Changeset - 5da3dcf76c51
language_spec.md
Show inline comments
 
@@ -52,49 +52,48 @@ binary-operator = "||" | "&&" |
 
assign-operator = "=" |
 
                  "|=" | "&=" | "^=" | "<<=" | ">>=" |
 
                  "+=" | "-=" | "*=" | "/=" | "%="
 
unary-operator = "++" | "--" | "+" | "-" | "~" | "!"
 
```
 

	
 
**QUESTION**: Do we include the pre/postfix "++" and "--" operators? They were introduced in C to reduce the amount of required characters. But is still necessary?
 

	
 
And to define various constants in the language, we allow for the following:
 

	
 
```
 
// Various integer constants, binary, octal, decimal, or hexadecimal, with a 
 
// utility underscore to enhance humans reading the characters. Allowing use to
 
// write something like 100_000_256 or 0xDEAD_BEEF
 
int-bin-char = "0" | "1"
 
int-bin-constant = "0b" int-bin-char (int-bin-char | "_")* // 0b0100_1110
 
int-oct-char = "0"-"7"
 
int-oct-constant = "0o" int-oct-char (int-oct-char | "_")* // 0o777
 
int-dec-constant = DIGIT (DIGIT | "_")* //
 
int-hex-char = DIGIT | "a"-"f" | "A"-"F" 
 
int-hex-constant = "0x" int-hex-char (int-hex-char | "_")* // 0xFEFE_1337
 
int-constant = int-bin-constant | int-oct-constant | int-dec-constant | int-hex-constant
 

	
 
// Floating point numbers
 
// TODO: Maybe support exponential notation? Seems silly for a networking
 
//  language, but might be useful? 
 
float-constant = DIGIT* "." DIGIT+
 

	
 
// Character constants: a single character. Its element may be an escaped 
 
// character or a VCHAR (excluding "'" and "\")
 
char-element = ESCAPED_CHARS | (0x20-0x26 | 0x28-0x5B | 0x5D-0x7E) 
 
char-constant = "'" char-element "'"
 

	
 
// Same thing for strings, but these may contain 0 or more characters
 
str-element = ESCAPED_CHARS | (0x20-0x21 | 0x23-0x5B | 0x5D-0x7E)
 
str-constant = """ str-element* """
 
```
 

	
 
Note that the integer characters are forced, somewhat arbitrarily without hampering the programmer's expressiveness, to start with a valid digit. Only then may one introduce the `_` character. And non-rigorously speaking characters may not contain an unescaped `'`-character, and strings may not contain an unescaped `"`-character.
 

	
 
We now introduce the various identifiers that exist within the language, we make a distinction between "any identifier" and "any identifier except for the builtin ones". Because we h
 

	
 
```
 
identifier-any = ALPHA | (ALPHA | DIGIT | "_")*
 
keyword = 
 
    "composite" | "primitive" |
 
    type-primitive | "true" | "false" | "null" |
 
    "struct" | "enum" |
 
    "if" | "else" |
 
@@ -243,49 +242,47 @@ Using these rules, we can now describe the grammar of a single file as:
 
file = cw (pragma | symbol-def)* cw
 
```
 

	
 
Of course, we currently cannot do anything useful with our grammar, hence we have to describe blocks to let the functions and component definitions do something. To do so, we proceed as:
 

	
 
```
 
// channel a->b;, or channel a -> b;
 
channel-decl = channel cwb identifier cw "->" cw identifier cw ";"
 
// int a = 5, b = 2 + 3;
 
memory-decl = var-declaration cw "=" cw expression (cw "," cw identifier cw "=" cw expression)* cw ";"
 

	
 
stmt = block |
 
    identifier cw ":" cw stmt | // label
 
    "if" cw pexpr cw stmt (cw "else" cwb stmt)? |
 
    "while" cw pexpr cw stmt |
 
    "break" (cwb identifier)? cw ";" |
 
    "continue" (cwb identifier)? cw ";" |
 
    "synchronous" stmt |
 
    "return" cwb identifier cw ";" |
 
    "goto" cwb identifier cw ";" |
 
    "skip" cw ";" |
 
    "new" cwb method-expr cw ";" |
 
    expr cw ";"
 
    
 
