(char),
 
    Bytestring(Vec<u8>),
 
    String(StringRef<'static>),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &LiteralEnum {
 
        if let Literal::Enum(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Enum", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &LiteralUnion {
 
        if let Literal::Union(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Union", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralInteger {
 
    pub(crate) unsigned_value: u64,
 
    pub(crate) negated: bool, // for constant expression evaluation, TODO: @Int
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStructField {
 
    // Phase 1: parser
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    pub(crate) definition: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in the type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralUnion {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) values: Vec<ExpressionId>,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct VariableExpression {
 
    pub this: VariableExpressionId,
 
    // Parsing
 
    pub identifier: Identifier,
 
    // Validator/Linker
 
    pub declaration: Option<VariableId>,
 
    pub used_as_binding_target: bool,
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 
\ No newline at end of file
src/protocol/ast_writer.rs
Show inline comments
 
file renamed from src/protocol/ast_printer.rs to src/protocol/ast_writer.rs
 
@@ -272,194 +272,198 @@ impl ASTWriter {
 
    //--------------------------------------------------------------------------
 
    // Top-level definition writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_definition(&mut self, heap: &Heap, def_id: DefinitionId, indent: usize) {
 
        self.cur_definition = Some(def_id);
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let indent4 = indent3 + 1;
 

	
 
        match &heap[def_id] {
 
            Definition::Struct(def) => {
 
                self.kv(indent).with_id(PREFIX_STRUCT_ID, def.this.0.index)
 
                    .with_s_key("DefinitionStruct");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Fields");
 
                for field in &def.fields {
 
                    self.kv(indent3).with_s_key("Field");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&field.field);
 
                    self.kv(indent4).with_s_key("Type")
 
                        .with_custom_val(|s| write_parser_type(s, heap, &field.parser_type));
 
                }
 
            },
 
            Definition::Enum(def) => {
 
                self.kv(indent).with_id(PREFIX_ENUM_ID, def.this.0.index)
 
                    .with_s_key("DefinitionEnum");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Variants");
 
                for variant in &def.variants {
 
                    self.kv(indent3).with_s_key("Variant");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&variant.identifier);
 
                    let variant_value = self.kv(indent4).with_s_key("Value");
 
                    match &variant.value {
 
                        EnumVariantValue::None => variant_value.with_s_val("None"),
 
                        EnumVariantValue::Integer(value) => variant_value.with_disp_val(value),
 
                    };
 
                }
 
            },
 
            Definition::Union(def) => {
 
                self.kv(indent).with_id(PREFIX_UNION_ID, def.this.0.index)
 
                    .with_s_key("DefinitionUnion");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Variants");
 
                for variant in &def.variants {
 
                    self.kv(indent3).with_s_key("Variant");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&variant.identifier);
 
                        
 
                    if variant.value.is_empty() {
 
                        self.kv(indent4).with_s_key("Value").with_s_val("None");
 
                    } else {
 
                        self.kv(indent4).with_s_key("Values");
 
                        for embedded in &variant.value {
 
                            self.kv(indent4+1).with_s_key("Value")
 
                                .with_custom_val(|v| write_parser_type(v, heap, embedded));
 
                        }
 
                    }
 
                }
 
            }
 
            Definition::Procedure(def) => {
 
                self.kv(indent).with_id(PREFIX_FUNCTION_ID, def.this.0.index)
 
                    .with_s_key("DefinitionFunction");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Kind").with_debug_val(&def.kind);
 
                if let Some(parser_type) = &def.return_type {
 
                    self.kv(indent2).with_s_key("ReturnParserType")
 
                        .with_custom_val(|s| write_parser_type(s, heap, parser_type));
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for variable_id in &def.parameters {
 
                    self.write_variable(heap, *variable_id, indent3);
 
                }
 

	
 
                if def.source.is_builtin() {
 
                    self.kv(indent2).with_s_key("Body").with_s_val("Builtin");
 
                } else {
 
                    self.kv(indent2).with_s_key("Body");
 
                    self.write_stmt(heap, def.body.upcast(), indent3);
 
                }
 
            },
 
        }
 
    }
 

	
 
    fn write_stmt(&mut self, heap: &Heap, stmt_id: StatementId, indent: usize) {
 
        let stmt = &heap[stmt_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Block");
 
                self.kv(indent2).with_s_key("EndBlockID").with_disp_val(&stmt.end_block.0.index);
 
                self.kv(indent2).with_s_key("ScopeID").with_disp_val(&stmt.scope.index);
 

	
 
                self.kv(indent2).with_s_key("Statements");
 
                for stmt_id in &stmt.statements {
 
                    self.write_stmt(heap, *stmt_id, indent3);
 
                }
 
            },
 
            Statement::EndBlock(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDBLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndBlock");
 
                self.kv(indent2).with_s_key("StartBlockID").with_disp_val(&stmt.start_block.0.index);
 
            }
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Channel(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_CHANNEL_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalChannel");
 

	
 
                        self.kv(indent2).with_s_key("From");
 
                        self.write_variable(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_variable(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalMemory");
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_variable(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("InitialValue");
 
                        self.write_expr(heap, stmt.initial_expr.upcast(), indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                self.kv(indent).with_id(PREFIX_LABELED_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Labeled");
 

	
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Statement");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::If(stmt) => {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf").with_disp_val(&stmt.end_if.0.index);
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_case.body, indent3);
 

	
 
                if let Some(false_body) = stmt.false_case {
 
                    self.kv(indent2).with_s_key("FalseBody");
 
                    self.write_stmt(heap, false_body.body, indent3);
 
                }
 
            },
 
            Statement::EndIf(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile").with_disp_val(&stmt.end_while.0.index);
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_disp_val(&stmt.in_sync.0.index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
@@ -592,278 +596,283 @@ impl ASTWriter {
 
                self.kv(indent2).with_s_key("BindToExpression");
 
                self.write_expr(heap, expr.bound_to, indent3);
 
                self.kv(indent2).with_s_key("BindFromExpression");
 
                self.write_expr(heap, expr.bound_from, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Unary(expr) => {
 
                self.kv(indent).with_id(PREFIX_UNARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("UnaryExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Argument");
 
                self.write_expr(heap, expr.expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Indexing(expr) => {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
 
                self.write_expr(heap, expr.index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Slicing(expr) => {
 
                self.kv(indent).with_id(PREFIX_SLICING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SlicingExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("FromIndex");
 
                self.write_expr(heap, expr.from_index, indent3);
 
                self.kv(indent2).with_s_key("ToIndex");
 
                self.write_expr(heap, expr.to_index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Select(expr) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SelectExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.kind {
 
                    SelectKind::StructField(field_name) => {
 
                        self.kv(indent2).with_s_key("StructField").with_identifier_val(field_name);
 
                    },
 
                    SelectKind::TupleMember(member_index) => {
 
                        self.kv(indent2).with_s_key("TupleMember").with_disp_val(member_index);
 
                    },
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Literal(expr) => {
 
                self.kv(indent).with_id(PREFIX_LITERAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("LiteralExpr");
 

	
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Literal::Null => { val.with_s_val("null"); },
 
                    Literal::True => { val.with_s_val("true"); },
 
                    Literal::False => { val.with_s_val("false"); },
 
                    Literal::Character(data) => { val.with_disp_val(data); },
 
                    Literal::Bytestring(bytes) => {
 
                        // Bytestrings are ASCII, so just convert back
 
                        let string = String::from_utf8_lossy(bytes.as_slice());
 
                        val.with_disp_val(&string);
 
                    },
 
                    Literal::String(data) => {
 
                        // Stupid hack
 
                        let string = String::from(data.as_str());
 
                        val.with_disp_val(&string);
 
                    },
 
                    Literal::Integer(data) => { val.with_debug_val(data); },
 
                    Literal::Struct(data) => {
 
                        val.with_s_val("Struct");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 

	
 
                        for field in &data.fields {
 
                            self.kv(indent3).with_s_key("Field");
 
                            self.kv(indent4).with_s_key("Name").with_identifier_val(&field.identifier);
 
                            self.kv(indent4).with_s_key("Index").with_disp_val(&field.field_idx);
 
                            self.kv(indent4).with_s_key("ParserType");
 
                            self.write_expr(heap, field.value, indent4 + 1);
 
                        }
 
                    },
 
                    Literal::Enum(data) => {
 
                        val.with_s_val("Enum");
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 
                        self.kv(indent3).with_s_key("VariantIdx").with_disp_val(&data.variant_idx);
 
                    },
 
                    Literal::Union(data) => {
 
                        val.with_s_val("Union");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 
                        self.kv(indent3).with_s_key("VariantIdx").with_disp_val(&data.variant_idx);
 

	
 
                        for value in &data.values {
 
                            self.kv(indent3).with_s_key("Value");
 
                            self.write_expr(heap, *value, indent4);
 
                        }
 
                    },
 
                    Literal::Array(data) => {
 
                        val.with_s_val("Array");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    },
 
                    Literal::Tuple(data) => {
 
                        val.with_s_val("Tuple");
 
                        let indent4 = indent3 + 1;
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    }
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Cast(expr) => {
 
                self.kv(indent).with_id(PREFIX_CAST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("ToType")
 
                    .with_custom_val(|t| write_parser_type(t, heap, &expr.to_type));
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Method").with_debug_val(&expr.method);
 
                if !expr.procedure.is_invalid() {
 
                    let definition = &heap[expr.procedure];
 
                    self.kv(indent2).with_s_key("BuiltIn").with_disp_val(&definition.builtin);
 
                    self.kv(indent2).with_s_key("Source").with_debug_val(&definition.source);
 
                    self.kv(indent2).with_s_key("Variant").with_debug_val(&definition.kind);
 
                    self.kv(indent2).with_s_key("MethodName").with_identifier_val(&definition.identifier);
 
                    self.kv(indent2).with_s_key("ParserType")
 
                        .with_custom_val(|t| write_parser_type(t, heap, &expr.parser_type));
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 

	
 
                // Parent
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&expr.identifier);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
        }
 
    }
 

	
 
    fn write_variable(&mut self, heap: &Heap, variable_id: VariableId, indent: usize) {
 
        let var = &heap[variable_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_VARIABLE_ID, variable_id.index)
 
            .with_s_key("Variable");
 

	
 
        self.kv(indent2).with_s_key("Name").with_identifier_val(&var.identifier);
 
        self.kv(indent2).with_s_key("Kind").with_debug_val(&var.kind);
 
        self.kv(indent2).with_s_key("ParserType")
 
            .with_custom_val(|w| write_parser_type(w, heap, &var.parser_type));
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_parent);
 
        self.kv(indent2).with_s_key("UniqueScopeID").with_disp_val(&var.unique_id_in_scope);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn kv(&mut self, indent: usize) -> KV {
 
        KV::new(&mut self.buffer, &mut self.temp1, &mut self.temp2, indent)
 
    }
 

	
 
    fn flush<W: IOWrite>(&mut self, w: &mut W) {
 
        w.write(self.buffer.as_bytes()).unwrap();
 
        self.buffer.clear()
 
    }
 
}
 

	
 
fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
    target.clear();
 
    match &value {
 
        Some(v) => target.push_str(&format!("Some({})", v)),
 
        None => target.push_str("None")
 
    };
 
}
 

	
 
fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    if t.elements.is_empty() {
 
        target.push_str("no elements in ParserType (can happen due to compiler-inserted AST nodes)");
 
        return;
 
    }
 

	
 
    fn write_element(target: &mut String, heap: &Heap, t: &ParserType, mut element_idx: usize) -> usize {
 
        let element = &t.elements[element_idx];
 
        match &element.variant {
 
            PTV::Void => target.push_str("void"),
 
            PTV::InputOrOutput => {
 
                target.push_str("portlike<");
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::ArrayLike => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[???]");
 
            },
 
            PTV::IntegerLike => target.push_str("integerlike"),
 
            PTV::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            PTV::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            PTV::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            PTV::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            PTV::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            PTV::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            PTV::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            PTV::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
src/protocol/eval/executor.rs
Show inline comments
 
@@ -42,193 +42,193 @@ impl Frame {
 
        let first_statement_id = definition.body;
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, scope_id: ScopeId, max_size: &mut u32) {
 
            let scope = &heap[scope_id];
 

	
 
            // Check current block
 
            let cur_size = scope.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &scope.nested {
 
                determine_max_stack_size(heap, *child_scope, max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, outer_scope_id, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_index: monomorph_index as usize,
 
            position: first_statement_id.upcast(),
 
            expr_stack: VecDeque::with_capacity(128),
 
            expr_values: VecDeque::with_capacity(128),
 
            max_stack_size,
 
        }
 
    }
 

	
 
    /// Prepares a single expression for execution. This involves walking the
 
    /// expression tree and putting them in the `expr_stack` such that
 
    /// continuously popping from its back will evaluate the expression. The
 
    /// results of each expression will be stored by pushing onto `expr_values`.
 
    pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
 

	
 
        self.serialize_expression(heap, expr_id);
 
    }
 

	
 
    /// Prepares multiple expressions for execution (i.e. evaluating all
 
    /// function arguments or all elements of an array/union literal). Per
 
    /// expression this works the same as `prepare_single_expression`. However
 
    /// after each expression is evaluated we insert a `PushValToFront`
 
    /// instruction
 
    pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear();
 

	
 
        for expr_id in expr_ids {
 
            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
            self.serialize_expression(heap, *expr_id);
 
        }
 
    }
 

	
 
    /// Performs depth-first serialization of expression tree. Let's not care
 
    /// about performance for a temporary runtime implementation
 
    fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
 
        self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
 

	
 
        match &heap[id] {
 
            Expression::Assignment(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Binding(expr) => {
 
                self.serialize_expression(heap, expr.bound_to);
 
                self.serialize_expression(heap, expr.bound_from);
 
            },
 
            Expression::Conditional(expr) => {
 
                self.serialize_expression(heap, expr.test);
 
            },
 
            Expression::Binary(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Unary(expr) => {
 
                self.serialize_expression(heap, expr.expression);
 
            },
 
            Expression::Indexing(expr) => {
 
                self.serialize_expression(heap, expr.index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.serialize_expression(heap, expr.from_index);
 
                self.serialize_expression(heap, expr.to_index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Select(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Literal(expr) => {
 
                // Here we only care about literals that have subexpressions
 
                match &expr.value {
 
                    Literal::Null | Literal::True | Literal::False |
 
                    Literal::Character(_) | Literal::String(_) |
 
                    Literal::Character(_) | Literal::Bytestring(_) | Literal::String(_) |
 
                    Literal::Integer(_) | Literal::Enum(_) => {
 
                        // No subexpressions
 
                    },
 
                    Literal::Struct(literal) => {
 
                        // Note: fields expressions are evaluated in programmer-
 
                        // specified order. But struct construction expects them
 
                        // in type-defined order. I might want to come back to
 
                        // this.
 
