Files @ 113e4349a706
Branch filter:

Location: CSY/reowolf/src/protocol/eval/value.rs

113e4349a706 40.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Max Henger
feat: Builtin internet component
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
use std::collections::VecDeque;

use super::store::*;
use crate::protocol::ast::{
    AssignmentOperator,
    BinaryOperator,
    UnaryOperator,
    ConcreteType,
    ConcreteTypePart,
};
use crate::protocol::parser::token_parsing::*;

pub type StackPos = u32;
pub type HeapPos = u32;

#[derive(Debug, Copy, Clone)]
pub enum ValueId {
    Stack(StackPos), // place on stack
    Heap(HeapPos, u32), // allocated region + values within that region
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct PortId{
    pub(crate) id: u32
}

impl PortId {
    pub fn new(id: u32) -> Self {
        return Self{ id };
    }
}

/// Represents a value stored on the stack or on the heap. Some values contain
/// a `HeapPos`, implying that they're stored in the store's `Heap`. Clearing
/// a `Value` with a `HeapPos` from a stack must also clear the associated
/// region from the `Heap`.
#[derive(Debug, Clone)]
pub enum Value {
    // Special types, never encountered during evaluation if the compiler works correctly
    Unassigned,                 // Marker when variables are first declared, immediately followed by assignment
    PrevStackBoundary(isize),   // Marker for stack frame beginning, so we can pop stack values
    Ref(ValueId),               // Reference to a value, used by expressions producing references
    Binding(StackPos),          // Reference to a binding variable (reserved on the stack)
    // Builtin types
    Input(PortId),
    Output(PortId),
    Message(HeapPos),
    Null,
    Bool(bool),
    Char(char),
    String(HeapPos),
    UInt8(u8),
    UInt16(u16),
    UInt32(u32),
    UInt64(u64),
    SInt8(i8),
    SInt16(i16),
    SInt32(i32),
    SInt64(i64),
    Array(HeapPos),
    Tuple(HeapPos),
    // Instances of user-defined types
    Enum(i64),
    Union(i64, HeapPos),
    Struct(HeapPos),
}

union_cast_to_value_method_impl!(as_stack_boundary, isize, Value::PrevStackBoundary);
union_cast_to_value_method_impl!(as_ref, ValueId, Value::Ref);
union_cast_to_value_method_impl!(as_input, PortId, Value::Input);
union_cast_to_value_method_impl!(as_output, PortId, Value::Output);
union_cast_to_value_method_impl!(as_message, HeapPos, Value::Message);
union_cast_to_value_method_impl!(as_bool, bool, Value::Bool);
union_cast_to_value_method_impl!(as_char, char, Value::Char);
union_cast_to_value_method_impl!(as_string, HeapPos, Value::String);
union_cast_to_value_method_impl!(as_uint8, u8, Value::UInt8);
union_cast_to_value_method_impl!(as_uint16, u16, Value::UInt16);
union_cast_to_value_method_impl!(as_uint32, u32, Value::UInt32);
union_cast_to_value_method_impl!(as_uint64, u64, Value::UInt64);
union_cast_to_value_method_impl!(as_sint8, i8, Value::SInt8);
union_cast_to_value_method_impl!(as_sint16, i16, Value::SInt16);
union_cast_to_value_method_impl!(as_sint32, i32, Value::SInt32);
union_cast_to_value_method_impl!(as_sint64, i64, Value::SInt64);
union_cast_to_value_method_impl!(as_array, HeapPos, Value::Array);
union_cast_to_value_method_impl!(as_tuple, HeapPos, Value::Tuple);
union_cast_to_value_method_impl!(as_enum, i64, Value::Enum);
union_cast_to_value_method_impl!(as_struct, HeapPos, Value::Struct);

impl Value {
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
        match self {
            Value::Union(tag, v) => (*tag, *v),
            _ => panic!("called as_union on {:?}", self),
        }
    }

    pub(crate) fn as_port_id(&self) -> PortId {
        match self {
            Value::Input(v) => *v,
            Value::Output(v) => *v,
            _ => unreachable!(),
        }
    }

    pub(crate) fn is_integer(&self) -> bool {
        match self {
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
            _ => false
        }
    }

    pub(crate) fn is_unsigned_integer(&self) -> bool {
        match self {
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
            _ => false
        }
    }

    pub(crate) fn is_signed_integer(&self) -> bool {
        match self {
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
            _ => false
        }
    }

    pub(crate) fn as_unsigned_integer(&self) -> u64 {
        match self {
            Value::UInt8(v)  => *v as u64,
            Value::UInt16(v) => *v as u64,
            Value::UInt32(v) => *v as u64,
            Value::UInt64(v) => *v as u64,
            _ => unreachable!("called as_unsigned_integer on {:?}", self),
        }
    }

    pub(crate) fn as_signed_integer(&self) -> i64 {
        match self {
            Value::SInt8(v)  => *v as i64,
            Value::SInt16(v) => *v as i64,
            Value::SInt32(v) => *v as i64,
            Value::SInt64(v) => *v as i64,
            _ => unreachable!("called as_signed_integer on {:?}", self)
        }
    }