// TODO: Add all the other expressions
 
// TODO: Also: add struct construction and enum construction
 
method-params-list = "(" cw (expr (cw "," cw expr)* )? cw ")"
 
method-expr = method cw method-params-list
 

	
 
enum-destructure-expr = "let" cw ns-identifier "::" identifier cw "(" cw identifier cw ")" cw "=" expr
 
enum-test-expr = ns-identifier "::" identifier cw "==" cw expr
 

	
 
block = "{" (cw (channel-decl | memory-decl | stmt))* cw "}"
 
```
 

	
 
Note that we have a potential collision of various expressions/statements. The following cases are of importance:
 

	
 
1. An empty block is written as `{}`, while an empty array construction is also written as `{}`.
 
2. Both function calls as enum constants feature the same construction syntax. That is: `foo::bar(expression)` may refer to a function call to `bar` in the namespace `foo`, but may also be the construction of enum `foo`'s `bar` variant (containing a value `expression`). These may be disambiguated using the type system.
 
3. The enumeration destructuring expression may collide with the constant enumeration literal. These may be disambiguated by looking at the inner value. If the inner value is an identifier and not yet defined as a variable, then it is a destructuring expression. Otherwise it must be interpreted as a constant enumeration. The enumeration destructuring expression must then be completed by it being a child of an binary equality operator. If not, then it is invalid syntax.
 

	
 
Finally, for consistency, there are additional rules to the enumeration destructuring. As a preamble: the language should allow programmers to express any kind of trickery they want, as long as it is correct. But programmers should be prevented from expressing something that is by definition incorrect/illogical. So enumeration destructuring (e.g. `Enum::Variant(bla) == expression`) should return a value with a special type (e.g. `EnumDestructureBool`) that may only reside within the testing expressions of `if` and `while` statements. Furthermore, this special boolean type only supports the logical-and (`&&`) operator. This way we prevent invalid expressions such as `if (Enum::Variant1(foo) == expr || Enum::Variant2(bar) == expr) { ... }`, but we do allow potentially valid expressions like `if (Enum::Variant1(foo) == expr_foo && Enum::Variant2(bar) == expr_bar) { ... }`.
 

	
 
**Question**: In the documentation for V1.0 we find the `synchronous cw (params-list cw stmt | block)` rule. Why the `params-list`?
 

	
 
**TODO**: Release constructions on memory declarations: as long as we have a write to it before a read we should be fine. Can be done once we add semantic analysis in order to optimize putting and getting port values.
 
**TODO**: Implement type inference, should be simpler once I figure out how to write a typechecker.
 
**TODO**: Add constants assigned in the global scope.
 
**TODO**: Add a runtime expression evaluator (probably before constants in global scope) to simplify expressions and/or remove impossible branches.
 
\ No newline at end of file
src/collections/freelist.rs
Show inline comments
 
use std::marker::PhantomData;
 
use alloc::raw_vec::RawVec;
 

	
 
/// Entry in a freelist. Contains a generation number to ensure silly mistakes
 
/// using an item's index after freeing it.
 
struct Entry<T> {
 
    generation: usize,
 
    item: T,
 
}
 

	
 
/// Key of an item in the freelist. Contains a generation number to prevent
 
/// use-after-free during development.
 
// TODO: Two usizes are probably overkill
 
#[derive(Copy, Clone)]
 
pub struct Key<T> {
 
    generation: usize,
 
    index: usize,
 
    _type: PhantomData<T>,
 
}
 

	
 
/// Generic freelist structure. Item insertion/retrieval/deletion works like a
 
/// HashMap through keys.
 
/// TODO: Use alloc::raw_vec::RawVec once stable and accessible
 
pub struct FreeList<T> {
 
    items: *mut Entry<T>,
 
    capacity: usize,
 
    length: usize,
 
    free: Vec<usize>,
 
}
 

	
 
impl<T> FreeList<T> {
 
    pub fn new() -> Self<T> {
 
        std::alloc::Layout::from_size_align()
 
        Self{
 
            items: std::ptr::null_mut(),
 
            capacity: 0,
 
            length: 0,
 
            free: Vec::new(),
 
        }
 
    }
 

	
 
    pub fn with_capacity(capacity: usize) -> Self {
 
        alloc::
 
        Self{
 
            items: std::,
 
            free: Vec::with_capacity(capacity),
 
            length: 0,
src/collections/mod.rs
Show inline comments
 
mod string_pool;
 
mod scoped_buffer;
 
mod sets;
 
mod raw_vec;
 

	
 
// TODO: Finish this later, use alloc::alloc and alloc::Layout
 
// mod freelist;
 

	
 
pub(crate) use string_pool::{StringPool, StringRef};
 
pub(crate) use scoped_buffer::{ScopedBuffer, ScopedSection};
 
pub(crate) use sets::{DequeSet, VecSet};
 
pub(crate) use raw_vec::RawVec;
 
\ No newline at end of file
src/collections/string_pool.rs
Show inline comments
 