                        let mut _num_pushed = 0;
 
                        for want_field_idx in 0..literal.fields.len() {
 
                            for field in &literal.fields {
 
                                if field.field_idx == want_field_idx {
 
                                    _num_pushed += 1;
 
                                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                                    self.serialize_expression(heap, field.value);
 
                                }
 
                            }
 
                        }
 
                        debug_assert_eq!(_num_pushed, literal.fields.len())
 
                    },
 
                    Literal::Union(literal) => {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Tuple(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
pub type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
#[derive(Debug)]
 
pub enum EvalContinuation {
 
    // Returned in both sync and non-sync modes
 
    Stepping,
 
    // Returned only in sync mode
 
    BranchInconsistent,
 
    SyncBlockEnd,
 
    NewFork,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, ValueGroup),
 
    SelectStart(u32, u32), // (num_cases, num_ports_total)
 
    SelectRegisterPort(u32, u32, PortId), // (case_index, port_index_in_case, port_id)
 
    SelectWait, // wait until select can continue
 
    // Returned only in non-sync mode
 
    ComponentTerminated,
 
    SyncBlockStart,
 
    NewComponent(ProcedureDefinitionId, TypeId, ValueGroup),
 
    NewChannel,
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(types: &TypeTable, heap: &Heap, def: ProcedureDefinitionId, type_id: TypeId, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        let monomorph_index = types.get_monomorph(type_id).variant.as_procedure().monomorph_index;
 
@@ -421,192 +421,202 @@ impl Prompt {
 

	
 
                            debug_assert!(from_index.is_integer() && to_index.is_integer());
 
                            let from_index = if from_index.is_signed_integer() {
 
                                from_index.as_signed_integer()
 
                            } else {
 
                                from_index.as_unsigned_integer() as i64
 
                            };
 
                            let to_index = if to_index.is_signed_integer() {
 
                                to_index.as_signed_integer()
 
                            } else {
 
                                to_index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            // Dereference subject if needed
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let deref_subject = self.store.maybe_read_ref(&subject);
 

	
 
                            // Slicing needs to produce a copy anyway (with the
 
                            // current evaluator implementation)
 
                            enum ValueKind{ Array, String, Message }
 
                            let (value_kind, array_heap_pos) = match deref_subject {
 
                                Value::Array(v) => (ValueKind::Array, *v),
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let field_idx = mono_data.expr_info[expr.type_index as usize].variant.as_select() as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::Bytestring(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(lit_value.len());
 
                                    for byte in lit_value {
 
                                        values.push(Value::UInt8(*byte));
 
                                    }
 
                                    Value::Array(heap_pos)
 
                                }
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                                    let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                                Literal::Tuple(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Tuple(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                            let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, concrete_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    let port_id = if let Value::Input(port_id) = value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.performed_get(port_id) {
 
                                        Some(result) => {
 
@@ -625,234 +635,243 @@ impl Prompt {
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.performed_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        // Prepare to execute again
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        let value_group = ValueGroup::from_store(&self.store, &[deref_msg_value]);
 
                                        return Ok(EvalContinuation::Put(port_id, value_group));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 
                                    let port_id = port_value_deref.as_port_id();
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::BranchInconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let mut is_literal_string = value.get_heap_pos().is_some();
 
                                    let value = self.store.maybe_read_ref(&value);
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    if is_literal_string {
 
                                        self.store.drop_heap_pos(value_heap_pos);
 
                                    }
 

	
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 

	
 
                                    return Ok(EvalContinuation::SelectStart(num_cases, num_ports));
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    return Ok(EvalContinuation::SelectRegisterPort(case_index, port_index, port_value));
 
                                },
 
                                Method::SelectWait => {
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr.this.upcast()));
 
                                            return Ok(EvalContinuation::SelectWait)
 
                                        },
 
                                    }
 
                                },
 
                                Method::ComponentRandomU32 | Method::ComponentTcpClient => {
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
            for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                let scope = &heap[block.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        dbg_code!({
 
                            let variable = &heap[stmt.variable];
 
                            debug_assert!(match self.store.read_ref(ValueId::Stack(variable.unique_id_in_scope as u32)) {
 
                                Value::Unassigned => false,
 
                                _ => true,
 
                            });
 
                        });
 

	
 
                        cur_frame.position = stmt.next;
src/protocol/eval/value.rs
Show inline comments
 
@@ -90,206 +90,216 @@ impl Value {
 
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
 
        match self {
 
            Value::Union(tag, v) => (*tag, *v),
 
            _ => panic!("called as_union on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_port_id(&self) -> PortId {
 
        match self {
 
            Value::Input(v) => *v,
 
            Value::Output(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn is_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_unsigned_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_signed_integer(&self) -> bool {
 
        match self {
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn as_unsigned_integer(&self) -> u64 {
 
        match self {
 
            Value::UInt8(v)  => *v as u64,
 
            Value::UInt16(v) => *v as u64,
 
            Value::UInt32(v) => *v as u64,
 
            Value::UInt64(v) => *v as u64,
 
            _ => unreachable!("called as_unsigned_integer on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_signed_integer(&self) -> i64 {
 
        match self {
 
            Value::SInt8(v)  => *v as i64,
 
            Value::SInt16(v) => *v as i64,
 
            Value::SInt32(v) => *v as i64,
 
            Value::SInt64(v) => *v as i64,
 
            _ => unreachable!("called as_signed_integer on {:?}", self)
 
        }
 
    }
 

	
 
    /// Returns the heap position associated with the value. If the value
 
    /// doesn't store anything in the heap then we return `None`.
 
    pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
 
        match self {
 
            Value::Message(v) => Some(*v),
 
            Value::String(v) => Some(*v),
 
            Value::Array(v) => Some(*v),
 
            Value::Tuple(v) => Some(*v),
 
            Value::Union(_, v) => Some(*v),
 
            Value::Struct(v) => Some(*v),
 
            _ => None
 
        }
 
    }
 
}
 

	
 
/// When providing arguments to a new component, or when transferring values
 
/// from one component's store to a newly instantiated component, one has to
 
/// transfer stack and heap values. This `ValueGroup` represents such a
 
/// temporary group of values with potential heap allocations.
 
///
 
/// Constructing such a ValueGroup manually requires some extra care to make
 
/// sure all elements of `values` point to valid elements of `regions`.
 
///
 
/// Again: this is a temporary thing, hopefully removed once we move to a
 
/// bytecode interpreter.
 
#[derive(Clone, Debug)]
 
pub struct ValueGroup {
 
    pub(crate) values: Vec<Value>,
 
    pub(crate) regions: Vec<Vec<Value>>
 
}
 

	
 
impl ValueGroup {
 
    pub(crate) fn new_stack(values: Vec<Value>) -> Self {
 
        debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
 
        Self{
 
            values,
 
            regions: Vec::new(),
 
        }
 
    }
 

	
 
    pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
 
        let mut group = ValueGroup{
 
            values: Vec::with_capacity(values.len()),
 
            regions: Vec::with_capacity(values.len()), // estimation
 
        };
 

	
 
        for value in values {
 
            let transferred = group.retrieve_value(value, store);
 
            group.values.push(transferred);
 
        }
 

	
 
        group
 
    }
 

	
 
    /// Creates a clone of the value group, but leaves the memory inside of the
 
    /// ValueGroup vectors allocated.
 
    pub(crate) fn take(&mut self) -> ValueGroup {
 
        let cloned = self.clone();
 
        self.values.clear();
 
        self.regions.clear();
 
        return cloned;
 
    }
 

	
 
    /// Transfers a provided value from a store into a local value with its
 
    /// heap allocations (if any) stored in the ValueGroup. Calling this
 
    /// function will not store the returned value in the `values` member.
 
    fn retrieve_value(&mut self, value: &Value, from_store: &Store) -> Value {
 
        let value = from_store.maybe_read_ref(value);
 
        if let Some(heap_pos) = value.get_heap_pos() {
 
            // Value points to a heap allocation, so transfer the heap values
 
            // internally.
 
            let from_region = &from_store.heap_regions[heap_pos as usize].values;
 
            let mut new_region = Vec::with_capacity(from_region.len());
 
            for value in from_region {
 
                let transferred = self.retrieve_value(value, from_store);
 
                new_region.push(transferred);
 
            }
 

	
 
            // Region is constructed, store internally and return the new value.
 
            let new_region_idx = self.regions.len() as HeapPos;
 
            self.regions.push(new_region);
 

	
 
            return match value {
 
                Value::Message(_)    => Value::Message(new_region_idx),
 
                Value::String(_)     => Value::String(new_region_idx),
 
                Value::Array(_)      => Value::Array(new_region_idx),
 
                Value::Tuple(_)      => Value::Tuple(new_region_idx),
 
                Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
 
                Value::Struct(_)     => Value::Struct(new_region_idx),
 
                _ => unreachable!(),
 
            };
 
        } else {
 
            return value.clone();
 
        }
 
    }
 

	
 
    /// Transfers the heap values and the stack values into the store. Stack
 
    /// values are pushed onto the Store's stack in the order in which they
 
    /// appear in the value group.
 
    pub(crate) fn into_store(self, store: &mut Store) {
 
        for value in &self.values {
 
            let transferred = self.provide_value(value, store);
 
            store.stack.push(transferred);
 
        }
 
    }
 

	
 
    /// Transfers the heap values into the store, but will put the stack values
 
    /// into the provided `VecDeque`. This is mainly used to merge `ValueGroup`
 
    /// instances retrieved by the code by `get` calls into the expression
 
    /// stack.
 
    pub(crate) fn into_stack(self, stack: &mut VecDeque<Value>, store: &mut Store) {
 
        for value in &self.values {
 
            let transferred = self.provide_value(value, store);
 
            stack.push_back(transferred);
 
        }
 
    }
 

	
 
    fn provide_value(&self, value: &Value, to_store: &mut Store) -> Value {
 
        if let Some(from_heap_pos) = value.get_heap_pos() {
 
            let from_heap_pos = from_heap_pos as usize;
 
            let to_heap_pos = to_store.alloc_heap();
 
            let to_heap_pos_usize = to_heap_pos as usize;
 
            to_store.heap_regions[to_heap_pos_usize].values.reserve(self.regions[from_heap_pos].len());
 

	
 
            for value in &self.regions[from_heap_pos as usize] {
 
                let transferred = self.provide_value(value, to_store);
 
                to_store.heap_regions[to_heap_pos_usize].values.push(transferred);
 
            }
 

	
 
            return match value {
 
                Value::Message(_)    => Value::Message(to_heap_pos),
 
                Value::String(_)     => Value::String(to_heap_pos),
 
                Value::Array(_)      => Value::Array(to_heap_pos),
 
                Value::Tuple(_)      => Value::Tuple(to_heap_pos),
 
                Value::Union(tag, _) => Value::Union(*tag, to_heap_pos),
 
                Value::Struct(_)     => Value::Struct(to_heap_pos),
 
                _ => unreachable!(),
 
            };
 
        } else {
 
            return value.clone();
 
        }
 
    }
 
}
 

	
 
impl Default for ValueGroup {
 
    /// Returns an empty ValueGroup
 
    fn default() -> Self {
 
        Self { values: Vec::new(), regions: Vec::new() }
 
    }
 
}
 

	
 
enum ValueKind { Message, String, Array }
 

	
 
pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueId, op: AssignmentOperator, rhs: Value) {
 
    use AssignmentOperator as AO;
 

	
 
    macro_rules! apply_int_op {
 
        ($lhs:ident, $assignment_tokens:tt, $operator:ident, $rhs:ident) => {
 
            match $lhs {
src/protocol/input_source.rs
Show inline comments
 
@@ -77,192 +77,199 @@ impl InputSource {
 

	
 
    pub fn lookahead(&self, offset: usize) -> Option<u8> {
 
        let offset_pos = self.offset + offset;
 
        if offset_pos < self.input.len() {
 
            Some(self.input[offset_pos])
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    #[inline]
 
    pub fn section_at_pos(&self, start: InputPosition, end: InputPosition) -> &[u8] {
 
        &self.input[start.offset as usize..end.offset as usize]
 
    }
 

	
 
    #[inline]
 
    pub fn section_at_span(&self, span: InputSpan) -> &[u8] {
 
        &self.input[span.begin.offset as usize..span.end.offset as usize]
 
    }
 

	
 
    // Consumes the next character. Will check well-formedness of newlines: \r
 
    // must be followed by a \n, because this is used for error reporting. Will
 
    // not check for ascii-ness of the file, better left to a tokenizer.
 
    pub fn consume(&mut self) {
 
        match self.next() {
 
            Some(b'\r') => {
 
                if Some(b'\n') == self.lookahead(1) {
 
                    // Well formed file
 
                    self.offset += 1;
 
                } else {
 
                    // Not a well-formed file, pretend like we can continue
 
                    self.offset += 1;
 
                    self.set_error("Encountered carriage-feed without a following newline");
 
                }
 
            },
 
            Some(b'\n') => {
 
                self.line += 1;
 
                self.offset += 1;
 
            },
 
            Some(_) => {
 
                self.offset += 1;
 
            }
 
            None => {}
 
        }
 

	
 
        // Maybe we actually want to check this in release mode. Then again:
 
        // a 4 gigabyte source file... Really?
 
        debug_assert!(self.offset < u32::max_value() as usize);
 
    }
 

	
 
    fn set_error(&mut self, msg: &str) {
 
        if self.had_error.is_none() {
 
            self.had_error = Some(ParseError::new_error_str_at_pos(self, self.pos(), msg));
 
        }
 
    }
 

	
 
    fn get_lookup(&self) -> RwLockReadGuard<Vec<u32>> {
 
        // Once constructed the lookup always contains one element. We use this
 
        // to see if it is constructed already.
 
        {
 
            let lookup = self.offset_lookup.read().unwrap();
 
            if !lookup.is_empty() {
 
                return lookup;
 
            }
 
        }
 

	
 
        // Lookup was not constructed yet
 
        let mut lookup = self.offset_lookup.write().unwrap();
 
        if !lookup.is_empty() {
 
            // Somebody created it before we had the chance
 
            drop(lookup);
 
            let lookup = self.offset_lookup.read().unwrap();
 
            return lookup;
 
        }
 

	
 
        // Build the line number (!) to offset lookup, so offset by 1. We 
 
        // assume the entire source file is scanned (most common case) for
 
        // preallocation.
 
        lookup.reserve(self.line as usize + 2);
 
        lookup.push(0); // line 0: never used
 
        lookup.push(0); // first line: first character
 

	
 
        for char_idx in 0..self.input.len() {
 
            if self.input[char_idx] == b'\n' {
 
                lookup.push(char_idx as u32 + 1);
 
            }
 
        }
 

	
 
        lookup.push(self.input.len() as u32 + 1); // for lookup_line_end, intentionally adding one character
 

	
 
        // Return created lookup
 
        drop(lookup);
 
        let lookup = self.offset_lookup.read().unwrap();
 
        return lookup;
 
    }
 

	
 
    /// Retrieves the column associated with a line. Calling this incurs a read
 
    /// lock, so don't spam it in happy-path compiler code.
 
    pub(crate) fn get_column(&self, pos: InputPosition) -> u32 {
 
        let line_start = self.lookup_line_start_offset(pos.line);
 
        return pos.offset - line_start + 1;
 
    }
 

	
 
    /// Retrieves offset at which line starts (right after newline)
 
    fn lookup_line_start_offset(&self, line_number: u32) -> u32 {
 
        let lookup = self.get_lookup();
 
        lookup[line_number as usize]
 
    }
 

	
 
    /// Retrieves offset at which line ends (at the newline character or the
 
    /// preceding carriage feed for \r\n-encoded newlines)
 
    fn lookup_line_end_offset(&self, line_number: u32) -> u32 {
 
        let lookup = self.get_lookup();
 
        let offset = lookup[(line_number + 1) as usize] - 1;
 
        let offset_usize = offset as usize;
 

	
 
        // Compensate for newlines and a potential carriage feed. Note that the
 
        // end position is exclusive. So we only need to compensate for a
 
        // "\r\n"
 
        if offset_usize > 0 && offset_usize < self.input.len() && self.input[offset_usize] == b'\n' && self.input[offset_usize - 1] == b'\r' {
 
            offset - 1
 
        } else {
 
            offset
 
        }
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum StatementKind {
 
    Info,
 
    Error
 
}
 

	
 
#[derive(Debug)]
 
pub enum ContextKind {
 
    SingleLine,
 
    MultiLine,
 
}
 

	
 
#[derive(Debug)]
 
pub struct ErrorStatement {
 
    pub(crate) statement_kind: StatementKind,
 
    pub(crate) context_kind: ContextKind,
 
    pub(crate) start_line: u32,
 
    pub(crate) start_column: u32,
 
    pub(crate) end_line: u32,
 
    pub(crate) end_column: u32,
 
    pub(crate) filename: String,
 
    pub(crate) context: String,
 
    pub(crate) message: String,
 
}
 

	
 
impl ErrorStatement {
 
    fn from_source_at_pos(statement_kind: StatementKind, source: &InputSource, position: InputPosition, message: String) -> Self {
 
        // Seek line start and end
 
        let line_start = source.lookup_line_start_offset(position.line);
 
        let line_end = source.lookup_line_end_offset(position.line);
 
        let context = Self::create_context(source, line_start as usize, line_end as usize);
 
        debug_assert!(position.offset >= line_start);
 
        let column = position.offset - line_start + 1;
 

	
 
        Self{
 
            statement_kind,
 
            context_kind: ContextKind::SingleLine,
 
            start_line: position.line,
 
            start_column: column,
 
            end_line: position.line,
 
            end_column: column + 1,
 
            filename: source.filename.clone(),
 
            context,
 
            message,
 
        }
 
    }
 

	
 
    pub(crate) fn from_source_at_span(statement_kind: StatementKind, source: &InputSource, span: InputSpan, message: String) -> Self {
 
        debug_assert!(span.end.line >= span.begin.line);
 
        debug_assert!(span.end.offset >= span.begin.offset);
 