    /// Returns the heap position associated with the value. If the value
    /// doesn't store anything in the heap then we return `None`.
    pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
        match self {
            Value::Message(v) => Some(*v),
            Value::String(v) => Some(*v),
            Value::Array(v) => Some(*v),
            Value::Tuple(v) => Some(*v),
            Value::Union(_, v) => Some(*v),
            Value::Struct(v) => Some(*v),
            _ => None
        }
    }
}

/// When providing arguments to a new component, or when transferring values
/// from one component's store to a newly instantiated component, one has to
/// transfer stack and heap values. This `ValueGroup` represents such a
/// temporary group of values with potential heap allocations.
///
/// Constructing such a ValueGroup manually requires some extra care to make
/// sure all elements of `values` point to valid elements of `regions`.
///
/// Again: this is a temporary thing, hopefully removed once we move to a
/// bytecode interpreter.
#[derive(Clone, Debug)]
pub struct ValueGroup {
    pub(crate) values: Vec<Value>,
    pub(crate) regions: Vec<Vec<Value>>
}

impl ValueGroup {
    pub(crate) fn new_stack(values: Vec<Value>) -> Self {
        debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
        Self{
            values,
            regions: Vec::new(),
        }
    }

    pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
        let mut group = ValueGroup{
            values: Vec::with_capacity(values.len()),
            regions: Vec::with_capacity(values.len()), // estimation
        };

        for value in values {
            let transferred = group.retrieve_value(value, store);
            group.values.push(transferred);
        }

        group
    }

    /// Creates a clone of the value group, but leaves the memory inside of the
    /// ValueGroup vectors allocated.
    pub(crate) fn take(&mut self) -> ValueGroup {
        let cloned = self.clone();
        self.values.clear();
        self.regions.clear();
        return cloned;
    }

    /// Transfers a provided value from a store into a local value with its
    /// heap allocations (if any) stored in the ValueGroup. Calling this
    /// function will not store the returned value in the `values` member.
    fn retrieve_value(&mut self, value: &Value, from_store: &Store) -> Value {
        let value = from_store.maybe_read_ref(value);
        if let Some(heap_pos) = value.get_heap_pos() {
            // Value points to a heap allocation, so transfer the heap values
            // internally.
            let from_region = &from_store.heap_regions[heap_pos as usize].values;
            let mut new_region = Vec::with_capacity(from_region.len());
            for value in from_region {
                let transferred = self.retrieve_value(value, from_store);
                new_region.push(transferred);
            }

            // Region is constructed, store internally and return the new value.
            let new_region_idx = self.regions.len() as HeapPos;
            self.regions.push(new_region);

            return match value {
                Value::Message(_)    => Value::Message(new_region_idx),
                Value::String(_)     => Value::String(new_region_idx),
                Value::Array(_)      => Value::Array(new_region_idx),
                Value::Tuple(_)      => Value::Tuple(new_region_idx),
                Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
                Value::Struct(_)     => Value::Struct(new_region_idx),
                _ => unreachable!(),
            };
        } else {
            return value.clone();
        }
    }

    /// Transfers the heap values and the stack values into the store. Stack
    /// values are pushed onto the Store's stack in the order in which they
    /// appear in the value group.
    pub(crate) fn into_store(self, store: &mut Store) {
        for value in &self.values {
            let transferred = self.provide_value(value, store);
            store.stack.push(transferred);
        }
    }

    /// Transfers the heap values into the store, but will put the stack values
    /// into the provided `VecDeque`. This is mainly used to merge `ValueGroup`
    /// instances retrieved by the code by `get` calls into the expression
    /// stack.
    pub(crate) fn into_stack(self, stack: &mut VecDeque<Value>, store: &mut Store) {
        for value in &self.values {
            let transferred = self.provide_value(value, store);
            stack.push_back(transferred);
        }
    }

    fn provide_value(&self, value: &Value, to_store: &mut Store) -> Value {
        if let Some(from_heap_pos) = value.get_heap_pos() {
            let from_heap_pos = from_heap_pos as usize;
            let to_heap_pos = to_store.alloc_heap();
            let to_heap_pos_usize = to_heap_pos as usize;
            to_store.heap_regions[to_heap_pos_usize].values.reserve(self.regions[from_heap_pos].len());