@@ -86,51 +86,50 @@ impl StringPoolSlab {
 

	
 
/// StringPool is a ever-growing pool of strings. Strings have a maximum size
 
/// equal to the slab size. The slabs are essentially a linked list to maintain
 
/// pointer-stability of the strings themselves.
 
/// All `StringRef` instances are invalidated when the string pool is dropped
 
pub(crate) struct StringPool {
 
    last: *mut StringPoolSlab,
 
}
 

	
 
impl StringPool {
 
    pub(crate) fn new() -> Self {
 
        // To have some stability we just turn a box into a raw ptr.
 
        let initial_slab = Box::new(StringPoolSlab::new(null_mut()));
 
        let initial_slab = Box::into_raw(initial_slab);
 
        StringPool{
 
            last: initial_slab,
 
        }
 
    }
 

	
 
    /// Interns a string to the `StringPool`, returning a reference to it. The
 
    /// pointer owned by `StringRef` is `'static` as the `StringPool` doesn't
 
    /// reallocate/deallocate until dropped (which only happens at the end of
 
    /// the program.)
 
    pub(crate) fn intern(&mut self, data: &[u8]) -> StringRef<'static> {
 
        // TODO: Large string allocations, if ever needed.
 
        let data_len = data.len();
 
        assert!(data_len <= SLAB_SIZE, "string is too large for slab");
 
        assert!(data_len <= SLAB_SIZE, "string is too large for slab"); // if you hit this, create logic for large-string allocations
 
        debug_assert!(std::str::from_utf8(data).is_ok(), "string to intern is not valid UTF-8 encoded");
 
        
 
        let mut last = unsafe{&mut *self.last};
 
        if data.len() > last.remaining {
 
            // Doesn't fit: allocate new slab
 
            self.alloc_new_slab();
 
            last = unsafe{&mut *self.last};
 
        }
 

	
 
        // Must fit now, compute hash and put in buffer
 
        debug_assert!(data_len <= last.remaining);
 
        let range_start = last.data.len();
 
        last.data.extend_from_slice(data);
 
        last.remaining -= data_len;
 
        debug_assert_eq!(range_start + data_len, last.data.len());
 

	
 
        unsafe {
 
            let start = last.data.as_ptr().offset(range_start as isize);
 
            StringRef{ data: start, length: data_len, _phantom: PhantomData }
 
        }
 
    }
 

	
 
    fn alloc_new_slab(&mut self) {
 
        let new_slab = Box::new(StringPoolSlab::new(self.last));
src/protocol/ast.rs
Show inline comments
 
// TODO: @cleanup, rigorous cleanup of dead code and silly object-oriented
 
//  trait impls where I deem them unfit.
 

	
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
use crate::collections::StringRef;
 
use crate::protocol::input_source::InputSpan;
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    // Variant where we just defined the alias, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $indexed_arena:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
@@ -383,49 +380,48 @@ pub enum ParserTypeVariant {
 
impl ParserTypeVariant {
 
    pub(crate) fn num_embedded(&self) -> usize {
 
        use ParserTypeVariant::*;
 

	
 
        match self {
 
            Void | IntegerLike |
 
            Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String | IntegerLiteral |
 
            Inferred | PolymorphicArgument(_, _) =>
 
                0,
 
            ArrayLike | InputOrOutput | Array | Input | Output =>
 
                1,
 
            Definition(_, num) => *num as usize,
 
        }
 
    }
 
}
 

	
 
/// ParserTypeElement is an element of the type tree. An element may be
 
/// implicit, meaning that the user didn't specify the type, but it was set by
 
/// the compiler.
 
#[derive(Debug, Clone)]
 
pub struct ParserTypeElement {
 
    // TODO: @Fix span
 
    pub element_span: InputSpan, // span of this element, not including the child types
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
///
 
/// Its contents are the depth-first serialization of the type tree. Each node
 
/// is a type that may accept polymorphic arguments. The polymorphic arguments
 
/// are then the children of the node.
 
#[derive(Debug, Clone)]
 
pub struct ParserType {
 
    pub elements: Vec<ParserTypeElement>,
 
    pub full_span: InputSpan,
 
}
 

	
 
impl ParserType {
 
    pub(crate) fn iter_embedded(&self, parent_idx: usize) -> ParserTypeIter {
 
        ParserTypeIter::new(&self.elements, parent_idx)
 
    }
 
}
 

	
 
@@ -1412,66 +1408,65 @@ impl Expression {
 
            Expression::Call(expr) => expr.func_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    /// Returns the span covering the entire expression (i.e. including the
 
    /// spans of the arguments as well).
 
    pub fn full_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.full_span,
 
            Expression::Binding(expr) => expr.full_span,
 
            Expression::Conditional(expr) => expr.full_span,
 
            Expression::Binary(expr) => expr.full_span,
 
            Expression::Unary(expr) => expr.full_span,
 