	
 
        let first_line_start = source.lookup_line_start_offset(span.begin.line);
 
        let last_line_start = source.lookup_line_start_offset(span.end.line);
 
        let last_line_end = source.lookup_line_end_offset(span.end.line);
 
        let context = Self::create_context(source, first_line_start as usize, last_line_end as usize);
 
        debug_assert!(span.begin.offset >= first_line_start);
 
        let start_column = span.begin.offset - first_line_start + 1;
 
        let end_column = span.end.offset - last_line_start + 1;
 

	
 
        let context_kind = if span.begin.line == span.end.line {
 
            ContextKind::SingleLine
 
        } else {
 
            ContextKind::MultiLine
 
        };
 

	
 
        Self{
 
            statement_kind,
 
            context_kind,
 
            start_line: span.begin.line,
 
            start_column,
 
            end_line: span.end.line,
 
            end_column,
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
pub(crate) mod eval;
 
pub(crate) mod input_source;
 
mod parser;
 
#[cfg(test)] mod tests;
 

	
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 
pub(crate) mod ast_writer;
 
mod token_writer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
use crate::protocol::ast::*;
 
pub use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
pub use parser::type_table::TypeId;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        let mut parser = Parser::new(None)?;
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 

	
 
    pub(crate) fn new_component(
 
        &self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
 
    ) -> Result<Prompt, ComponentCreationError> {
 
        // Find the module in which the definition can be found
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(ComponentCreationError::ModuleDoesntExist);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let definition_id = root.get_definition_ident(&self.heap, identifier);
 
        let definition_id = root.get_definition_by_ident(&self.heap, identifier);
 
        if definition_id.is_none() {
 
            return Err(ComponentCreationError::DefinitionDoesntExist);
 
        }
 
        let definition_id = definition_id.unwrap();
 

	
 
        let ast_definition = &self.heap[definition_id];
 
        if !ast_definition.is_procedure() {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // Make sure that the types of the provided value group matches that of
 
        // the expected types.
 
        let ast_definition = ast_definition.as_procedure();
 
        if !ast_definition.poly_vars.is_empty() || ast_definition.kind == ProcedureKind::Function {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // - check number of arguments by retrieving the one instantiated
 
        //   monomorph
 
        let concrete_type = ConcreteType{ parts: vec![ConcreteTypePart::Component(ast_definition.this, 0)] };
 
        let procedure_type_id = self.types.get_procedure_monomorph_type_id(&definition_id, &concrete_type.parts).unwrap();
 
        let procedure_type_id = self.types.get_monomorph_type_id(&definition_id, &concrete_type.parts).unwrap();
 
        let procedure_monomorph_index = self.types.get_monomorph(procedure_type_id).variant.as_procedure().monomorph_index;
 
        let monomorph_info = &ast_definition.monomorphs[procedure_monomorph_index as usize];
 
        if monomorph_info.argument_types.len() != arguments.values.len() {
 
            return Err(ComponentCreationError::InvalidNumArguments);
 
        }
 

	
 
        // - for each argument try to make sure the types match
 
        for arg_idx in 0..arguments.values.len() {
 
            let expected_type_id = monomorph_info.argument_types[arg_idx];
 
            let expected_type = &self.types.get_monomorph(expected_type_id).concrete_type;
 
            let provided_value = &arguments.values[arg_idx];
 
            if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
 
                return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
 
            }
 
        }
 

	
 
        // By now we're sure that all of the arguments are correct. So create
 
        // the connector.
 
        return Ok(Prompt::new(&self.types, &self.heap, ast_definition.this, procedure_type_id, arguments));
 
    }
 

	
 
    /// A somewhat temporary method. Can be used by components to lookup type
 
    /// definitions by their name (to have their implementation somewhat
 
    /// resistant to changes in the standard library)
 
    pub(crate) fn find_type<'a>(&'a self, module_name: &[u8], type_name: &[u8]) -> Option<TypeInspector<'a>> {
 
        // Lookup type definition in module
 
        let root_id = self.lookup_module_root(module_name)?;
 
        let module = &self.heap[root_id];
 
        let definition_id = module.get_definition_by_ident(&self.heap, type_name)?;
 
        let definition = &self.heap[definition_id];
 

	
 
        // Make sure type is not polymorphic and is not a procedure
 
        if !definition.poly_vars().is_empty() {
 
            return None;
 
        }
 
        if definition.is_procedure() {
 
            return None;
 
        }
 

	
 
        // Lookup type in type table
 
        let type_parts = [ConcreteTypePart::Instance(definition_id, 0)];
 
        let type_id = self.types.get_monomorph_type_id(&definition_id, &type_parts)
 
            .expect("type ID for non-polymorphic type");
 
        let type_monomorph = self.types.get_monomorph(type_id);
 

	
 
        return Some(TypeInspector{
 
            heap: definition,
 
            type_table: type_monomorph
 
        });
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
 
        use ConcreteTypePart as CTP;
 

	
 
        match &expected.parts[expected_idx] {
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Pointer | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
 
            CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
 
            CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
 
            CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
 
            CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
 
            CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
 
            CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
 
            CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
 
            CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
 
            CTP::Character => if let Value::Char(_) = argument { true } else { false },
 
            CTP::String => {
 
                // Match outer string type and embedded character types
 
                if let Value::String(heap_pos) = argument {
 
                    for element in &arguments.regions[*heap_pos as usize] {
 
                        if let Value::Char(_) = element {} else {
 
                            return false;
 
                        }
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
 
                        if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
 
                            return false;
 
                        }
 
                    }
 
                    return true;
 
                } else {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Tuple(_) => todo!("implement full type checking on user-supplied arguments"),
 
            CTP::Instance(definition_id, _num_embedded) => {
 
                let definition = self.types.get_base_definition(definition_id).unwrap();
 
                match &definition.definition {
 
                    DefinedTypeVariant::Enum(definition) => {
 
                        if let Value::Enum(variant_value) = argument {
 
                            let is_valid = definition.variants.iter()
 
                                .any(|v| v.value == *variant_value);
 
                            return is_valid;
 
                        }
 
                    },
 
                    _ => todo!("implement full type checking on user-supplied arguments"),
 
                }
 

	
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
pub trait RunContext {
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
    fn performed_select_wait(&mut self) -> Option<u32>; // None if not yet notified runtime of select blocker
 
}
 

	
 
pub struct ProtocolDescriptionBuilder {
 
    parser: Parser,
 
}
 

	
 
impl ProtocolDescriptionBuilder {
 
    pub fn new() -> Self {
 
        return Self{
 
            parser: Parser::new(),
 
        }
 
    pub fn new(std_lib_dir: Option<String>) -> Result<Self, String> {
 
        let mut parser = Parser::new(std_lib_dir)?;
 
        return Ok(Self{ parser })
 
    }
 

	
 
    pub fn add(&mut self, filename: String, buffer: Vec<u8>) -> Result<(), ParseError> {
 
        let input = InputSource::new(filename, buffer);
 
        self.parser.feed(input)?;
 

	
 
        return Ok(())
 
    }
 

	
 
    pub fn compile(mut self) -> Result<ProtocolDescription, ParseError> {
 
        self.parser.parse()?;
 

	
 
        let modules: Vec<Module> = self.parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: self.parser.heap,
 
            types: self.parser.type_table,
 
            pool: Mutex::new(self.parser.string_pool),
 
        });
 
    }
 
}
 

	
 
pub struct TypeInspector<'a> {
 
    heap: &'a Definition,
 
    type_table: &'a MonoType,
 
}
 

	
 
impl<'a> TypeInspector<'a> {
 
    pub fn as_union(&'a self) -> UnionTypeInspector<'a> {
 
        let heap = self.heap.as_union();
 
        let type_table = self.type_table.variant.as_union();
 
        return UnionTypeInspector{ heap, type_table };
 
    }
 
}
 

	
 
pub struct UnionTypeInspector<'a> {
 
    heap: &'a UnionDefinition,
 
    type_table: &'a UnionMonomorph,
 
}
 

	
 
impl UnionTypeInspector<'_> {
 
    /// Retrieves union variant tag value.
 
    pub fn get_variant_tag_value(&self, variant_name: &[u8]) -> Option<i64> {
 
        let variant_index = self.heap.variants.iter()
 
            .position(|v| v.identifier.value.as_bytes() == variant_name)?;
 
        return Some(variant_index as i64);
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/mod.rs
Show inline comments
 
#[macro_use] mod visitor;
 
pub(crate) mod symbol_table;
 
pub(crate) mod type_table;
 
pub(crate) mod tokens;
 
pub(crate) mod token_parsing;
 
pub(crate) mod pass_tokenizer;
 
pub(crate) mod pass_symbols;
 
pub(crate) mod pass_imports;
 
pub(crate) mod pass_definitions;
 
pub(crate) mod pass_definitions_types;
 
pub(crate) mod pass_validation_linking;
 
pub(crate) mod pass_rewriting;
 
pub(crate) mod pass_typing;
 
pub(crate) mod pass_stack_size;
 

	
 
use tokens::*;
 
use crate::collections::*;
 
use visitor::Visitor;
 
use pass_tokenizer::PassTokenizer;
 
use pass_symbols::PassSymbols;
 
use pass_imports::PassImport;
 
use pass_definitions::PassDefinitions;
 
use pass_validation_linking::PassValidationLinking;
 
use pass_typing::{PassTyping, ResolveQueue};
 
use pass_rewriting::PassRewriting;
 
use pass_stack_size::PassStackSize;
 
use symbol_table::*;
 
use type_table::*;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 

	
 
use crate::protocol::ast_printer::ASTWriter;
 
use crate::protocol::ast_writer::ASTWriter;
 
use crate::protocol::parser::type_table::PolymorphicVariable;
 
use crate::protocol::token_writer::TokenWriter;
 

	
 
const REOWOLF_PATH_ENV: &'static str = "REOWOLF_ROOT"; // first lookup reowolf path
 
const REOWOLF_PATH_DIR: &'static str = "std"; // then try folder in current working directory
 

	
 
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
 
pub enum ModuleCompilationPhase {
 
    Tokenized,              // source is tokenized
 
    SymbolsScanned,         // all definitions are linked to their type class
 
    ImportsResolved,        // all imports are added to the symbol table
 
    DefinitionsParsed,      // produced the AST for the entire module
 
    TypesAddedToTable,      // added all definitions to the type table
 
    ValidatedAndLinked,     // AST is traversed and has linked the required AST nodes
 
    Typed,                  // Type inference and checking has been performed
 
    Rewritten,              // Special AST nodes are rewritten into regular AST nodes
 
    // When we continue with the compiler:
 
    // StackSize
 
}
 

	
 
pub struct Module {
 
    // Buffers
 
    pub source: InputSource,
 
    pub tokens: TokenBuffer,
 
    // Identifiers
 
    pub is_compiler_file: bool, // TODO: @Hack for custom compiler-only types
 
    pub add_to_global_namespace: bool,
 
    pub root_id: RootId,
 
    pub name: Option<(PragmaId, StringRef<'static>)>,
 
    pub version: Option<(PragmaId, i64)>,
 
    pub phase: ModuleCompilationPhase,
 
}
 

	
 
pub struct TargetArch {
 
    pub void_type_id: TypeId,
 
    pub message_type_id: TypeId,
 
    pub bool_type_id: TypeId,
 
    pub uint8_type_id: TypeId,
 
    pub uint16_type_id: TypeId,
 
    pub uint32_type_id: TypeId,
 
    pub uint64_type_id: TypeId,
 
    pub sint8_type_id: TypeId,
 
    pub sint16_type_id: TypeId,
 
    pub sint32_type_id: TypeId,
 
    pub sint64_type_id: TypeId,
 
    pub char_type_id: TypeId,
 
    pub string_type_id: TypeId,
 
    pub array_type_id: TypeId,
 
    pub slice_type_id: TypeId,
 
    pub input_type_id: TypeId,
 
    pub output_type_id: TypeId,
 
    pub pointer_type_id: TypeId,
 
}
 

	
 
impl TargetArch {
 
    fn new() -> Self {
 
        return Self{
 
            void_type_id: TypeId::new_invalid(),
 
            bool_type_id: TypeId::new_invalid(),
 
            message_type_id: TypeId::new_invalid(),
 
            uint8_type_id: TypeId::new_invalid(),
 
            uint16_type_id: TypeId::new_invalid(),
 
            uint32_type_id: TypeId::new_invalid(),
 
            uint64_type_id: TypeId::new_invalid(),
 
            sint8_type_id: TypeId::new_invalid(),
 
            sint16_type_id: TypeId::new_invalid(),
 
            sint32_type_id: TypeId::new_invalid(),
 
            sint64_type_id: TypeId::new_invalid(),
 
            char_type_id: TypeId::new_invalid(),
 
            string_type_id: TypeId::new_invalid(),
 
            array_type_id: TypeId::new_invalid(),
 
            slice_type_id: TypeId::new_invalid(),
 
            input_type_id: TypeId::new_invalid(),
 
            output_type_id: TypeId::new_invalid(),
 
            pointer_type_id: TypeId::new_invalid(),
 
        }
 
    }
 
}
 

	
 
pub struct PassCtx<'a> {
 
    heap: &'a mut Heap,
 
    symbols: &'a mut SymbolTable,
 
    pool: &'a mut StringPool,
 
    arch: &'a TargetArch,
 
}
 

	
 
pub struct Parser {
 
    // Storage of all information created/gathered during compilation.
 
    pub(crate) heap: Heap,
 
    pub(crate) string_pool: StringPool, // Do not deallocate, holds all strings
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) symbol_table: SymbolTable,
 
    pub(crate) type_table: TypeTable,
 
    pub(crate) global_module_index: usize, // contains globals, implicitly imported everywhere
 
    // Compiler passes, used as little state machine that keep their memory
 
    // around.
 
    pass_tokenizer: PassTokenizer,
 
    pass_symbols: PassSymbols,
 
    pass_import: PassImport,
 
    pass_definitions: PassDefinitions,
 
    pass_validation: PassValidationLinking,
 
    pass_typing: PassTyping,
 
    pass_rewriting: PassRewriting,
 
    pass_stack_size: PassStackSize,
 
    // Compiler options
 
    pub write_tokens_to: Option<String>,
 
    pub write_ast_to: Option<String>,
 
    pub std_lib_dir: Option<String>,
 
    pub(crate) arch: TargetArch,
 
}
 

	
 
impl Parser {
 
    pub fn new() -> Self {
 
    pub fn new(std_lib_dir: Option<String>) -> Result<Self, String> {
 
        let mut parser = Parser{
 
            heap: Heap::new(),
 
            string_pool: StringPool::new(),
 
            modules: Vec::new(),
 
            symbol_table: SymbolTable::new(),
 
            type_table: TypeTable::new(),
 
            global_module_index: 0,
 
            pass_tokenizer: PassTokenizer::new(),
 
            pass_symbols: PassSymbols::new(),
 
            pass_import: PassImport::new(),
 
            pass_definitions: PassDefinitions::new(),
 
            pass_validation: PassValidationLinking::new(),
 
            pass_typing: PassTyping::new(),
 
            pass_rewriting: PassRewriting::new(),
 
            pass_stack_size: PassStackSize::new(),
 
            write_tokens_to: None,
 
            write_ast_to: None,
 
            std_lib_dir,
 
            arch: TargetArch::new(),
 
        };
 

	
 
        parser.symbol_table.insert_scope(None, SymbolScope::Global);
 

	
 