            for value in &self.regions[from_heap_pos as usize] {
                let transferred = self.provide_value(value, to_store);
                to_store.heap_regions[to_heap_pos_usize].values.push(transferred);
            }

            return match value {
                Value::Message(_)    => Value::Message(to_heap_pos),
                Value::String(_)     => Value::String(to_heap_pos),
                Value::Array(_)      => Value::Array(to_heap_pos),
                Value::Tuple(_)      => Value::Tuple(to_heap_pos),
                Value::Union(tag, _) => Value::Union(*tag, to_heap_pos),
                Value::Struct(_)     => Value::Struct(to_heap_pos),
                _ => unreachable!(),
            };
        } else {
            return value.clone();
        }
    }
}

impl Default for ValueGroup {
    /// Returns an empty ValueGroup
    fn default() -> Self {
        Self { values: Vec::new(), regions: Vec::new() }
    }
}

enum ValueKind { Message, String, Array }

pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueId, op: AssignmentOperator, rhs: Value) {
    use AssignmentOperator as AO;

    macro_rules! apply_int_op {
        ($lhs:ident, $assignment_tokens:tt, $operator:ident, $rhs:ident) => {
            match $lhs {
                Value::UInt8(v)  => { *v $assignment_tokens $rhs.as_uint8();  },
                Value::UInt16(v) => { *v $assignment_tokens $rhs.as_uint16(); },
                Value::UInt32(v) => { *v $assignment_tokens $rhs.as_uint32(); },
                Value::UInt64(v) => { *v $assignment_tokens $rhs.as_uint64(); },
                Value::SInt8(v)  => { *v $assignment_tokens $rhs.as_sint8();  },
                Value::SInt16(v) => { *v $assignment_tokens $rhs.as_sint16(); },
                Value::SInt32(v) => { *v $assignment_tokens $rhs.as_sint32(); },
                Value::SInt64(v) => { *v $assignment_tokens $rhs.as_sint64(); },
                _ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs),
            }
        }
    }

    let lhs = store.read_mut_ref(lhs);

    let mut to_dealloc = None;
    match op {
        AO::Set => {
            match lhs {
                Value::Unassigned => { *lhs = rhs; },
                Value::Input(v)  => { *v = rhs.as_input(); },
                Value::Output(v) => { *v = rhs.as_output(); },
                Value::Message(v)  => { to_dealloc = Some(*v); *v = rhs.as_message(); },
                Value::Bool(v)    => { *v = rhs.as_bool(); },
                Value::Char(v) => { *v = rhs.as_char(); },
                Value::String(v) => { *v = rhs.as_string().clone(); },
                Value::UInt8(v) => { *v = rhs.as_uint8(); },
                Value::UInt16(v) => { *v = rhs.as_uint16(); },
                Value::UInt32(v) => { *v = rhs.as_uint32(); },
                Value::UInt64(v) => { *v = rhs.as_uint64(); },
                Value::SInt8(v) => { *v = rhs.as_sint8(); },
                Value::SInt16(v) => { *v = rhs.as_sint16(); },
                Value::SInt32(v) => { *v = rhs.as_sint32(); },
                Value::SInt64(v) => { *v = rhs.as_sint64(); },
                Value::Array(v) => { to_dealloc = Some(*v); *v = rhs.as_array(); },
                Value::Tuple(v) => { to_dealloc = Some(*v); *v = rhs.as_tuple(); },
                Value::Enum(v) => { *v = rhs.as_enum(); },
                Value::Union(lhs_tag, lhs_heap_pos) => {
                    to_dealloc = Some(*lhs_heap_pos);
                    let (rhs_tag, rhs_heap_pos) = rhs.as_union();
                    *lhs_tag = rhs_tag;
                    *lhs_heap_pos = rhs_heap_pos;
                }
                Value::Struct(v) => { to_dealloc = Some(*v); *v = rhs.as_struct(); },
                _ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs),
            }
        },
        AO::Concatenated => {
            let lhs_heap_pos = lhs.get_heap_pos().unwrap() as usize;
            let rhs_heap_pos = rhs.get_heap_pos().unwrap() as usize;

            // To prevent borrowing crap, swap out heap region with a temp empty array
            let mut total = Vec::new();
            std::mem::swap(&mut total, &mut store.heap_regions[lhs_heap_pos].values);

            // Push everything onto the swapped vector
            let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
            total.reserve(rhs_len);
            for value_idx in 0..rhs_len {
                total.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[value_idx].clone()));
            }

            // Swap back in place
            std::mem::swap(&mut total, &mut store.heap_regions[lhs_heap_pos].values);