            Expression::Indexing(expr) => expr.full_span,
 
            Expression::Slicing(expr) => expr.full_span,
 
            Expression::Select(expr) => expr.full_span,
 
            Expression::Literal(expr) => expr.span,
 
            Expression::Cast(expr) => expr.full_span,
 
            Expression::Call(expr) => expr.full_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    // TODO: @cleanup
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Binding(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Literal(expr) => &expr.parent,
 
            Expression::Cast(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 
    // TODO: @cleanup
 

	
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn get_unique_id_in_definition(&self) -> i32 {
 
        match self {
 
            Expression::Assignment(expr) => expr.unique_id_in_definition,
 
            Expression::Binding(expr) => expr.unique_id_in_definition,
 
            Expression::Conditional(expr) => expr.unique_id_in_definition,
 
            Expression::Binary(expr) => expr.unique_id_in_definition,
 
            Expression::Unary(expr) => expr.unique_id_in_definition,
 
            Expression::Indexing(expr) => expr.unique_id_in_definition,
 
            Expression::Slicing(expr) => expr.unique_id_in_definition,
 
            Expression::Select(expr) => expr.unique_id_in_definition,
 
            Expression::Literal(expr) => expr.unique_id_in_definition,
 
            Expression::Cast(expr) => expr.unique_id_in_definition,
 
            Expression::Call(expr) => expr.unique_id_in_definition,
 
            Expression::Variable(expr) => expr.unique_id_in_definition,
 
        }
 
    }
src/protocol/ast_printer.rs
Show inline comments
 
@@ -866,49 +866,48 @@ fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
                let definition = &heap[*definition_id];
 
                let definition_ident = definition.identifier().value.as_str();
 
                target.push_str(definition_ident);
 

	
 
                let num_embedded = *num_embedded;
 
                if num_embedded != 0 {
 
                    target.push('<');
 
                    for embedded_idx in 0..num_embedded {
 
                        if embedded_idx != 0 {
 
                            target.push(',');
 
                        }
 
                        element_idx = write_element(target, heap, t, element_idx + 1);
 
                    }
 
                    target.push('>');
 
                }
 
            }
 
        }
 

	
 
        element_idx
 
    }
 

	
 
    write_element(target, heap, t, 0);
 
}
 

	
 
// TODO: @Cleanup, this is littered at three places in the codebase
 
fn write_concrete_type(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType) {
 
    use ConcreteTypePart as CTP;
 

	
 
    fn write_concrete_part(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType, mut idx: usize) -> usize {
 
        if idx >= t.parts.len() {
 
            return idx;
 
        }
 

	
 
        match &t.parts[idx] {
 
            CTP::Void => target.push_str("void"),
 
            CTP::Message => target.push_str("msg"),
 
            CTP::Bool => target.push_str("bool"),
 
            CTP::UInt8 => target.push_str(KW_TYPE_UINT8_STR),
 
            CTP::UInt16 => target.push_str(KW_TYPE_UINT16_STR),
 
            CTP::UInt32 => target.push_str(KW_TYPE_UINT32_STR),
 
            CTP::UInt64 => target.push_str(KW_TYPE_UINT64_STR),
 
            CTP::SInt8 => target.push_str(KW_TYPE_SINT8_STR),
 
            CTP::SInt16 => target.push_str(KW_TYPE_SINT16_STR),
 
            CTP::SInt32 => target.push_str(KW_TYPE_SINT32_STR),
 
            CTP::SInt64 => target.push_str(KW_TYPE_SINT64_STR),
 
            CTP::Character => target.push_str(KW_TYPE_CHAR_STR),
 
            CTP::String => target.push_str(KW_TYPE_STRING_STR),
 
            CTP::Array => {
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
src/protocol/eval/value.rs
Show inline comments
 
@@ -416,49 +416,48 @@ pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOp
 
        let value_kind;
 

	
 
        match lhs {
 
            Value::Message(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_message();
 
                value_kind = ValueKind::Message;
 
            },
 
            Value::String(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_string();
 
                value_kind = ValueKind::String;
 
            },
 
            Value::Array(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_array();
 
                value_kind = ValueKind::Array;
 
            },
 
            _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
 
        }
 

	
 
        let lhs_heap_pos = lhs_heap_pos as usize;
 
        let rhs_heap_pos = rhs_heap_pos as usize;
 

	
 
        // TODO: I hate this, but fine...
 
        let mut concatenated = Vec::new();
 
        let lhs_len = store.heap_regions[lhs_heap_pos].values.len();
 