        // Insert builtin types
 
        // TODO: At some point use correct values for size/alignment
 
        parser.arch.void_type_id    = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Void], false, 0, 1);
 
        parser.arch.message_type_id = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Message], false, 24, 8);
 
        parser.arch.bool_type_id    = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Bool], false, 1, 1);
 
        parser.arch.uint8_type_id   = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::UInt8], false, 1, 1);
 
        parser.arch.uint16_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::UInt16], false, 2, 2);
 
        parser.arch.uint32_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::UInt32], false, 4, 4);
 
        parser.arch.uint64_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::UInt64], false, 8, 8);
 
        parser.arch.sint8_type_id   = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::SInt8], false, 1, 1);
 
        parser.arch.sint16_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::SInt16], false, 2, 2);
 
        parser.arch.sint32_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::SInt32], false, 4, 4);
 
        parser.arch.sint64_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::SInt64], false, 8, 8);
 
        parser.arch.char_type_id    = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Character], false, 4, 4);
 
        parser.arch.string_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::String], false, 24, 8);
 
        parser.arch.array_type_id   = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Array, ConcreteTypePart::Void], true, 24, 8);
 
        parser.arch.slice_type_id   = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Slice, ConcreteTypePart::Void], true, 16, 4);
 
        parser.arch.input_type_id   = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Input, ConcreteTypePart::Void], true, 8, 8);
 
        parser.arch.output_type_id  = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Output, ConcreteTypePart::Void], true, 8, 8);
 
        parser.arch.pointer_type_id = insert_builtin_type(&mut parser.type_table, vec![ConcreteTypePart::Pointer, ConcreteTypePart::Void], true, 8, 8);
 

	
 
        // Insert builtin functions
 
        fn quick_type(variants: &[ParserTypeVariant]) -> ParserType {
 
            let mut t = ParserType{ elements: Vec::with_capacity(variants.len()), full_span: InputSpan::new() };
 
            for variant in variants {
 
                t.elements.push(ParserTypeElement{ element_span: InputSpan::new(), variant: variant.clone() });
 
            }
 
            t
 
        }
 
        // Parse standard library
 
        parser.feed_standard_library()?;
 

	
 
        use ParserTypeVariant as PTV;
 
        insert_builtin_function(&mut parser, "get", &["T"], |id| (
 
            vec![
 
                ("input", quick_type(&[PTV::Input, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])
 
        ));
 
        insert_builtin_function(&mut parser, "put", &["T"], |id| (
 
            vec![
 
                ("output", quick_type(&[PTV::Output, PTV::PolymorphicArgument(id.upcast(), 0)])),
 
                ("value", quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 
        insert_builtin_function(&mut parser, "fires", &["T"], |id| (
 
            vec![
 
                ("port", quick_type(&[PTV::InputOrOutput, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::Bool])
 
        ));
 
        insert_builtin_function(&mut parser, "create", &["T"], |id| (
 
            vec![
 
                ("length", quick_type(&[PTV::IntegerLike]))
 
            ],
 
            quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)])
 
        ));
 
        insert_builtin_function(&mut parser, "length", &["T"], |id| (
 
            vec![
 
                ("array", quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::UInt32]) // TODO: @PtrInt
 
        ));
 
        insert_builtin_function(&mut parser, "assert", &[], |_id| (
 
            vec![
 
                ("condition", quick_type(&[PTV::Bool])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 
        insert_builtin_function(&mut parser, "print", &[], |_id| (
 
            vec![
 
                ("message", quick_type(&[PTV::String])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 

	
 
        parser
 
        return Ok(parser)
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<(), ParseError> {
 
        let mut token_buffer = TokenBuffer::new();
 
        self.pass_tokenizer.tokenize(&mut source, &mut token_buffer)?;
 

	
 
        let module = Module{
 
            source,
 
            tokens: token_buffer,
 
            root_id: RootId::new_invalid(),
 
            name: None,
 
            version: None,
 
            phase: ModuleCompilationPhase::Tokenized,
 
        };
 
        self.modules.push(module);
 

	
 
        Ok(())
 
    /// Feeds a new InputSource to the parser, which will tokenize it and store
 
    /// it internally for later parsing (when all modules are present). Returns
 
    /// the index of the new module.
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<usize, ParseError> {
 
        return self.feed_internal(source, false, false);
 
    }
 

	
 
    pub fn parse(&mut self) -> Result<(), ParseError> {
 
        let mut pass_ctx = PassCtx{
 
            heap: &mut self.heap,
 
            symbols: &mut self.symbol_table,
 
            pool: &mut self.string_pool,
 
            arch: &self.arch,
 
        };
 

	
 
        // Advance all modules to the phase where all symbols are scanned
 
        for module_idx in 0..self.modules.len() {
 
            self.pass_symbols.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
 
        }
 

	
 
        // With all symbols scanned, perform further compilation until we can
 
        // add all base types to the type table.
 
        for module_idx in 0..self.modules.len() {
 
            self.pass_import.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
 
            self.pass_definitions.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
 
        }
 

	
 
        if let Some(filename) = &self.write_tokens_to {
 
            let mut writer = TokenWriter::new();
 
            let mut file = std::fs::File::create(std::path::Path::new(filename)).unwrap();
 
            writer.write(&mut file, &self.modules);
 
        }
 

	
 
        // Add every known type to the type table
 
        self.type_table.build_base_types(&mut self.modules, &mut pass_ctx)?;
 

	
 
        // Continue compilation with the remaining phases now that the types
 
        // are all in the type table
 
        for module_idx in 0..self.modules.len() {
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_validation.visit_module(&mut ctx)?;
 
        }
 

	
 
        // Perform typechecking on all modules
 
        let mut queue = ResolveQueue::new();
 
        for module_idx in 0..self.modules.len() {
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_typing.queue_module_definitions(&mut ctx, &mut queue);
 
        };
 
        while !queue.is_empty() {
 
            let top = queue.pop_front().unwrap();
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx: top.root_id.index as usize,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_typing.handle_module_definition(&mut ctx, &mut queue, top)?;
 
        }
 

	
 
        // Rewrite nodes in tree, then prepare for execution of code
 
        for module_idx in 0..self.modules.len() {
 
            self.modules[module_idx].phase = ModuleCompilationPhase::Typed;
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_rewriting.visit_module(&mut ctx)?;
 
            self.pass_stack_size.visit_module(&mut ctx)?;
 
        }
 

	
 
        // Write out desired information
 
        if let Some(filename) = &self.write_ast_to {
 
            let mut writer = ASTWriter::new();
 
            let mut file = std::fs::File::create(std::path::Path::new(filename)).unwrap();
 
            writer.write_ast(&mut file, &self.heap);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Tries to find the standard library and add the files for parsing.
 
    fn feed_standard_library(&mut self) -> Result<(), String> {
 
        use std::env;
 
        use std::path::{Path, PathBuf};
 
        use std::fs;
 

	
 
        // Pair is (name, add_to_global_namespace)
 
        const FILES: [(&'static str, bool); 3] = [
 
            ("std.global.pdl", true),
 
            ("std.internet.pdl", false),
 
            ("std.random.pdl", false),
 
        ];
 

	
 
        // Determine base directory
 
        let (base_path, from_env) = if let Ok(path) = env::var(REOWOLF_PATH_ENV) {
 
            // Path variable is set
 
            (path, true)
 
        } else {
 
            let path = match self.std_lib_dir.take() {
 
                Some(path) => path,
 
                None => {
 
                    let mut path = String::with_capacity(REOWOLF_PATH_DIR.len() + 2);
 
                    path.push_str("./");
 
                    path.push_str(REOWOLF_PATH_DIR);
 
                    path
 
                }
 
            };
 

	
 
            (path, false)
 
        };
 

	
 
        // Make sure directory exists
 
        let path = Path::new(&base_path);
 
        if !path.exists() {
 
            return Err(format!("std lib root directory '{}' does not exist", base_path));
 
        }
 

	
 
        // Try to load all standard library files. We might need a more unified
 
        // way to do this in the future (i.e. a "std" package, containing all
 
        // of the modules)
 
        let mut file_path = PathBuf::new();
 
        let mut first_file = true;
 

	
 
        for (file, add_to_global_namespace) in FILES {
 
            file_path.clear();
 
            file_path.push(path);
 
            file_path.push(file);
 

	
 
            let source = fs::read(file_path.as_path());
 
            if let Err(err) = source {
 
                return Err(format!(
 
                    "failed to read std lib file '{}' in root directory '{}', because: {}",
 
                    file, base_path, err
 
                ));
 
            }
 

	
 
            let source = source.unwrap();
 
            let input_source = InputSource::new(file.to_string(), source);
 

	
 
            let module_index = self.feed_internal(input_source, true, add_to_global_namespace);
 
            if let Err(err) = module_index {
 
                // A bit of a hack, but shouldn't really happen anyway: the
 
                // compiler should ship with a decent standard library (at some
 
                // point)
 
                return Err(format!("{}", err));
 
            }
 
            let module_index = module_index.unwrap();
 

	
 
            if first_file {
 
                self.global_module_index = module_index;
 
                first_file = false;
 
            }
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn feed_internal(&mut self, mut source: InputSource, is_compiler_file: bool, add_to_global_namespace: bool) -> Result<usize, ParseError> {
 
        let mut token_buffer = TokenBuffer::new();
 
        self.pass_tokenizer.tokenize(&mut source, &mut token_buffer)?;
 

	
 
        let module = Module{
 
            source,
 
            tokens: token_buffer,
 
            is_compiler_file,
 
            add_to_global_namespace,
 
            root_id: RootId::new_invalid(),
 
            name: None,
 
            version: None,
 
            phase: ModuleCompilationPhase::Tokenized,
 
        };
 
        let module_index = self.modules.len();
 
        self.modules.push(module);
 

	
 
        return Ok(module_index);
 
    }
 
}
 

	
 
fn insert_builtin_type(type_table: &mut TypeTable, parts: Vec<ConcreteTypePart>, has_poly_var: bool, size: usize, alignment: usize) -> TypeId {
 
    const POLY_VARS: [PolymorphicVariable; 1] = [PolymorphicVariable{
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        is_in_use: false,
 
    }];
 

	
 
    let concrete_type = ConcreteType{ parts };
 
    let poly_var = if has_poly_var {
 
        POLY_VARS.as_slice()
 
    } else {
 
        &[]
 
    };
 

	
 
    return type_table.add_builtin_data_type(concrete_type, poly_var, size, alignment);
 
}
 
\ No newline at end of file
 

	
 
// Note: args and return type need to be a function because we need to know the function ID.
 
fn insert_builtin_function<T: Fn(ProcedureDefinitionId) -> (Vec<(&'static str, ParserType)>, ParserType)> (
 
    p: &mut Parser, func_name: &str, polymorphic: &[&str], arg_and_return_fn: T
 
) {
 
    // Insert into AST (to get an ID), also prepare the polymorphic variables
 
    // we need later for the type table
 
    let mut ast_poly_vars = Vec::with_capacity(polymorphic.len());
 
    let mut type_poly_vars = Vec::with_capacity(polymorphic.len());
 
    for poly_var in polymorphic {
 
        let identifier = Identifier{ span: InputSpan::new(), value: p.string_pool.intern(poly_var.as_bytes()) } ;
 
        ast_poly_vars.push(identifier.clone());
 
        type_poly_vars.push(PolymorphicVariable{ identifier, is_in_use: false });
 
    }
 

	
 
    let func_ident_ref = p.string_pool.intern(func_name.as_bytes());
 
    let procedure_id = p.heap.alloc_procedure_definition(|this| ProcedureDefinition {
 
        this,
 
        defined_in: RootId::new_invalid(),
 
        builtin: true,
 
        kind: ProcedureKind::Function,
 
        span: InputSpan::new(),
 
        identifier: Identifier{ span: InputSpan::new(), value: func_ident_ref.clone() },
 
        poly_vars: ast_poly_vars,
 
        return_type: None,
 
        parameters: Vec::new(),
 
        scope: ScopeId::new_invalid(),
 
        body: BlockStatementId::new_invalid(),
 
        monomorphs: Vec::new(),
 
    });
 

	
 
    // Modify AST with more information about the procedure
 
    let (arguments, return_type) = arg_and_return_fn(procedure_id);
 

	
 
    let mut parameters = Vec::with_capacity(arguments.len());
 
    for (arg_name, arg_type) in arguments {
 
        let identifier = Identifier{ span: InputSpan::new(), value: p.string_pool.intern(arg_name.as_bytes()) };
 
        let param_id = p.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Parameter,
 
            parser_type: arg_type.clone(),
 
            identifier,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: 0
 
        });
 
        parameters.push(param_id);
 
    }
 

	
 
    let func = &mut p.heap[procedure_id];
 
    func.parameters = parameters;
 
    func.return_type = Some(return_type);
 

	
 
    // Insert into symbol table
 
    p.symbol_table.insert_symbol(SymbolScope::Global, Symbol{
 
        name: func_ident_ref,
 
        variant: SymbolVariant::Definition(SymbolDefinition{
 
            defined_in_module: RootId::new_invalid(),
 
            defined_in_scope: SymbolScope::Global,
 
            definition_span: InputSpan::new(),
 
            identifier_span: InputSpan::new(),
 
            imported_at: None,
 
            class: DefinitionClass::Function,
 
            definition_id: procedure_id.upcast(),
 
        })
 
    }).unwrap();
 

	
 
    // Insert into type table
 
    // let mut concrete_type = ConcreteType::default();
 
    // concrete_type.parts.push(ConcreteTypePart::Function(procedure_id, type_poly_vars.len() as u32));
 
    //
 
    // for _ in 0..type_poly_vars.len() {
 
    //     concrete_type.parts.push(ConcreteTypePart::Void); // doesn't matter (I hope...)
 
    // }
 
    // p.type_table.add_builtin_procedure_type(concrete_type, &type_poly_vars);
 
}
 
\ No newline at end of file
src/protocol/parser/pass_definitions.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use super::symbol_table::*;
 
use super::{Module, ModuleCompilationPhase, PassCtx};
 
use super::tokens::*;
 
use super::token_parsing::*;
 
use super::pass_definitions_types::*;
 

	
 
use crate::protocol::input_source::{InputSource, InputPosition, InputSpan, ParseError};
 
use crate::collections::*;
 

	
 
/// Parses all the tokenized definitions into actual AST nodes.
 
pub(crate) struct PassDefinitions {
 
    // State associated with the definition currently being processed
 
    cur_definition: DefinitionId,
 
    // Itty bitty parsing machines
 
    type_parser: ParserTypeParser,
 
    // Temporary buffers of various kinds
 
    buffer: String,
 
    struct_fields: ScopedBuffer<StructFieldDefinition>,
 
    enum_variants: ScopedBuffer<EnumVariantDefinition>,
 
    union_variants: ScopedBuffer<UnionVariantDefinition>,
 
    variables: ScopedBuffer<VariableId>,
 
    expressions: ScopedBuffer<ExpressionId>,
 
    statements: ScopedBuffer<StatementId>,
 
    parser_types: ScopedBuffer<ParserType>,
 
}
 

	
 
impl PassDefinitions {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            cur_definition: DefinitionId::new_invalid(),
 
            type_parser: ParserTypeParser::new(),
 
            buffer: String::with_capacity(128),
 
            struct_fields: ScopedBuffer::with_capacity(128),
 
            enum_variants: ScopedBuffer::with_capacity(128),
 
            union_variants: ScopedBuffer::with_capacity(128),
 
            variables: ScopedBuffer::with_capacity(128),
 
            expressions: ScopedBuffer::with_capacity(128),
 
            statements: ScopedBuffer::with_capacity(128),
 
            parser_types: ScopedBuffer::with_capacity(128),
 
        }
 
    }
 

	
 
    pub(crate) fn parse(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut PassCtx) -> Result<(), ParseError> {
 
        let module = &modules[module_idx];
 
        let module_range = &module.tokens.ranges[0];
 
        debug_assert_eq!(module.phase, ModuleCompilationPhase::ImportsResolved);
 
        debug_assert_eq!(module_range.range_kind, TokenRangeKind::Module);
 

	
 
        // Although we only need to parse the definitions, we want to go through
 
        // code ranges as well such that we can throw errors if we get
 
        // unexpected tokens at the module level of the source.
 
        let mut range_idx = module_range.first_child_idx;
 
        loop {
 
            let range_idx_usize = range_idx as usize;
 
            let cur_range = &module.tokens.ranges[range_idx_usize];
 

	
 
            match cur_range.range_kind {
 
                TokenRangeKind::Module => unreachable!(), // should not be reachable
 
                TokenRangeKind::Pragma | TokenRangeKind::Import => {
 
                    // Already fully parsed, fall through and go to next range
 
                },
 
                TokenRangeKind::Definition | TokenRangeKind::Code => {
 
                    // Visit range even if it is a "code" range to provide
 
                    // proper error messages.
 