            // We took ownership of the RHS, but we copied it into the LHS, so
            // different form assignment we need to drop the RHS heap pos.
            to_dealloc = Some(rhs_heap_pos as u32);
        },
        AO::Multiplied =>   { apply_int_op!(lhs, *=,  op, rhs) },
        AO::Divided =>      { apply_int_op!(lhs, /=,  op, rhs) },
        AO::Remained =>     { apply_int_op!(lhs, %=,  op, rhs) },
        AO::Added =>        { apply_int_op!(lhs, +=,  op, rhs) },
        AO::Subtracted =>   { apply_int_op!(lhs, -=,  op, rhs) },
        AO::ShiftedLeft =>  { apply_int_op!(lhs, <<=, op, rhs) },
        AO::ShiftedRight => { apply_int_op!(lhs, >>=, op, rhs) },
        AO::BitwiseAnded => { apply_int_op!(lhs, &=,  op, rhs) },
        AO::BitwiseXored => { apply_int_op!(lhs, ^=,  op, rhs) },
        AO::BitwiseOred =>  { apply_int_op!(lhs, |=,  op, rhs) },
    }

    if let Some(heap_pos) = to_dealloc {
        store.drop_heap_pos(heap_pos);
    }
}

pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOperator, rhs: &Value) -> Value {
    use BinaryOperator as BO;

    macro_rules! apply_int_op_and_return_self {
        ($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
            return match $lhs {
                Value::UInt8(v)  => { Value::UInt8( *v $operator_tokens $rhs.as_uint8() ) },
                Value::UInt16(v) => { Value::UInt16(*v $operator_tokens $rhs.as_uint16()) },
                Value::UInt32(v) => { Value::UInt32(*v $operator_tokens $rhs.as_uint32()) },
                Value::UInt64(v) => { Value::UInt64(*v $operator_tokens $rhs.as_uint64()) },
                Value::SInt8(v)  => { Value::SInt8( *v $operator_tokens $rhs.as_sint8() ) },
                Value::SInt16(v) => { Value::SInt16(*v $operator_tokens $rhs.as_sint16()) },
                Value::SInt32(v) => { Value::SInt32(*v $operator_tokens $rhs.as_sint32()) },
                Value::SInt64(v) => { Value::SInt64(*v $operator_tokens $rhs.as_sint64()) },
                _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
            };
        }
    }

    macro_rules! apply_int_op_and_return_bool {
        ($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
            return match $lhs {
                Value::UInt8(v)  => { Value::Bool(*v $operator_tokens $rhs.as_uint8() ) },
                Value::UInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint16()) },
                Value::UInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint32()) },
                Value::UInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint64()) },
                Value::SInt8(v)  => { Value::Bool(*v $operator_tokens $rhs.as_sint8() ) },
                Value::SInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint16()) },
                Value::SInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint32()) },
                Value::SInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint64()) },
                _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
            };
        }
    }

    // We need to handle concatenate in a special way because it needs the store
    // mutably.
    if op == BO::Concatenate {
        let target_heap_pos = store.alloc_heap();
        let lhs_heap_pos;
        let rhs_heap_pos;

        let lhs = store.maybe_read_ref(lhs);
        let rhs = store.maybe_read_ref(rhs);

        let value_kind;

        match lhs {
            Value::Message(lhs_pos) => {
                lhs_heap_pos = *lhs_pos;
                rhs_heap_pos = rhs.as_message();
                value_kind = ValueKind::Message;
            },
            Value::String(lhs_pos) => {
                lhs_heap_pos = *lhs_pos;
                rhs_heap_pos = rhs.as_string();
                value_kind = ValueKind::String;
            },
            Value::Array(lhs_pos) => {
                lhs_heap_pos = *lhs_pos;
                rhs_heap_pos = rhs.as_array();
                value_kind = ValueKind::Array;
            },
            _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
        }

        let lhs_heap_pos = lhs_heap_pos as usize;
        let rhs_heap_pos = rhs_heap_pos as usize;

        let mut concatenated = Vec::new();
        let lhs_len = store.heap_regions[lhs_heap_pos].values.len();
        let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
        concatenated.reserve(lhs_len + rhs_len);
        for idx in 0..lhs_len {
            concatenated.push(store.clone_value(store.heap_regions[lhs_heap_pos].values[idx].clone()));
        }
        for idx in 0..rhs_len {
            concatenated.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[idx].clone()));
        }

        store.heap_regions[target_heap_pos as usize].values = concatenated;

        return match value_kind{
            ValueKind::Message => Value::Message(target_heap_pos),
            ValueKind::String => Value::String(target_heap_pos),
            ValueKind::Array => Value::Array(target_heap_pos),
        };
    }

    // If any of the values are references, retrieve the thing they're referring
    // to.
    let lhs = store.maybe_read_ref(lhs);
    let rhs = store.maybe_read_ref(rhs);

    match op {
        BO::Concatenate => unreachable!(),
        BO::LogicalOr => {
            return Value::Bool(lhs.as_bool() || rhs.as_bool());
        },
        BO::LogicalAnd => {
            return Value::Bool(lhs.as_bool() && rhs.as_bool());
        },
        BO::BitwiseOr        => { apply_int_op_and_return_self!(lhs, |,  op, rhs); },
        BO::BitwiseXor       => { apply_int_op_and_return_self!(lhs, ^,  op, rhs); },
        BO::BitwiseAnd       => { apply_int_op_and_return_self!(lhs, &,  op, rhs); },
        BO::Equality         => { Value::Bool(apply_equality_operator(store, lhs, rhs)) },
        BO::Inequality       => { Value::Bool(apply_inequality_operator(store, lhs, rhs)) },
        BO::LessThan         => { apply_int_op_and_return_bool!(lhs, <,  op, rhs); },
        BO::GreaterThan      => { apply_int_op_and_return_bool!(lhs, >,  op, rhs); },
        BO::LessThanEqual    => { apply_int_op_and_return_bool!(lhs, <=, op, rhs); },
        BO::GreaterThanEqual => { apply_int_op_and_return_bool!(lhs, >=, op, rhs); },
        BO::ShiftLeft        => { apply_int_op_and_return_self!(lhs, <<, op, rhs); },
        BO::ShiftRight       => { apply_int_op_and_return_self!(lhs, >>, op, rhs); },
        BO::Add              => { apply_int_op_and_return_self!(lhs, +,  op, rhs); },
        BO::Subtract         => { apply_int_op_and_return_self!(lhs, -,  op, rhs); },
        BO::Multiply         => { apply_int_op_and_return_self!(lhs, *,  op, rhs); },
        BO::Divide           => { apply_int_op_and_return_self!(lhs, /,  op, rhs); },
        BO::Remainder        => { apply_int_op_and_return_self!(lhs, %,  op, rhs); }
    }
}

pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value: &Value) -> Value {
    use UnaryOperator as UO;

    macro_rules! apply_int_expr_and_return {
        ($value:ident, $apply:tt, $op:ident) => {
            return match $value {
                Value::UInt8(v)  => Value::UInt8($apply *v),
                Value::UInt16(v) => Value::UInt16($apply *v),
                Value::UInt32(v) => Value::UInt32($apply *v),
                Value::UInt64(v) => Value::UInt64($apply *v),
                Value::SInt8(v)  => Value::SInt8($apply *v),
                Value::SInt16(v) => Value::SInt16($apply *v),
                Value::SInt32(v) => Value::SInt32($apply *v),
                Value::SInt64(v) => Value::SInt64($apply *v),
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
            }
        }
    }

    // If the value is a reference, retrieve the thing it is referring to
    let value = store.maybe_read_ref(value);

    match op {
        UO::Positive => {
            debug_assert!(value.is_integer());
            return value.clone();
        },
        UO::Negative => {
            // TODO: Error on negating unsigned integers
            return match value {
                Value::SInt8(v) => Value::SInt8(-*v),
                Value::SInt16(v) => Value::SInt16(-*v),
                Value::SInt32(v) => Value::SInt32(-*v),
                Value::SInt64(v) => Value::SInt64(-*v),
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
            }
        },
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op); },
        UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
    }
}

pub(crate) fn apply_casting(store: &mut Store, output_type: &ConcreteType, subject: &Value) -> Result<Value, String> {
    // To simplify the casting logic: if the output type is not a simple
    // integer/boolean/character, then the type checker made sure that the two
    // types must be equal, hence we can do a simple clone.
    use ConcreteTypePart as CTP;
    let part = &output_type.parts[0];
    match part {
        CTP::Bool | CTP::Character |
        CTP::UInt8 | CTP::UInt16 | CTP::UInt32 | CTP::UInt64 |
        CTP::SInt8 | CTP::SInt16 | CTP::SInt32 | CTP::SInt64 => {
            // Do the checking of these below
            debug_assert_eq!(output_type.parts.len(), 1);
        },
        _ => {
            return Ok(store.clone_value(subject.clone()));
        },
    }