                    self.visit_range(modules, module_idx, ctx, range_idx_usize)?;
 
                },
 
            }
 

	
 
            if cur_range.next_sibling_idx == NO_SIBLING {
 
        // We iterate through the entire document. If we find a marker that has
 
        // been handled then we skip over it. It is important that we properly
 
        // parse all other tokens in the document to ensure that we throw the
 
        // correct kind of errors.
 
        let num_tokens = module.tokens.tokens.len() as u32;
 
        let num_markers = module.tokens.markers.len();
 

	
 
        let mut marker_index = 0;
 
        let mut first_token_index = 0;
 
        while first_token_index < num_tokens {
 
            // Seek ahead to the next marker that was already handled.
 
            let mut last_token_index = num_tokens;
 
            let mut new_first_token_index = num_tokens;
 
            while marker_index < num_markers {
 
                let marker = &module.tokens.markers[marker_index];
 
                marker_index += 1;
 
                if marker.handled {
 
                    last_token_index = marker.first_token;
 
                    new_first_token_index = marker.last_token;
 
                    break;
 
            } else {
 
                range_idx = cur_range.next_sibling_idx;
 
                }
 
            }
 

	
 
            self.visit_token_range(modules, module_idx, ctx, first_token_index, last_token_index)?;
 
            first_token_index = new_first_token_index;
 
        }
 

	
 
        modules[module_idx].phase = ModuleCompilationPhase::DefinitionsParsed;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_range(
 
        &mut self, modules: &[Module], module_idx: usize, ctx: &mut PassCtx, range_idx: usize
 
    fn visit_token_range(
 
        &mut self, modules: &[Module], module_idx: usize, ctx: &mut PassCtx,
 
        token_range_begin: u32, token_range_end: u32,
 
    ) -> Result<(), ParseError> {
 
        let module = &modules[module_idx];
 
        let cur_range = &module.tokens.ranges[range_idx];
 
        debug_assert!(cur_range.range_kind == TokenRangeKind::Definition || cur_range.range_kind == TokenRangeKind::Code);
 

	
 
        // Detect which definition we're parsing
 
        let mut iter = module.tokens.iter_range(cur_range);
 
        let mut iter = module.tokens.iter_range(token_range_begin, Some(token_range_end));
 
        loop {
 
            let next = iter.next();
 
            if next.is_none() {
 
                return Ok(())
 
            }
 

	
 
            // Token was not None, so peek_ident returns None if not an ident
 
            let ident = peek_ident(&module.source, &mut iter);
 
            match ident {
 
                Some(KW_STRUCT) => self.visit_struct_definition(module, &mut iter, ctx)?,
 
                Some(KW_ENUM) => self.visit_enum_definition(module, &mut iter, ctx)?,
 
                Some(KW_UNION) => self.visit_union_definition(module, &mut iter, ctx)?,
 
                Some(KW_FUNCTION) => self.visit_function_definition(module, &mut iter, ctx)?,
 
                Some(KW_PRIMITIVE) | Some(KW_COMPOSITE) => self.visit_component_definition(module, &mut iter, ctx)?,
 
                _ => return Err(ParseError::new_error_str_at_pos(
 
                    &module.source, iter.last_valid_pos(),
 
                    "unexpected symbol, expected a keyword marking the start of a definition"
 
                )),
 
            }
 
        }
 
    }
 

	
 
    fn visit_struct_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_STRUCT)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse struct definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut fields_section = self.struct_fields.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let poly_vars = ctx.heap[definition_id].poly_vars();
 

	
 
                let start_pos = iter.last_valid_pos();
 
                let parser_type = self.type_parser.consume_parser_type(
 
                    iter, &ctx.heap, source, &ctx.symbols, poly_vars, definition_id,
 
                    module_scope, false, None
 
                    module_scope, false, false, None
 
                )?;
 
                let field = consume_ident_interned(source, iter, ctx)?;
 
                Ok(StructFieldDefinition{
 
                    span: InputSpan::from_positions(start_pos, field.span.end),
 
                    field, parser_type
 
                })
 
            },
 
            &mut fields_section, "a struct field", "a list of struct fields", None
 
        )?;
 

	
 
        // Transfer to preallocated definition
 
        let struct_def = ctx.heap[definition_id].as_struct_mut();
 
        struct_def.fields = fields_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_enum_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_ENUM)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse enum definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut enum_section = self.enum_variants.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let identifier = consume_ident_interned(source, iter, ctx)?;
 
                let value = if iter.next() == Some(TokenKind::Equal) {
 
                    iter.consume();
 
                    let (variant_number, _) = consume_integer_literal(source, iter, &mut self.buffer)?;
 
                    EnumVariantValue::Integer(variant_number as i64) // TODO: @int
 
                } else {
 
                    EnumVariantValue::None
 
                };
 
                Ok(EnumVariantDefinition{ identifier, value })
 
            },
 
            &mut enum_section, "an enum variant", "a list of enum variants", None
 
        )?;
 

	
 
        // Transfer to definition
 
        let enum_def = ctx.heap[definition_id].as_enum_mut();
 
        enum_def.variants = enum_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_union_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_UNION)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse union definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut variants_section = self.union_variants.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let identifier = consume_ident_interned(source, iter, ctx)?;
 
                let mut close_pos = identifier.span.end;
 

	
 
                let mut types_section = self.parser_types.start_section();
 

	
 
                let has_embedded = maybe_consume_comma_separated(
 
                    TokenKind::OpenParen, TokenKind::CloseParen, source, iter, ctx,
 
                    |source, iter, ctx| {
 
                        let poly_vars = ctx.heap[definition_id].poly_vars();
 
                        self.type_parser.consume_parser_type(
 
                            iter, &ctx.heap, source, &ctx.symbols, poly_vars, definition_id,
 
                            module_scope, false, None
 
                            module_scope, false, false, None
 
                        )
 
                    },
 
                    &mut types_section, "an embedded type", Some(&mut close_pos)
 
                )?;
 
                let value = if has_embedded {
 
                    types_section.into_vec()
 
                } else {
 
                    types_section.forget();
 
                    Vec::new()
 
                };
 

	
 
                Ok(UnionVariantDefinition{
 
                    span: InputSpan::from_positions(identifier.span.begin, close_pos),
 
                    identifier,
 
                    value
 
                })
 
            },
 
            &mut variants_section, "a union variant", "a list of union variants", None
 
        )?;
 

	
 
        // Transfer to AST
 
        let union_def = ctx.heap[definition_id].as_union_mut();
 
        union_def.variants = variants_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_function_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        // Retrieve function name
 
        consume_exact_ident(&module.source, iter, KW_FUNCTION)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 
        let allow_compiler_types = module.is_compiler_file;
 

	
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        // Parse function's argument list
 
        let mut parameter_section = self.variables.start_section();
 
        consume_parameter_list(
 
            &mut self.type_parser, &module.source, iter, ctx, &mut parameter_section, module_scope, definition_id
 
            &mut self.type_parser, &module.source, iter, ctx, &mut parameter_section,
 
            module_scope, definition_id, allow_compiler_types
 
        )?;
 
        let parameters = parameter_section.into_vec();
 

	
 
        // Consume return types
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let poly_vars = ctx.heap[definition_id].poly_vars();
 
        let parser_type = self.type_parser.consume_parser_type(
 
            iter, &ctx.heap, &module.source, &ctx.symbols, poly_vars, definition_id,
 
            module_scope, false, None
 
            module_scope, false, allow_compiler_types, None
 
        )?;
 

	
 
        // Consume block and the definition's scope
 
        let body_id = self.consume_block_statement(module, iter, ctx)?;
 
        // Consume body
 
        let (body_id, source) = self.consume_procedure_body(module, iter, ctx, definition_id, ProcedureKind::Function)?;
 
        let scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::Definition(definition_id)));
 

	
 
        // Assign everything in the preallocated AST node
 
        let function = ctx.heap[definition_id].as_procedure_mut();
 
        function.source = source;
 
        function.return_type = Some(parser_type);
 
        function.parameters = parameters;
 
        function.scope = scope_id;
 
        function.body = body_id;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_component_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        // Consume component variant and name
 
        let (_variant_text, _) = consume_any_ident(&module.source, iter)?;
 
        debug_assert!(_variant_text == KW_PRIMITIVE || _variant_text == KW_COMPOSITE);
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated definition
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 
        let allow_compiler_types = module.is_compiler_file;
 

	
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        // Parse component's argument list
 
        let mut parameter_section = self.variables.start_section();
 
        consume_parameter_list(
 
            &mut self.type_parser, &module.source, iter, ctx, &mut parameter_section, module_scope, definition_id
 
            &mut self.type_parser, &module.source, iter, ctx, &mut parameter_section,
 
            module_scope, definition_id, allow_compiler_types
 
        )?;
 
        let parameters = parameter_section.into_vec();
 

	
 
        // Consume block
 
        let body_id = self.consume_block_statement(module, iter, ctx)?;
 
        // Consume body
 
        let procedure_kind = ctx.heap[definition_id].as_procedure().kind;
 
        let (body_id, source) = self.consume_procedure_body(module, iter, ctx, definition_id, procedure_kind)?;
 
        let scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::Definition(definition_id)));
 

	
 
        // Assign everything in the AST node
 
        let component = ctx.heap[definition_id].as_procedure_mut();
 
        debug_assert!(component.return_type.is_none());
 
        component.source = source;
 
        component.parameters = parameters;
 
        component.scope = scope_id;
 
        component.body = body_id;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Consumes a procedure's body: either a user-defined procedure, which we
 
    /// parse as normal, or a builtin function, where we'll make sure we expect
 
    /// the particular builtin.
 
    ///
 
    /// We expect that the procedure's name is already stored in the
 
    /// preallocated AST node.
 
    fn consume_procedure_body(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, definition_id: DefinitionId, kind: ProcedureKind
 
    ) -> Result<(BlockStatementId, ProcedureSource), ParseError> {
 
        if iter.next() == Some(TokenKind::OpenCurly) && iter.peek() == Some(TokenKind::Pragma) {
 
            // Consume the placeholder "{ #builtin }" tokens
 
            iter.consume(); // opening curly brace
 
            let (pragma, pragma_span) = consume_pragma(&module.source, iter)?;
 
            if pragma != b"#builtin" {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &module.source, pragma_span,
 
                    "expected a '#builtin' pragma, or a function body"
 
                ));
 
            }
 

	
 
            if iter.next() != Some(TokenKind::CloseCurly) {
 
                // Just to keep the compiler writers in line ;)
 
                panic!("compiler error: when using the #builtin pragma, wrap it in curly braces");
 
            }
 
            iter.consume();
 

	
 
            // Retrieve module and procedure name
 
            assert!(module.name.is_some(), "compiler error: builtin procedure body in unnamed module");
 
            let (_, module_name) = module.name.as_ref().unwrap();
 
            let module_name = module_name.as_str();
 

	
 
            let definition = ctx.heap[definition_id].as_procedure();
 
            let procedure_name = definition.identifier.value.as_str();
 

	
 
            let source = match (module_name, procedure_name) {
 
                ("std.global", "get") => ProcedureSource::FuncGet,
 
                ("std.global", "put") => ProcedureSource::FuncPut,
 
                ("std.global", "fires") => ProcedureSource::FuncFires,
 
                ("std.global", "create") => ProcedureSource::FuncCreate,
 
                ("std.global", "length") => ProcedureSource::FuncLength,
 
                ("std.global", "assert") => ProcedureSource::FuncAssert,
 
                ("std.global", "print") => ProcedureSource::FuncPrint,
 
                ("std.random", "random_u32") => ProcedureSource::CompRandomU32,
 
                ("std.internet", "tcp_client") => ProcedureSource::CompTcpClient,
 
                _ => panic!(
 
                    "compiler error: unknown builtin procedure '{}' in module '{}'",
 
                    procedure_name, module_name
 
                ),
 
            };
 

	
 
            return Ok((BlockStatementId::new_invalid(), source));
 
        } else {
 
            let body_id = self.consume_block_statement(module, iter, ctx)?;
 
            let source = match kind {
 
                ProcedureKind::Function =>
 
                    ProcedureSource::FuncUserDefined,
 
                ProcedureKind::Primitive | ProcedureKind::Composite =>
 
                    ProcedureSource::CompUserDefined,
 
            };
 

	
 
            return Ok((body_id, source))
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<StatementId, ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            return Ok(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_FORK {
 
                let id = self.consume_fork_statement(module, iter, ctx)?;
 

	
 
                let end_fork = ctx.heap.alloc_end_fork_statement(|this| EndForkStatement {
 
                    this,
 
                    start_fork: id,
 
                    next: StatementId::new_invalid(),
 
                });
 

	
 
                let fork_stmt = &mut ctx.heap[id];
 
                fork_stmt.end_fork = end_fork;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SELECT {
 
                let id = self.consume_select_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_RETURN {
 
                let id = self.consume_return_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_GOTO {
 
                let id = self.consume_goto_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_NEW {
 
                let id = self.consume_new_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CHANNEL {
 
                let id = self.consume_channel_statement(module, iter, ctx)?;
 
                return Ok(id.upcast().upcast());
 
            } else if iter.peek() == Some(TokenKind::Colon) {
 
                let id = self.consume_labeled_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else {
 
                // Two fallback possibilities: the first one is a memory
 
                // declaration, the other one is to parse it as a normal
 
                // expression. This is a bit ugly.
 
                if let Some(memory_stmt_id) = self.maybe_consume_memory_statement_without_semicolon(module, iter, ctx)? {
 
                    consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
                    return Ok(memory_stmt_id.upcast().upcast());
 
                } else {
 
                    let id = self.consume_expression_statement(module, iter, ctx)?;
 
                    return Ok(id.upcast());
 
                }
 
            }
 
        } else if next == TokenKind::OpenParen {
 
            // Same as above: memory statement or normal expression
 
            if let Some(memory_stmt_id) = self.maybe_consume_memory_statement_without_semicolon(module, iter, ctx)? {
 
                consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
                return Ok(memory_stmt_id.upcast().upcast());
 
            } else {
 
                let id = self.consume_expression_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            }
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            return Ok(id.upcast());
 
        }
 
    }
 

	
 
    fn consume_block_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let open_curly_span = consume_token(&module.source, iter, TokenKind::OpenCurly)?;
 

	
 
        let mut stmt_section = self.statements.start_section();
 
        let mut next = iter.next();
 
        while next != Some(TokenKind::CloseCurly) {
 
            if next.is_none() {
 
                return Err(ParseError::new_error_str_at_pos(
 
                    &module.source, iter.last_valid_pos(), "expected a statement or '}'"
 
@@ -666,327 +734,326 @@ impl PassDefinitions {
 
            let block = self.consume_statement(module, iter, ctx)?;
 
            cases.push(SelectCase{
 
                guard,
 
                body: block,
 
                scope: ScopeId::new_invalid(),
 
                involved_ports: Vec::with_capacity(1)
 
            });
 

	
 
            next = iter.next();
 
        }
 

	
 
        consume_token(&module.source, iter, TokenKind::CloseCurly)?;
 

	
 
        let num_cases = cases.len();
 
        let select_stmt_id = ctx.heap.alloc_select_statement(|this| SelectStatement{
 
            this,
 
            span: select_span,
 
            cases,
 
            end_select: EndSelectStatementId::new_invalid(),
 
            relative_pos_in_parent: -1,
 
            next: StatementId::new_invalid(),
 
        });
 

	
 
        let end_select_stmt_id = ctx.heap.alloc_end_select_statement(|this| EndSelectStatement{
 
            this,
 
            start_select: select_stmt_id,
 
            next: StatementId::new_invalid(),
 
        });
 

	
 
        let select_stmt = &mut ctx.heap[select_stmt_id];
 
        select_stmt.end_select = end_select_stmt_id;
 

	
 
        for case_index in 0..num_cases {
 
            let scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::SelectCase(select_stmt_id, case_index as u32)));
 
            let select_stmt = &mut ctx.heap[select_stmt_id];
 
            let select_case = &mut select_stmt.cases[case_index];
 
            select_case.scope = scope_id;
 
        }
 

	
 
        return Ok(select_stmt_id)
 
    }
 

	
 
    fn consume_return_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ReturnStatementId, ParseError> {
 
        let return_span = consume_exact_ident(&module.source, iter, KW_STMT_RETURN)?;
 
        let mut scoped_section = self.expressions.start_section();
 