    // Note: character is not included, needs per-type checking
    macro_rules! unchecked_cast {
        ($input: expr, $output_part: expr) => {
            return Ok(match $output_part {
                CTP::UInt8 => Value::UInt8($input as u8),
                CTP::UInt16 => Value::UInt16($input as u16),
                CTP::UInt32 => Value::UInt32($input as u32),
                CTP::UInt64 => Value::UInt64($input as u64),
                CTP::SInt8 => Value::SInt8($input as i8),
                CTP::SInt16 => Value::SInt16($input as i16),
                CTP::SInt32 => Value::SInt32($input as i32),
                CTP::SInt64 => Value::SInt64($input as i64),
                _ => unreachable!()
            })
        }
    }

    macro_rules! from_unsigned_cast {
        ($input:expr, $input_type:ty, $output_part:expr) => {
            {
                let target_type_name = match $output_part {
                    CTP::Bool => return Ok(Value::Bool($input != 0)),
                    CTP::Character => if $input <= u8::MAX as $input_type {
                        return Ok(Value::Char(($input as u8) as char))
                    } else {
                        KW_TYPE_CHAR_STR
                    },
                    CTP::UInt8 => if $input <= u8::MAX as $input_type {
                        return Ok(Value::UInt8($input as u8))
                    } else {
                        KW_TYPE_UINT8_STR
                    },
                    CTP::UInt16 => if $input <= u16::MAX as $input_type {
                        return Ok(Value::UInt16($input as u16))
                    } else {
                        KW_TYPE_UINT16_STR
                    },
                    CTP::UInt32 => if $input <= u32::MAX as $input_type {
                        return Ok(Value::UInt32($input as u32))
                    } else {
                        KW_TYPE_UINT32_STR
                    },
                    CTP::UInt64 => return Ok(Value::UInt64($input as u64)), // any unsigned int to u64 is fine
                    CTP::SInt8 => if $input <= i8::MAX as $input_type {
                        return Ok(Value::SInt8($input as i8))
                    } else {
                        KW_TYPE_SINT8_STR
                    },
                    CTP::SInt16 => if $input <= i16::MAX as $input_type {
                        return Ok(Value::SInt16($input as i16))
                    } else {
                        KW_TYPE_SINT16_STR
                    },
                    CTP::SInt32 => if $input <= i32::MAX as $input_type {
                        return Ok(Value::SInt32($input as i32))
                    } else {
                        KW_TYPE_SINT32_STR
                    },
                    CTP::SInt64 => if $input <= i64::MAX as $input_type {
                        return Ok(Value::SInt64($input as i64))
                    } else {
                        KW_TYPE_SINT64_STR
                    },
                    _ => unreachable!(),
                };

                return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
            }
        }
    }

    macro_rules! from_signed_cast {
        // Programmer note: for signed checking we cannot do
        //  output_type::MAX as input_type,
        //
        // because if the output type's width is larger than the input type,
        // then the cast results in a negative number. So we mask with the
        // maximum possible value the input type can become. As in:
        //  (output_type::MAX as input_type) & input_type::MAX
        //
        // This way:
        // 1. output width is larger than input width: fine in all cases, we
        //  simply compare against the max input value, which is always true.
        // 2. output width is equal to input width: by masking we "remove the
        //  signed bit from the unsigned number" and again compare against the
        //  maximum input value.
        // 3. output width is smaller than the input width: masking does nothing
        //  because the signed bit is never set, and we simply compare against
        //  the maximum possible output value.
        //
        // A similar kind of mechanism for the minimum value, but here we do
        // a binary OR. We do a:
        //  (output_type::MIN as input_type) & input_type::MIN
        //
        // This way:
        // 1. output width is larger than input width: initial cast truncates to
        //  0, then we OR with the actual minimum value, so we attain the
        //  minimum value of the input type.
        // 2. output width is equal to input width: we OR the minimum value with
        //  itself.
        // 3. output width is smaller than input width: the cast produces the
        //  min value of the output type, the subsequent OR does nothing, as it
        //  essentially just sets the signed bit (which must already be set,
        //  since we're dealing with a signed minimum value)
        //
        // After all of this expanding, we simply hope the compiler does a best
        // effort constant expression evaluation, and presto!
        ($input:expr, $input_type:ty, $output_type:expr) => {
            {
                let target_type_name = match $output_type {
                    CTP::Bool => return Ok(Value::Bool($input != 0)),
                    CTP::Character => if $input >= 0 && $input <= (u8::max as $input_type & <$input_type>::MAX) {
                        return Ok(Value::Char(($input as u8) as char))
                    } else {
                        KW_TYPE_CHAR_STR
                    },
                    CTP::UInt8 => if $input >= 0 && $input <= ((u8::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::UInt8($input as u8));
                    } else {
                        KW_TYPE_UINT8_STR
                    },
                    CTP::UInt16 => if $input >= 0 && $input <= ((u16::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::UInt16($input as u16));
                    } else {
                        KW_TYPE_UINT16_STR
                    },
                    CTP::UInt32 => if $input >= 0 && $input <= ((u32::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::UInt32($input as u32));
                    } else {
                        KW_TYPE_UINT32_STR
                    },
                    CTP::UInt64 => if $input >= 0 && $input <= ((u64::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::UInt64($input as u64));
                    } else {
                        KW_TYPE_UINT64_STR
                    },
                    CTP::SInt8 => if $input >= ((i8::MIN as $input_type) | <$input_type>::MIN) && $input <= ((i8::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::SInt8($input as i8));
                    } else {
                        KW_TYPE_SINT8_STR
                    },
                    CTP::SInt16 => if $input >= ((i16::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i16::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::SInt16($input as i16));
                    } else {
                        KW_TYPE_SINT16_STR
                    },
                    CTP::SInt32 => if $input >= ((i32::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i32::MAX as $input_type) & <$input_type>::MAX) {
                        return Ok(Value::SInt32($input as i32));
                    } else {
                        KW_TYPE_SINT32_STR
                    },
                    CTP::SInt64 => return Ok(Value::SInt64($input as i64)),
                    _ => unreachable!(),
                };

                return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
            }
        }
    }

    // If here, then the types might still be equal, but at least we're dealing
    // with a simple integer/boolean/character input and output type.
    let subject = store.maybe_read_ref(subject);
    match subject {
        Value::Bool(val) => {
            match part {
                CTP::Bool => return Ok(Value::Bool(*val)),
                CTP::Character => return Ok(Value::Char(1 as char)),
                _ => unchecked_cast!(*val, part),
            }
        },
        Value::Char(val) => {
            match part {
                CTP::Bool => return Ok(Value::Bool(*val != 0 as char)),
                CTP::Character => return Ok(Value::Char(*val)),
                _ => unchecked_cast!(*val, part),
            }
        },
        Value::UInt8(val) => from_unsigned_cast!(*val, u8, part),
        Value::UInt16(val) => from_unsigned_cast!(*val, u16, part),
        Value::UInt32(val) => from_unsigned_cast!(*val, u32, part),
        Value::UInt64(val) => from_unsigned_cast!(*val, u64, part),
        Value::SInt8(val) => from_signed_cast!(*val, i8, part),
        Value::SInt16(val) => from_signed_cast!(*val, i16, part),
        Value::SInt32(val) => from_signed_cast!(*val, i32, part),
        Value::SInt64(val) => from_signed_cast!(*val, i64, part),
        _ => unreachable!("mismatch between 'cast' type checking and 'cast' evaluation"),
    }
}

/// Recursively checks for equality.
pub(crate) fn apply_equality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
    let lhs = store.maybe_read_ref(lhs);
    let rhs = store.maybe_read_ref(rhs);

    fn eval_equality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
        let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
        let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
        let lhs_len = lhs_vals.len();
        if lhs_len != rhs_vals.len() {
            return false;
        }

        for idx in 0..lhs_len {
            let lhs_val = &lhs_vals[idx];
            let rhs_val = &rhs_vals[idx];
            if !apply_equality_operator(store, lhs_val, rhs_val) {
                return false;
            }
        }

        return true;
    }

    match lhs {
        Value::Input(v) => *v == rhs.as_input(),
        Value::Output(v) => *v == rhs.as_output(),
        Value::Message(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_message()),
        Value::Null => todo!("remove null"),
        Value::Bool(v) => *v == rhs.as_bool(),
        Value::Char(v) => *v == rhs.as_char(),
        Value::String(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_string()),
        Value::UInt8(v) => *v == rhs.as_uint8(),
        Value::UInt16(v) => *v == rhs.as_uint16(),
        Value::UInt32(v) => *v == rhs.as_uint32(),
        Value::UInt64(v) => *v == rhs.as_uint64(),
        Value::SInt8(v) => *v == rhs.as_sint8(),
        Value::SInt16(v) => *v == rhs.as_sint16(),
        Value::SInt32(v) => *v == rhs.as_sint32(),
        Value::SInt64(v) => *v == rhs.as_sint64(),
        Value::Array(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_array()),
        Value::Tuple(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_tuple()),
        Value::Enum(v) => *v == rhs.as_enum(),
        Value::Union(lhs_tag, lhs_pos) => {
            let (rhs_tag, rhs_pos) = rhs.as_union();
            if *lhs_tag != rhs_tag {
                return false;
            }
            eval_equality_heap(store, *lhs_pos, rhs_pos)
        },
        Value::Struct(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_struct()),
        _ => unreachable!("apply_equality_operator to lhs {:?}", lhs),
    }
}