	
 
        consume_comma_separated_until(
 
            TokenKind::SemiColon, &module.source, iter, ctx,
 
            |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
            &mut scoped_section, "an expression", None
 
        )?;
 
        let expressions = scoped_section.into_vec();
 

	
 
        if expressions.is_empty() {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "expected at least one return value"));
 
        } else if expressions.len() > 1 {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "multiple return values are not (yet) supported"))
 
        }
 

	
 
        Ok(ctx.heap.alloc_return_statement(|this| ReturnStatement{
 
            this,
 
            span: return_span,
 
            expressions
 
        }))
 
    }
 

	
 
    fn consume_goto_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<GotoStatementId, ParseError> {
 
        let goto_span = consume_exact_ident(&module.source, iter, KW_STMT_GOTO)?;
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_goto_statement(|this| GotoStatement{
 
            this,
 
            span: goto_span,
 
            label,
 
            target: LabeledStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_new_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<NewStatementId, ParseError> {
 
        let new_span = consume_exact_ident(&module.source, iter, KW_STMT_NEW)?;
 

	
 
        let start_pos = iter.last_valid_pos();
 
        let expression_id = self.consume_primary_expression(module, iter, ctx)?;
 
        let expression = &ctx.heap[expression_id];
 
        let mut valid = false;
 

	
 
        let mut call_id = CallExpressionId::new_invalid();
 
        if let Expression::Call(expression) = expression {
 
            // Allow both components and functions, as it makes more sense to
 
            // check their correct use in the validation and linking pass
 
            if expression.method == Method::UserComponent || expression.method == Method::UserFunction {
 
            call_id = expression.this;
 
            valid = true;
 
        }
 
        }
 

	
 
        if !valid {
 
            return Err(ParseError::new_error_str_at_span(
 
                &module.source, InputSpan::from_positions(start_pos, iter.last_valid_pos()), "expected a call expression"
 
            ));
 
        }
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        debug_assert!(!call_id.is_invalid());
 
        Ok(ctx.heap.alloc_new_statement(|this| NewStatement{
 
            this,
 
            span: new_span,
 
            expression: call_id,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_channel_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ChannelStatementId, ParseError> {
 
        // Consume channel specification
 
        let channel_span = consume_exact_ident(&module.source, iter, KW_STMT_CHANNEL)?;
 
        let (inner_port_type, end_pos) = if Some(TokenKind::OpenAngle) == iter.next() {
 
            // Retrieve the type of the channel, we're cheating a bit here by
 
            // consuming the first '<' and setting the initial angle depth to 1
 
            // such that our final '>' will be consumed as well.
 
            let angle_start_pos = iter.next_start_position();
 
            iter.consume();
 
            let definition_id = self.cur_definition;
 
            let poly_vars = ctx.heap[definition_id].poly_vars();
 
            let parser_type = self.type_parser.consume_parser_type(
 
                iter, &ctx.heap, &module.source, &ctx.symbols, poly_vars,
 
                definition_id, SymbolScope::Module(module.root_id),
 
                true, Some(angle_start_pos)
 
                true, false, Some(angle_start_pos)
 
            )?;
 

	
 
            (parser_type.elements, parser_type.full_span.end)
 
        } else {
 
            // Assume inferred
 
            (
 
                vec![ParserTypeElement{
 
                    element_span: channel_span,
 
                    variant: ParserTypeVariant::Inferred
 
                }],
 
                channel_span.end
 
            )
 
        };
 

	
 
        let from_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let to_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        // Construct ports
 
        let port_type_span = InputSpan::from_positions(channel_span.begin, end_pos);
 
        let port_type_len = inner_port_type.len() + 1;
 
        let mut from_port_type = ParserType{ elements: Vec::with_capacity(port_type_len), full_span: port_type_span };
 
        from_port_type.elements.push(ParserTypeElement{
 
            element_span: channel_span,
 
            variant: ParserTypeVariant::Output,
 
        });
 
        from_port_type.elements.extend_from_slice(&inner_port_type);
 
        let from = ctx.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: from_identifier,
 
            parser_type: from_port_type,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        let mut to_port_type = ParserType{ elements: Vec::with_capacity(port_type_len), full_span: port_type_span };
 
        to_port_type.elements.push(ParserTypeElement{
 
            element_span: channel_span,
 
            variant: ParserTypeVariant::Input
 
        });
 
        to_port_type.elements.extend_from_slice(&inner_port_type);
 
        let to = ctx.heap.alloc_variable(|this|Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: to_identifier,
 
            parser_type: to_port_type,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        // Construct the channel
 
        Ok(ctx.heap.alloc_channel_statement(|this| ChannelStatement{
 
            this,
 
            span: channel_span,
 
            from, to,
 
            relative_pos_in_parent: 0,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_labeled_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<LabeledStatementId, ParseError> {
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::Colon)?;
 

	
 
        let inner_stmt_id = self.consume_statement(module, iter, ctx)?;
 
        let stmt_id = ctx.heap.alloc_labeled_statement(|this| LabeledStatement {
 
            this,
 
            label,
 
            body: inner_stmt_id,
 
            relative_pos_in_parent: 0,
 
            in_sync: SynchronousStatementId::new_invalid(),
 
        });
 

	
 
        return Ok(stmt_id);
 
    }
 

	
 
    /// Attempts to consume a memory statement (a statement along the lines of
 
    /// `type var_name = initial_expr`). Will return `Ok(None)` if it didn't
 
    /// seem like there was a memory statement, `Ok(Some(...))` if there was
 
    /// one, and `Err(...)` if its reasonable to assume that there was a memory
 
    /// statement, but we failed to parse it.
 
    fn maybe_consume_memory_statement_without_semicolon(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<Option<MemoryStatementId>, ParseError> {
 
        // This is a bit ugly. It would be nicer if we could somehow
 
        // consume the expression with a type hint if we do get a valid
 
        // type, but we don't get an identifier following it
 
        let iter_state = iter.save();
 
        let definition_id = self.cur_definition;
 
        let poly_vars = ctx.heap[definition_id].poly_vars();
 

	
 
        let parser_type = self.type_parser.consume_parser_type(
 
            iter, &ctx.heap, &module.source, &ctx.symbols, poly_vars,
 
            definition_id, SymbolScope::Definition(definition_id), true, None
 
            definition_id, SymbolScope::Definition(definition_id),
 
            true, false, None
 
        );
 

	
 
        if let Ok(parser_type) = parser_type {
 
            if Some(TokenKind::Ident) == iter.next() {
 
                // Assume this is a proper memory statement
 
                let identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
                let memory_span = InputSpan::from_positions(parser_type.full_span.begin, identifier.span.end);
 
                let assign_span = consume_token(&module.source, iter, TokenKind::Equal)?;
 

	
 
                let initial_expr_id = self.consume_expression(module, iter, ctx)?;
 
                let initial_expr_end_pos = iter.last_valid_pos();
 

	
 
                // Create the AST variable
 
                let local_id = ctx.heap.alloc_variable(|this| Variable{
 
                    this,
 
                    kind: VariableKind::Local,
 
                    identifier: identifier.clone(),
 
                    parser_type,
 
                    relative_pos_in_parent: 0,
 
                    unique_id_in_scope: -1,
 
                });
 

	
 
                // Create the initial assignment expression
 
                // Note: we set the initial variable declaration here
 
                let variable_expr_id = ctx.heap.alloc_variable_expression(|this| VariableExpression{
 
                    this,
 
                    identifier,
 
                    declaration: Some(local_id),
 
                    used_as_binding_target: false,
 
                    parent: ExpressionParent::None,
 
                    type_index: -1,
 
                });
 
                let assignment_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
 
                    this,
 
                    operator_span: assign_span,
 
                    full_span: InputSpan::from_positions(memory_span.begin, initial_expr_end_pos),
 
                    left: variable_expr_id.upcast(),
 
                    operation: AssignmentOperator::Set,
 
                    right: initial_expr_id,
 
                    parent: ExpressionParent::None,
 
                    type_index: -1,
 
                });
 

	
 
                // Put both together in the memory statement
 
                let memory_stmt_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
 
                    this,
 
                    span: memory_span,
 
                    variable: local_id,
 
                    initial_expr: assignment_expr_id,
 
                    next: StatementId::new_invalid()
 
                });
 

	
 
                return Ok(Some(memory_stmt_id));
 
            }
 
        }
 

	
 
        // If here then one of the preconditions for a memory statement was not
 
        // met. So recover the iterator and return
 
        iter.load(iter_state);
 
        Ok(None)
 
    }
 

	
 
    fn consume_expression_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionStatementId, ParseError> {
 
        let start_pos = iter.last_valid_pos();
 
        let expression = self.consume_expression(module, iter, ctx)?;
 
        let end_pos = iter.last_valid_pos();
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        Ok(ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
 
            this,
 
            span: InputSpan::from_positions(start_pos, end_pos),
 
            expression,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression Parsing
 
    //--------------------------------------------------------------------------
 

	
 
    // TODO: @Cleanup This is fine for now. But I prefer my stacktraces not to
 
    //  look like enterprise Java code...
 
    fn consume_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        self.consume_assignment_expression(module, iter, ctx)
 
    }
 

	
 
    fn consume_assignment_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        // Utility to convert token into assignment operator
 
        fn parse_assignment_operator(token: Option<TokenKind>) -> Option<AssignmentOperator> {
 
            use TokenKind as TK;
 
@@ -1364,467 +1431,480 @@ impl PassDefinitions {
 
                    type_index: -1,
 
                }).upcast();
 
            }
 

	
 
            next = iter.next();
 
        }
 

	
 
        Ok(result)
 
    }
 

	
 
    fn consume_primary_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        let next = iter.next();
 

	
 
        let result = if next == Some(TokenKind::OpenParen) {
 
            // Something parenthesized. This can mean several things: we have
 
            // a parenthesized expression or we have a tuple literal. They are
 
            // ambiguous when the tuple has one member. But like the tuple type
 
            // parsing we interpret all one-tuples as parenthesized expressions.
 
            //
 
            // Practically (to prevent unnecessary `consume_expression` calls)
 
            // we distinguish the zero-tuple, the parenthesized expression, and
 
            // the N-tuple (for N > 1).
 
            let open_paren_pos = iter.next_start_position();
 
            iter.consume();
 
            let result = if Some(TokenKind::CloseParen) == iter.next() {
 
                // Zero-tuple
 
                let (_, close_paren_pos) = iter.next_positions();
 
                iter.consume();
 

	
 
                let literal_id = ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                    this,
 
                    span: InputSpan::from_positions(open_paren_pos, close_paren_pos),
 
                    value: Literal::Tuple(Vec::new()),
 
                    parent: ExpressionParent::None,
 
                    type_index: -1,
 
                });
 

	
 
                literal_id.upcast()
 
            } else {
 
                // Start by consuming one expression, then check for a comma
 
                let expr_id = self.consume_expression(module, iter, ctx)?;
 
                if Some(TokenKind::Comma) == iter.next() && Some(TokenKind::CloseParen) != iter.peek() {
 
                    // Must be an N-tuple
 
                    iter.consume(); // the comma
 
                    let mut scoped_section = self.expressions.start_section();
 
                    scoped_section.push(expr_id);
 

	
 
                    let mut close_paren_pos = open_paren_pos;
 
                    consume_comma_separated_until(
 
                        TokenKind::CloseParen, &module.source, iter, ctx,
 
                        |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
                        &mut scoped_section, "an expression", Some(&mut close_paren_pos)
 
                    )?;
 
                    debug_assert!(scoped_section.len() > 1); // peeked token wasn't CloseParen, must be expression
 

	
 
                    let literal_id = ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                        this,
 
                        span: InputSpan::from_positions(open_paren_pos, close_paren_pos),
 
                        value: Literal::Tuple(scoped_section.into_vec()),
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    });
 

	
 
                    literal_id.upcast()
 
                } else {
 
                    // Assume we're dealing with a normal expression
 
                    consume_token(&module.source, iter, TokenKind::CloseParen)?;
 

	
 
                    expr_id
 
                }
 
            };
 

	
 
            result
 
        } else if next == Some(TokenKind::OpenCurly) {
 
            // Array literal
 
            let (start_pos, mut end_pos) = iter.next_positions();
 
            let mut scoped_section = self.expressions.start_section();
 
            consume_comma_separated(
 
                TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
                |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
                &mut scoped_section, "an expression", "a list of expressions", Some(&mut end_pos)
 
            )?;
 

	
 
            ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                this,
 
                span: InputSpan::from_positions(start_pos, end_pos),
 
                value: Literal::Array(scoped_section.into_vec()),
 
                parent: ExpressionParent::None,
 
                type_index: -1,
 
            }).upcast()
 
        } else if next == Some(TokenKind::Integer) {
 
            let (literal, span) = consume_integer_literal(&module.source, iter, &mut self.buffer)?;
 

	
 
            ctx.heap.alloc_literal_expression(|this| LiteralExpression {
 
                this, span,
 
                this,
 
                span,
 
                value: Literal::Integer(LiteralInteger { unsigned_value: literal, negated: false }),
 
                parent: ExpressionParent::None,
 
                type_index: -1,
 
            }).upcast()
 
        } else if next == Some(TokenKind::Bytestring) {
 
            let span = consume_bytestring_literal(&module.source, iter, &mut self.buffer)?;
 
            let mut bytes = Vec::with_capacity(self.buffer.len());
 
            for byte in self.buffer.as_bytes().iter().copied() {
 
                bytes.push(byte);
 
            }
 

	
 
            ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                this, span,
 
                value: Literal::Bytestring(bytes),
 
                parent: ExpressionParent::None,
 
                type_index: -1
 
            }).upcast()
 
        } else if next == Some(TokenKind::String) {
 
            let span = consume_string_literal(&module.source, iter, &mut self.buffer)?;
 
            let interned = ctx.pool.intern(self.buffer.as_bytes());
 

	
 
            ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                this, span,
 
                value: Literal::String(interned),
 
                parent: ExpressionParent::None,
 
                type_index: -1,
 
            }).upcast()
 
        } else if next == Some(TokenKind::Character) {
 
            let (character, span) = consume_character_literal(&module.source, iter)?;
 

	
 
            ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                this, span,
 
                value: Literal::Character(character),
 
                parent: ExpressionParent::None,
 
                type_index: -1,
 
            }).upcast()
 
        } else if next == Some(TokenKind::Ident) {
 
            // May be a variable, a type instantiation or a function call. If we
 
            // have a single identifier that we cannot find in the type table
 
            // then we're going to assume that we're dealing with a variable.
 

	
 
            let ident_span = iter.next_span();
 
            let ident_text = module.source.section_at_span(ident_span);
 
            let symbol = ctx.symbols.get_symbol_by_name(SymbolScope::Module(module.root_id), ident_text);
 

	
 
            if symbol.is_some() {
 
                // The first bit looked like a symbol, so we're going to follow
 
                // that all the way through, assume we arrive at some kind of
 
                // function call or type instantiation
 
                use ParserTypeVariant as PTV;
 

	
 
                let symbol_scope = SymbolScope::Definition(self.cur_definition);
 
                let poly_vars = ctx.heap[self.cur_definition].poly_vars();
 
                let parser_type = self.type_parser.consume_parser_type(
 
                    iter, &ctx.heap, &module.source, &ctx.symbols, poly_vars, self.cur_definition,
 
                    symbol_scope, true, None
 
                    symbol_scope, true, false, None
 
                )?;
 
                debug_assert!(!parser_type.elements.is_empty());
 
                match parser_type.elements[0].variant {
 
                    PTV::Definition(target_definition_id, _) => {
 
                        let definition = &ctx.heap[target_definition_id];
 
                        match definition {
 
                            Definition::Struct(_) => {
 
                                // Struct literal
 
                                let mut last_token = iter.last_valid_pos();
 
                                let mut struct_fields = Vec::new();
 
                                consume_comma_separated(
 
                                    TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
                                    |source, iter, ctx| {
 
                                        let identifier = consume_ident_interned(source, iter, ctx)?;
 
                                        consume_token(source, iter, TokenKind::Colon)?;
 
                                        let value = self.consume_expression(module, iter, ctx)?;
 
                                        Ok(LiteralStructField{ identifier, value, field_idx: 0 })
 
                                    },
 
                                    &mut struct_fields, "a struct field", "a list of struct fields", Some(&mut last_token)
 
                                )?;
 

	
 
                                ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                                    this,
 
                                    span: InputSpan::from_positions(ident_span.begin, last_token),
 
                                    value: Literal::Struct(LiteralStruct{
 
                                        parser_type,
 
                                        fields: struct_fields,
 
                                        definition: target_definition_id,
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Enum(_) => {
 
                                // Enum literal: consume the variant
 
                                consume_token(&module.source, iter, TokenKind::ColonColon)?;
 
                                let variant = consume_ident_interned(&module.source, iter, ctx)?;
 

	
 
                                ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                                    this,
 
                                    span: InputSpan::from_positions(ident_span.begin, variant.span.end),
 
                                    value: Literal::Enum(LiteralEnum{
 
                                        parser_type,
 
                                        variant,
 
                                        definition: target_definition_id,
 
                                        variant_idx: 0
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Union(_) => {
 
                                // Union literal: consume the variant
 
                                consume_token(&module.source, iter, TokenKind::ColonColon)?;
 
                                let variant = consume_ident_interned(&module.source, iter, ctx)?;
 

	
 
                                // Consume any possible embedded values
 
                                let mut end_pos = variant.span.end;
 
                                let values = if Some(TokenKind::OpenParen) == iter.next() {
 
                                    self.consume_expression_list(module, iter, ctx, Some(&mut end_pos))?
 
                                } else {
 
                                    Vec::new()
 
                                };
 

	
 
                                ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                                    this,
 
                                    span: InputSpan::from_positions(ident_span.begin, end_pos),
 
                                    value: Literal::Union(LiteralUnion{
 
                                        parser_type, variant, values,
 
                                        definition: target_definition_id,
 
                                        variant_idx: 0,
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Procedure(proc_def) => {
 
                                // Check whether it is a builtin function
 
                                // TODO: Once we start generating bytecode this is unnecessary
 
                                let procedure_id = proc_def.this;
 
                                let method = if proc_def.builtin {
 
                                    match proc_def.identifier.value.as_bytes() {
 
                                        KW_FUNC_GET => Method::Get,
 
                                        KW_FUNC_PUT => Method::Put,
 
                                        KW_FUNC_FIRES => Method::Fires,
 
                                        KW_FUNC_CREATE => Method::Create,
 
                                        KW_FUNC_LENGTH => Method::Length,
 
                                        KW_FUNC_ASSERT => Method::Assert,
 
                                        KW_FUNC_PRINT => Method::Print,
 
                                        _ => unreachable!(),
 
                                    }
 
                                } else if proc_def.kind == ProcedureKind::Function {
 
                                    Method::UserFunction
 
                                } else {
 
                                    Method::UserComponent
 
                                let method = match proc_def.source {
 
                                    ProcedureSource::FuncUserDefined => Method::UserFunction,
 
                                    ProcedureSource::CompUserDefined => Method::UserComponent,
 
                                    ProcedureSource::FuncGet => Method::Get,
 
                                    ProcedureSource::FuncPut => Method::Put,
 
                                    ProcedureSource::FuncFires => Method::Fires,
 
                                    ProcedureSource::FuncCreate => Method::Create,
 
                                    ProcedureSource::FuncLength => Method::Length,
 
                                    ProcedureSource::FuncAssert => Method::Assert,
 
                                    ProcedureSource::FuncPrint => Method::Print,
 
                                    ProcedureSource::CompRandomU32 => Method::ComponentRandomU32,
 
                                    ProcedureSource::CompTcpClient => Method::ComponentTcpClient,
 
                                    _ => todo!("other procedure sources"),
 
                                };
 

	
 
                                // Function call: consume the arguments
 
                                let func_span = parser_type.full_span;
 
                                let mut full_span = func_span;
 
                                let arguments = self.consume_expression_list(
 
                                    module, iter, ctx, Some(&mut full_span.end)
 
                                )?;
 

	
 
                                ctx.heap.alloc_call_expression(|this| CallExpression{
 
                                    this, func_span, full_span, parser_type, method, arguments,
 
                                    procedure: procedure_id,
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            }
 
                        }
 
                    },
 
                    _ => {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &module.source, parser_type.full_span, "unexpected type in expression"
 
                        ))
 
                    }
 
                }
 
            } else {
 
                // Check for builtin keywords or builtin functions
 
                if ident_text == KW_LIT_NULL || ident_text == KW_LIT_TRUE || ident_text == KW_LIT_FALSE {
 
                    iter.consume();
 

	
 
                    // Parse builtin literal
 
                    let value = match ident_text {
 
                        KW_LIT_NULL => Literal::Null,
 
                        KW_LIT_TRUE => Literal::True,
 
                        KW_LIT_FALSE => Literal::False,
 
                        _ => unreachable!(),
 
                    };
 

	
 
                    ctx.heap.alloc_literal_expression(|this| LiteralExpression {
 
                        this,
 
                        span: ident_span,
 
                        value,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                } else if ident_text == KW_LET {
 
                    // Binding expression
 
                    let operator_span = iter.next_span();
 
                    iter.consume();
 

	
 
                    let bound_to = self.consume_prefix_expression(module, iter, ctx)?;
 
                    consume_token(&module.source, iter, TokenKind::Equal)?;
 
                    let bound_from = self.consume_prefix_expression(module, iter, ctx)?;
 

	
 
                    let full_span = InputSpan::from_positions(
 
                        operator_span.begin, ctx.heap[bound_from].full_span().end,
 
                    );
 

	
 
                    ctx.heap.alloc_binding_expression(|this| BindingExpression{
 
                        this, operator_span, full_span, bound_to, bound_from,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                } else if ident_text == KW_CAST {
 
                    // Casting expression
 
                    iter.consume();
 
                    let to_type = if Some(TokenKind::OpenAngle) == iter.next() {
 
                        let angle_start_pos = iter.next_start_position();
 
                        iter.consume();
 
                        let definition_id = self.cur_definition;
 
                        let poly_vars = ctx.heap[definition_id].poly_vars();
 
                        self.type_parser.consume_parser_type(
 
                            iter, &ctx.heap, &module.source, &ctx.symbols,
 
                            poly_vars, definition_id, SymbolScope::Module(module.root_id),
 
                            true, Some(angle_start_pos)
 
                            true, false, Some(angle_start_pos)
 
                        )?
 
                    } else {
 
                        // Automatic casting with inferred target type
 
                        ParserType{
 
                            elements: vec![ParserTypeElement{
 
                                element_span: ident_span,
 
                                variant: ParserTypeVariant::Inferred,
 
                            }],
 
                            full_span: ident_span
 
                        }
 
                    };
 

	
 
                    consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
                    let subject = self.consume_expression(module, iter, ctx)?;
 
                    let mut full_span = iter.next_span();
 
                    full_span.begin = to_type.full_span.begin;
 
                    consume_token(&module.source, iter, TokenKind::CloseParen)?;
 

	
 
                    ctx.heap.alloc_cast_expression(|this| CastExpression{
 
                        this,
 
                        cast_span: to_type.full_span,
 
                        full_span, to_type, subject,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                } else {
 
                    // Not a builtin literal, but also not a known type. So we
 
                    // assume it is a variable expression. Although if we do,
 
                    // then if a programmer mistyped a struct/function name the
 
                    // error messages will be rather cryptic. For polymorphic
 
                    // arguments we can't really do anything at all (because it
 
                    // uses the '<' token). In the other cases we try to provide
 
                    // a better error message.
 
                    iter.consume();
 
                    let next = iter.next();
 
                    if Some(TokenKind::ColonColon) == next {
 
                        return Err(ParseError::new_error_str_at_span(&module.source, ident_span, "unknown identifier"));
 
                    } else if Some(TokenKind::OpenParen) == next {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &module.source, ident_span,
 
                            "unknown identifier, did you mistype a union variant's, component's, or function's name?"
 
                        ));
 
                    } else if Some(TokenKind::OpenCurly) == next {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &module.source, ident_span,
 
                            "unknown identifier, did you mistype a struct type's name?"
 
                        ))
 
                    }
 

	
 
                    let ident_text = ctx.pool.intern(ident_text);
 
                    let identifier = Identifier { span: ident_span, value: ident_text };
 

	
 
                    ctx.heap.alloc_variable_expression(|this| VariableExpression {
 
                        this,
 
                        identifier,
 
                        declaration: None,
 
                        used_as_binding_target: false,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                }
 
            }
 
        } else {
 
            return Err(ParseError::new_error_str_at_pos(
 
                &module.source, iter.last_valid_pos(), "expected an expression"
 
            ));
 
        };
 

	
 
        Ok(result)
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    #[inline]
 
    fn consume_generic_binary_expression<
 
        M: Fn(Option<TokenKind>) -> Option<BinaryOperator>,
 
        F: Fn(&mut PassDefinitions, &Module, &mut TokenIter, &mut PassCtx) -> Result<ExpressionId, ParseError>
 
    >(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, match_fn: M, higher_precedence_fn: F
 
    ) -> Result<ExpressionId, ParseError> {
 
        let mut result = higher_precedence_fn(self, module, iter, ctx)?;
 
        while let Some(operation) = match_fn(iter.next()) {
 
            let operator_span = iter.next_span();
 
            iter.consume();
 

	
 
            let left = result;
 
            let right = higher_precedence_fn(self, module, iter, ctx)?;
 

	
 
            let full_span = InputSpan::from_positions(
 
                ctx.heap[left].full_span().begin,
 
                ctx.heap[right].full_span().end,
 
            );
 

	
 
            result = ctx.heap.alloc_binary_expression(|this| BinaryExpression{
 
                this, operator_span, full_span, left, operation, right,
 
                parent: ExpressionParent::None,
 
                type_index: -1,
 
            }).upcast();
 
        }
 

	
 
        Ok(result)
 
    }
 

	
 
    #[inline]
 
    fn consume_expression_list(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, end_pos: Option<&mut InputPosition>
 
    ) -> Result<Vec<ExpressionId>, ParseError> {
 
        let mut section = self.expressions.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenParen, TokenKind::CloseParen, &module.source, iter, ctx,
 
            |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
            &mut section, "an expression", "a list of expressions", end_pos
 
        )?;
 
        Ok(section.into_vec())
 
    }
 
}
 

	
 
/// Consumes polymorphic variables and throws them on the floor.
 
fn consume_polymorphic_vars_spilled(source: &InputSource, iter: &mut TokenIter, _ctx: &mut PassCtx) -> Result<(), ParseError> {
 
    maybe_consume_comma_separated_spilled(
 
        TokenKind::OpenAngle, TokenKind::CloseAngle, source, iter, _ctx,
 
        |source, iter, _ctx| {
 
            consume_ident(source, iter)?;
 
            Ok(())
 
        }, "a polymorphic variable"
 
    )?;
 
    Ok(())
 
}
 

	
 
/// Consumes the parameter list to functions/components
 
fn consume_parameter_list(
 
    parser: &mut ParserTypeParser, source: &InputSource, iter: &mut TokenIter,
 
    ctx: &mut PassCtx, target: &mut ScopedSection<VariableId>,
 
    scope: SymbolScope, definition_id: DefinitionId
 
    scope: SymbolScope, definition_id: DefinitionId, allow_compiler_types: bool
 
) -> Result<(), ParseError> {
 
    consume_comma_separated(
 
        TokenKind::OpenParen, TokenKind::CloseParen, source, iter, ctx,
 
        |source, iter, ctx| {
 
            let poly_vars = ctx.heap[definition_id].poly_vars(); // Rust being rust, multiple lookups
 
            let parser_type = parser.consume_parser_type(
 
                iter, &ctx.heap, source, &ctx.symbols, poly_vars, definition_id,
 
                scope, false, None
 
                scope, false, allow_compiler_types, None
 
            )?;
 
            let identifier = consume_ident_interned(source, iter, ctx)?;
 
            let parameter_id = ctx.heap.alloc_variable(|this| Variable{
 
                this,
 
                kind: VariableKind::Parameter,
 
                parser_type,
 
                identifier,
 
                relative_pos_in_parent: 0,
 
                unique_id_in_scope: -1,
 
            });
 
            Ok(parameter_id)
 
        },
 
        target, "a parameter", "a parameter list", None
 
    )
 
}
 
\ No newline at end of file
src/protocol/parser/pass_definitions_types.rs
Show inline comments
 
use crate::protocol::parser::*;
 
use crate::protocol::parser::token_parsing::*;
 

	
 
#[derive(Debug)]
 
struct Entry {
 
    element: ParserTypeElement,
 
    depth: i32,
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
enum DepthKind {
 
    Tuple, // because we had a `(` token
 
    PolyArgs, // because we had a `<` token
 
}
 

	
 
#[derive(Debug)]
 
struct DepthElement {
 
    kind: DepthKind,
 
    entry_index: u32, // in `entries` array of parser
 
    pos: InputPosition,
 
}
 

	
 
/// Current parsing state, for documentation's sake: types may be named, or may
 
/// be tuples. Named types may have polymorphic arguments (if the type
 
/// declaration allows) and a type may be turned into an array of that type by
 
/// postfixing a "[]".
 
#[derive(Debug)]
 
enum ParseState {
 
    TypeMaybePolyArgs,  // just parsed a type, might have poly arguments
 
    TypeNeverPolyArgs,  // just parsed a type that cannot have poly arguments
 
    PolyArgStart,       // just opened a polymorphic argument list
 
    TupleStart,         // just opened a tuple list
 
    ParsedComma,        // just had a comma
 
}
 

	
 
/// Parsers tokens into `ParserType` instances (yes, the name of the struct is
 
/// silly). Essentially a little state machine with its own temporary storage.
 
#[derive(Debug)]
 
pub(crate) struct ParserTypeParser {
 
    entries: Vec<Entry>,
 
    depths: Vec<DepthElement>,
 
    parse_state: ParseState,
 
    first_pos: InputPosition,
 
    last_pos: InputPosition,
 
}
 

	
 
impl ParserTypeParser {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            entries: Vec::with_capacity(16),
 
            depths: Vec::with_capacity(16),
 
            parse_state: ParseState::TypeMaybePolyArgs,
 
            first_pos: InputPosition{ line: 0, offset: 0 },
 
            last_pos: InputPosition{ line: 0, offset: 0 }
 
        }
 
    }
 

	
 
    pub(crate) fn consume_parser_type(
 
        &mut self, iter: &mut TokenIter, heap: &Heap, source: &InputSource,
 
        symbols: &SymbolTable, poly_vars: &[Identifier],
 
        wrapping_definition: DefinitionId, cur_scope: SymbolScope,
 
        allow_inference: bool, inside_angular_bracket: Option<InputPosition>,
 
        allow_inference: bool, allow_compiler_types: bool,
 
        inside_angular_bracket: Option<InputPosition>,
 
    ) -> Result<ParserType, ParseError> {
 
        // Prepare
 
        self.entries.clear();
 
        self.depths.clear();
 

	
 
        // Setup processing
 
        if let Some(bracket_pos) = inside_angular_bracket {
 
            self.push_depth(DepthKind::PolyArgs, u32::MAX, bracket_pos);
 
        }
 

	
 
        let initial_state = match iter.next() {
 
            Some(TokenKind::Ident) => {
 
            Some(TokenKind::Ident) | Some(TokenKind::Pragma) => {
 
                let element = Self::consume_parser_type_element(
 
                    iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference
 
                    iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope,
 
                    allow_inference, allow_compiler_types
 
                )?;
 
                self.first_pos = element.element_span.begin;
 
                self.last_pos = element.element_span.end;
 

	
 
                self.entries.push(Entry{
 
                    element,
 
                    depth: self.cur_depth(),
 
                });
 

	
 
                // Due to the nature of the subsequent type parsing algorithm,
 
                // we check the opening polymorphic argument list paren here.
 
                if let Some(TokenKind::OpenAngle) = iter.next() {
 
                    self.consume_open_angle(iter);
 
                    ParseState::PolyArgStart
 
                } else {
 
                    ParseState::TypeMaybePolyArgs
 
                }
 
            },
 
            Some(TokenKind::OpenParen) => {
 
                let tuple_start_pos = iter.next_start_position();
 
                self.first_pos = tuple_start_pos; // last pos will be set later, this is a tuple
 

	
 
                let tuple_entry_index = self.entries.len() as u32;
 
                let tuple_depth = self.cur_depth();
 
                self.push_depth(DepthKind::Tuple, tuple_entry_index, tuple_start_pos);
 
                self.entries.push(Entry{
 
                    element: ParserTypeElement{
 
                        element_span: InputSpan::from_positions(tuple_start_pos, tuple_start_pos),
 
                        variant: ParserTypeVariant::Tuple(0),
 
                    },
 
                    depth: tuple_depth,
 
                });
 
                iter.consume();
 

	
 
                ParseState::TupleStart
 
            },
 
            _ => return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a type")),
 
        };
 

	
 
        self.parse_state = initial_state;
 

	
 
        // Depth stack and entries are initialized, continue until depth stack
 
        // is empty, or until an unexpected set of tokens is encountered
 
        while !self.depths.is_empty() {
 
            let next = iter.next();
 

	
 
            match self.parse_state {
 
                ParseState::TypeMaybePolyArgs => {
 
                    // Allowed tokens: , < > >> ) [
 
                    match next {
 
                        Some(TokenKind::Comma) => self.consume_comma(iter),
 
                        Some(TokenKind::OpenAngle) => self.consume_open_angle(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        Some(TokenKind::OpenSquare) => self.consume_square_parens(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ',', '<', '>', '<<', ')' or '['"
 
                        )),
 
                    }
 
                },
 
                ParseState::TypeNeverPolyArgs => {
 
                    // Allowed tokens: , > >> ) [
 
                    match next {
 
                        Some(TokenKind::Comma) => self.consume_comma(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        Some(TokenKind::OpenSquare) => self.consume_square_parens(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ',', '>', '>>', ')' or '['"
 
                        )),
 
                    }
 
                },
 
                ParseState::PolyArgStart => {
 
                    // Allowed tokens: ident (
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope,
 
                            allow_inference, allow_compiler_types, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename or '('"
 
                        )),
 
                    }
 
                },
 
                ParseState::TupleStart => {
 
                    // Allowed tokens: ident ( )
 
                    // We'll strip the nested tuple later in this function
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope,
 
                            allow_inference, allow_compiler_types, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename or ')'"
 
                        )),
 
                    }
 
                },
 
                ParseState::ParsedComma => {
 
                    // Allowed tokens: ident ( > >> )
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope,
 
                            allow_inference, allow_compiler_types, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename, '(', '>', '>>' or ')'"
 
                        ))
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // If here then we have found the correct number of closing braces.
 