/// Recursively checks for inequality
pub(crate) fn apply_inequality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
    let lhs = store.maybe_read_ref(lhs);
    let rhs = store.maybe_read_ref(rhs);

    fn eval_inequality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
        let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
        let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
        let lhs_len = lhs_vals.len();
        if lhs_len != rhs_vals.len() {
            return true;
        }

        for idx in 0..lhs_len {
            let lhs_val = &lhs_vals[idx];
            let rhs_val = &rhs_vals[idx];
            if apply_inequality_operator(store, lhs_val, rhs_val) {
                return true;
            }
        }

        return false;
    }

    match lhs {
        Value::Input(v) => *v != rhs.as_input(),
        Value::Output(v) => *v != rhs.as_output(),
        Value::Message(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_message()),
        Value::Null => todo!("remove null"),
        Value::Bool(v) => *v != rhs.as_bool(),
        Value::Char(v) => *v != rhs.as_char(),
        Value::String(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_string()),
        Value::UInt8(v) => *v != rhs.as_uint8(),
        Value::UInt16(v) => *v != rhs.as_uint16(),
        Value::UInt32(v) => *v != rhs.as_uint32(),
        Value::UInt64(v) => *v != rhs.as_uint64(),
        Value::SInt8(v) => *v != rhs.as_sint8(),
        Value::SInt16(v) => *v != rhs.as_sint16(),
        Value::SInt32(v) => *v != rhs.as_sint32(),
        Value::SInt64(v) => *v != rhs.as_sint64(),
        Value::Array(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_array()),
        Value::Tuple(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_tuple()),
        Value::Enum(v) => *v != rhs.as_enum(),
        Value::Union(lhs_tag, lhs_pos) => {
            let (rhs_tag, rhs_pos) = rhs.as_union();
            if *lhs_tag != rhs_tag {
                return true;
            }
            eval_inequality_heap(store, *lhs_pos, rhs_pos)
        },
        Value::Struct(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_struct()),
        _ => unreachable!("apply_inequality_operator to lhs {:?}", lhs)
    }
}

/// Recursively applies binding operator. Essentially an equality operator with
/// special handling if the LHS contains a binding reference to a stack
/// stack variable.
// Note: that there is a lot of `Value.clone()` going on here. As always: this
// is potentially cloning the references to heap values, not actually cloning
// those heap regions into a new heap region.
pub(crate) fn apply_binding_operator(store: &mut Store, lhs: Value, rhs: Value) -> bool {
    let lhs = store.maybe_read_ref(&lhs).clone();
    let rhs = store.maybe_read_ref(&rhs).clone();

    fn eval_binding_heap(store: &mut Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
        let lhs_len = store.heap_regions[lhs_pos as usize].values.len();
        let rhs_len = store.heap_regions[rhs_pos as usize].values.len();
        if lhs_len != rhs_len {
            return false;
        }

        for idx in 0..lhs_len {
            // More rust shenanigans... I'm going to calm myself by saying that
            // this is just a temporary evaluator implementation.
            let lhs_val = store.heap_regions[lhs_pos as usize].values[idx].clone();
            let rhs_val = store.heap_regions[rhs_pos as usize].values[idx].clone();
            if !apply_binding_operator(store, lhs_val, rhs_val) {
                return false;
            }
        }

        return true;
    }

    match lhs {
        Value::Binding(var_pos) => {
            let to_write = store.clone_value(rhs.clone());
            store.write(ValueId::Stack(var_pos), to_write);
            return true;
        },
        Value::Input(v) => v == rhs.as_input(),
        Value::Output(v) => v == rhs.as_output(),
        Value::Message(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_message()),
        Value::Null => todo!("remove null"),
        Value::Bool(v) => v == rhs.as_bool(),
        Value::Char(v) => v == rhs.as_char(),
        Value::String(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_string()),
        Value::UInt8(v) => v == rhs.as_uint8(),
        Value::UInt16(v) => v == rhs.as_uint16(),
        Value::UInt32(v) => v == rhs.as_uint32(),
        Value::UInt64(v) => v == rhs.as_uint64(),
        Value::SInt8(v) => v == rhs.as_sint8(),
        Value::SInt16(v) => v == rhs.as_sint16(),
        Value::SInt32(v) => v == rhs.as_sint32(),
        Value::SInt64(v) => v == rhs.as_sint64(),
        Value::Array(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_array()),
        Value::Tuple(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_tuple()),
        Value::Enum(v) => v == rhs.as_enum(),
        Value::Union(lhs_tag, lhs_pos) => {
            let (rhs_tag, rhs_pos) = rhs.as_union();
            if lhs_tag != rhs_tag {
                return false;
            }
            eval_binding_heap(store, lhs_pos, rhs_pos)
        },
        Value::Struct(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_struct()),
        _ => unreachable!("apply_binding_operator to lhs {:?}", lhs),
    }
}