        // However we might still have any number of array postfixed
 
        if inside_angular_bracket.is_none() {
 
            while Some(TokenKind::OpenSquare) == iter.next() {
 
                self.consume_square_parens(source, iter)?;
 
            }
 
        }
 

	
 
        // Type should be completed. But we still need to check the polymorphic
 
        // arguments and strip tuples with just one embedded type.
 
        let num_entries = self.entries.len();
 

	
 
        for el_index in 0..num_entries {
 
            let cur_element = &self.entries[el_index];
 

	
 
            // Peek ahead to see how many embedded types we have
 
            let mut encountered_embedded = 0;
 
            for peek_index in el_index + 1..num_entries {
 
                let peek_element = &self.entries[peek_index];
 
                if peek_element.depth == cur_element.depth + 1 {
 
                    encountered_embedded += 1;
 
                } else if peek_element.depth <= cur_element.depth {
 
                    break;
 
                }
 
            }
 

	
 
            // If we're dealing with a tuple then we don't need to determine if
 
            // the number of embedded types is correct, we simply need to set it
 
            // to whatever what was encountered.
 
            if let ParserTypeVariant::Tuple(_) = cur_element.element.variant {
 
                self.entries[el_index].element.variant = ParserTypeVariant::Tuple(encountered_embedded);
 
            } else {
 
                let expected_embedded = cur_element.element.variant.num_embedded() as u32;
 
                if expected_embedded != encountered_embedded {
 
                    if encountered_embedded == 0 {
 
                        // Every polymorphic argument should be inferred
 
                        if !allow_inference {
 
                            return Err(ParseError::new_error_str_at_span(
 
                                source, cur_element.element.element_span,
 
                                "type inference is not allowed here"
 
                            ));
 
                        }
 

	
 
                        // Insert missing types
 
                        let inserted_span = cur_element.element.element_span;
 
                        let inserted_depth = cur_element.depth + 1;
 
                        self.entries.reserve(expected_embedded as usize);
 
                        for _ in 0..expected_embedded {
 
                            self.entries.insert(el_index + 1, Entry {
 
                                element: ParserTypeElement {
 
                                    element_span: inserted_span,
 
                                    variant: ParserTypeVariant::Inferred,
 
                                },
 
                                depth: inserted_depth,
 
                            });
 
                        }
 
                    } else {
 
                        // Mismatch in number of embedded types
 
                        return Err(Self::construct_poly_arg_mismatch_error(
 
                            source, cur_element.element.element_span, allow_inference,
 
                            expected_embedded, encountered_embedded
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Convert the results from parsing into the `ParserType`
 
        let mut elements = Vec::with_capacity(self.entries.len());
 
        debug_assert!(!self.entries.is_empty());
 

	
 
        for entry in self.entries.drain(..) {
 
            if ParserTypeVariant::Tuple(1) == entry.element.variant {
 
                // We strip these ones
 
            } else {
 
                elements.push(entry.element);
 
            }
 
        }
 

	
 
        return Ok(ParserType{
 
            elements,
 
            full_span: InputSpan::from_positions(self.first_pos, self.last_pos),
 
        });
 
    }
 

	
 
    // --- Parsing Utilities
 

	
 
    #[inline]
 
    fn consume_type_idents(
 
        &mut self, source: &InputSource, heap: &Heap, symbols: &SymbolTable,
 
        wrapping_definition: DefinitionId, poly_vars: &[Identifier],
 
        cur_scope: SymbolScope, allow_inference: bool, iter: &mut TokenIter
 
        cur_scope: SymbolScope, allow_inference: bool, allow_compiler_types: bool,
 
        iter: &mut TokenIter
 
    ) -> Result<(), ParseError> {
 
        let element = Self::consume_parser_type_element(
 
            iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference
 
            iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope,
 
            allow_inference, allow_compiler_types
 
        )?;
 
        let depth = self.cur_depth();
 
        self.last_pos = element.element_span.end;
 
        self.entries.push(Entry{ element, depth });
 
        self.parse_state = ParseState::TypeMaybePolyArgs;
 

	
 
        return Ok(());
 
    }
 

	
 
    #[inline]
 
    fn consume_open_angle(&mut self, iter: &mut TokenIter) {
 
        // Note: open angular bracket is only consumed when we just parsed an
 
        //  ident-based type. So the last element of the `entries` array is the
 
        //  one that this angular bracket starts the polymorphic arguments for.
 
        let angle_start_pos = iter.next_start_position();
 
        let entry_index = (self.entries.len() - 1) as u32;
 
        self.push_depth(DepthKind::PolyArgs, entry_index, angle_start_pos);
 
        self.parse_state = ParseState::PolyArgStart;
 

	
 
        iter.consume();
 
    }
 

	
 
    #[inline]
 
    fn consume_close_angle(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (angle_start_pos, angle_end_pos) = iter.next_positions();
 
        self.last_pos = angle_end_pos;
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos)?;
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume();
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_double_close_angle(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (angle_start_pos, angle_end_pos) = iter.next_positions();
 
        self.last_pos = angle_end_pos;
 

	
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos)?; // first '>' in '>>'.
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos.with_offset(1))?; // second '>' in '>>'
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume(); // consume once, '>>' is one token
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_open_paren(&mut self, iter: &mut TokenIter) {
 
        let paren_start_pos = iter.next_start_position();
 
        let cur_depth = self.cur_depth();
 
        let entry_index = self.entries.len() as u32;
 
        self.entries.push(Entry{
 
            element: ParserTypeElement {
 
                element_span: InputSpan::from_positions(paren_start_pos, paren_start_pos),
 
                variant: ParserTypeVariant::Tuple(0),
 
            },
 
            depth: cur_depth,
 
        });
 

	
 
        self.push_depth(DepthKind::Tuple, entry_index, paren_start_pos);
 
        self.parse_state = ParseState::TupleStart;
 

	
 
        iter.consume();
 
    }
 

	
 
    #[inline]
 
    fn consume_close_paren(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (paren_start_pos, paren_end_pos) = iter.next_positions();
 
        self.last_pos = paren_end_pos;
 
        let tuple_type_index = self.pop_depth(source, DepthKind::Tuple, paren_start_pos)?;
 
        self.entries[tuple_type_index as usize].element.element_span.end = paren_end_pos.with_offset(1);
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume();
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_comma(&mut self, iter: &mut TokenIter) {
 
        iter.consume();
 
        self.parse_state = ParseState::ParsedComma;
 
    }
 

	
 
    #[inline]
 
    fn consume_square_parens(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        // Consume the opening square paren that forms the postfixed array type
 
        let array_start_pos = iter.next_start_position();
 
        iter.consume();
 
        if iter.next() != Some(TokenKind::CloseSquare) {
 
            return Err(ParseError::new_error_str_at_pos(
 
                source, iter.last_valid_pos(),
 
                "unexpected token: expected ']'"
 
            ));
 
        }
 

	
 
        let (_, array_end_pos) = iter.next_positions();
 
        let array_span = InputSpan::from_positions(array_start_pos, array_end_pos);
 
        self.last_pos = array_end_pos;
 
        iter.consume();
 

	
 
        // In the language we put the array specification after a type, in the
 
        // type tree we need to make the array type the parent, so:
 
        let insert_depth = self.cur_depth();
 
        let insert_at = self.entries.iter().rposition(|e| e.depth == insert_depth).unwrap();
 
        let num_embedded = self.entries[insert_at].element.variant.num_embedded();
 

	
 
        self.entries.insert(insert_at, Entry{
 
            element: ParserTypeElement{
 
                element_span: array_span,
 
                variant: ParserTypeVariant::Array,
 
            },
 
            depth: insert_depth
 
        });
 

	
 
        // Need to increment the depth of the child types
 
        self.entries[insert_at + 1].depth += 1; // element we applied the array type to
 
        if num_embedded != 0 {
 
            for index in insert_at + 2..self.entries.len() {
 
                let element = &mut self.entries[index];
 
                if element.depth >= insert_depth + 1 {
 
                    element.depth += 1;
 
                } else {
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    /// Consumes a namespaced identifier that should resolve to some kind of
 
    /// type. There may be commas or polymorphic arguments remaining after this
 
    /// function has finished.
 
    fn consume_parser_type_element(
 
        iter: &mut TokenIter, source: &InputSource, heap: &Heap, symbols: &SymbolTable,
 
        wrapping_definition: DefinitionId, poly_vars: &[Identifier],
 
        mut scope: SymbolScope, allow_inference: bool,
 
        mut scope: SymbolScope, allow_inference: bool, allow_compiler_types: bool,
 
    ) -> Result<ParserTypeElement, ParseError> {
 
        use ParserTypeVariant as PTV;
 
        let (mut type_text, mut type_span) = consume_any_ident(source, iter)?;
 

	
 
        // Early check for special builtin types available to the compiler
 
        if iter.next() == Some(TokenKind::Pragma) {
 
            let (type_text, pragma_span) = consume_pragma(source, iter)?;
 
            let variant = match type_text {
 
                PRAGMA_TYPE_VOID => Some(PTV::Void),
 
                PRAGMA_TYPE_PORTLIKE => Some(PTV::InputOrOutput),
 
                PRAGMA_TYPE_INTEGERLIKE => Some(PTV::IntegerLike),
 
                PRAGMA_TYPE_ARRAYLIKE => Some(PTV::ArrayLike),
 
                _ => None,
 
            };
 

	
 
            if !allow_compiler_types || variant.is_none() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    source, pragma_span, "unexpected pragma in type"
 
                ));
 
            }
 

	
 
            return Ok(ParserTypeElement{
 
                variant: variant.unwrap(),
 
                element_span: pragma_span,
 
            });
 
        }
 

	
 
        // No special type, parse as normal
 
        let (mut type_text, mut type_span) = consume_any_ident(source, iter)?;
 
        let variant = match type_text {
 
            KW_TYPE_MESSAGE => PTV::Message,
 
            KW_TYPE_BOOL => PTV::Bool,
 
            KW_TYPE_UINT8 => PTV::UInt8,
 
            KW_TYPE_UINT16 => PTV::UInt16,
 
            KW_TYPE_UINT32 => PTV::UInt32,
 
            KW_TYPE_UINT64 => PTV::UInt64,
 
            KW_TYPE_SINT8 => PTV::SInt8,
 
            KW_TYPE_SINT16 => PTV::SInt16,
 
            KW_TYPE_SINT32 => PTV::SInt32,
 
            KW_TYPE_SINT64 => PTV::SInt64,
 
            KW_TYPE_IN_PORT => PTV::Input,
 
            KW_TYPE_OUT_PORT => PTV::Output,
 
            KW_TYPE_CHAR => PTV::Character,
 
            KW_TYPE_STRING => PTV::String,
 
            KW_TYPE_INFERRED => {
 
                if !allow_inference {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        source, type_span, "type inference is not allowed here"
 
                    ));
 
                }
 

	
 
                PTV::Inferred
 
            },
 
            _ => {
 
                // Must be some kind of symbolic type
 
                let mut type_kind = None;
 
                for (poly_idx, poly_var) in poly_vars.iter().enumerate() {
 
                    if poly_var.value.as_bytes() == type_text {
 
                        type_kind = Some(PTV::PolymorphicArgument(wrapping_definition, poly_idx as u32));
 
                    }
 
                }
 

	
 
                if type_kind.is_none() {
 
                    // Check symbol table for definition. To be fair, the language
 
                    // only allows a single namespace for now. That said:
 
                    let last_symbol = symbols.get_symbol_by_name(scope, type_text);
 
                    if last_symbol.is_none() {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            source, type_span, "unknown type"
 
                        ));
 
                    }
 
                    let mut last_symbol = last_symbol.unwrap();
 

	
 
                    // Resolving scopes until we reach the intended type
 
                    loop {
 
                        match &last_symbol.variant {
 
                            SymbolVariant::Module(symbol_module) => {
 
                                // Expecting more identifiers
 
                                if Some(TokenKind::ColonColon) != iter.next() {
 
                                    return Err(ParseError::new_error_str_at_span(
 
                                        source, type_span, "expected a type but got a module"
 
                                    ));
 
                                }
 

	
 
                                consume_token(source, iter, TokenKind::ColonColon)?;
 

	
 
                                // Consume next part of type and prepare for next
 
                                // lookup loop
 
                                let (next_text, next_span) = consume_any_ident(source, iter)?;
 
                                let old_text = type_text;
 
                                type_text = next_text;
 
                                type_span.end = next_span.end;
 
                                scope = SymbolScope::Module(symbol_module.root_id);
 

	
 
                                let new_symbol = symbols.get_symbol_by_name_defined_in_scope(scope, type_text);
 
                                if new_symbol.is_none() {
 
                                    // If the type is imported in the module then notify the programmer
 
                                    // that imports do not leak outside of a module
 
                                    let type_name = String::from_utf8_lossy(type_text);
 
                                    let module_name = String::from_utf8_lossy(old_text);
 
                                    let suffix = if symbols.get_symbol_by_name(scope, type_text).is_some() {
 
                                        format!(
 
                                            ". The module '{}' does import '{}', but these imports are not visible to other modules",
 
                                            &module_name, &type_name
 
                                        )
 
                                    } else {
 
                                        String::new()
 
                                    };
 

	
 
                                    let message = format!("unknown type '{}' in module '{}'{}", type_name, module_name, suffix);
 
                                    return Err(ParseError::new_error_at_span(source, next_span, message));
 
                                }
 

	
 
                                last_symbol = new_symbol.unwrap();
 
                            },
 
                            SymbolVariant::Definition(symbol_definition) => {
 
                                let num_poly_vars = heap[symbol_definition.definition_id].poly_vars().len();
 
                                type_kind = Some(PTV::Definition(symbol_definition.definition_id, num_poly_vars as u32));
 
                                break;
 
                            }
 
                        }
 
                    }
 
                }
 

	
 
                debug_assert!(type_kind.is_some());

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)