        let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
 
        concatenated.reserve(lhs_len + rhs_len);
 
        for idx in 0..lhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[lhs_heap_pos].values[idx].clone()));
 
        }
 
        for idx in 0..rhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[idx].clone()));
 
        }
 

	
 
        store.heap_regions[target_heap_pos as usize].values = concatenated;
 

	
 
        return match value_kind{
 
            ValueKind::Message => Value::Message(target_heap_pos),
 
            ValueKind::String => Value::String(target_heap_pos),
 
            ValueKind::Array => Value::Array(target_heap_pos),
 
        };
 
    }
 

	
 
    // If any of the values are references, retrieve the thing they're referring
 
    // to.
 
    let lhs = store.maybe_read_ref(lhs);
 
    let rhs = store.maybe_read_ref(rhs);
src/protocol/mod.rs
Show inline comments
 
@@ -40,52 +40,49 @@ pub(crate) struct ComponentState {
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    None,
 
}
 
//////////////////////////////////////////////
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    // TODO: Allow for multi-file compilation
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
@@ -137,49 +134,49 @@ impl ProtocolDescription {
 
                result.push(Polarity::Getter)
 
            } else if first_element.variant == ParserTypeVariant::Output {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 

	
 
    // expects port polarities to be correct
 
    #[deprecated]
 
    pub(crate) fn new_component(&self, module_name: &[u8], identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(module_name, identifier).unwrap()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(x)),
 
                Polarity::Putter => args.push(Value::Output(x)),
 
            }
 
        }
 

	
 
        let module_root = self.lookup_module_root(module_name).unwrap();
 
        let root = &self.heap[module_root];
 
        let def = root.get_definition_ident(&self.heap, identifier).unwrap();
 
        // TODO: Check for polymorph
 

	
 
        ComponentState { prompt: Prompt::new(&self.types, &self.heap, def, 0, ValueGroup::new_stack(args)) }
 
    }
 

	
 
    // TODO: Ofcourse, rename this at some point, perhaps even remove it in its
 
    //  entirety. Find some way to interface with the parameter's types.
 
    pub(crate) fn new_component_v2(
 
        &self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
 
    ) -> Result<Prompt, ComponentCreationError> {
 
        // Find the module in which the definition can be found
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(ComponentCreationError::ModuleDoesntExist);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let definition_id = root.get_definition_ident(&self.heap, identifier);
 
        if definition_id.is_none() {
 
            return Err(ComponentCreationError::DefinitionDoesntExist);
 
        }
 
        let definition_id = definition_id.unwrap();
 

	
 
        let definition = &self.heap[definition_id];
 
        if !definition.is_component() {
 
@@ -270,134 +267,131 @@ impl ProtocolDescription {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Instance(definition_id, _num_embedded) => {
 
                let definition = self.types.get_base_definition(definition_id).unwrap();
 
                match &definition.definition {
 
                    DefinedTypeVariant::Enum(definition) => {
 
                        if let Value::Enum(variant_value) = argument {
 
                            let is_valid = definition.variants.iter()
 
                                .any(|v| v.value == *variant_value);
 
                            return is_valid;
 
                        }
 
                    },
 
                    _ => todo!("implement full type checking on user-supplied arguments"),
 
                }
 

	
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
// TODO: @temp Should just become a concrete thing that is passed in
 
pub trait RunContext {
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
}
 

	
 
#[derive(Debug)]
 
pub enum RunResult {
 
    // Can only occur outside sync blocks
 
    ComponentTerminated, // component has exited its procedure
 
    ComponentAtSyncStart,
 
    NewComponent(DefinitionId, i32, ValueGroup), // should also be possible inside sync
 
    NewChannel, // should also be possible inside sync
 
    // Can only occur inside sync blocks
 
    BranchInconsistent, // branch has inconsistent behaviour
 
    BranchMissingPortState(PortId), // branch doesn't know about port firing
 
    BranchGet(PortId), // branch hasn't received message on input port yet
 
    BranchAtSyncEnd,
 
    BranchFork,
 
    BranchPut(PortId, ValueGroup),
 
}
 

	
 
impl ComponentState {
 
    pub(crate) fn run(&mut self, ctx: &mut impl RunContext, pd: &ProtocolDescription) -> RunResult {
 
        use EvalContinuation as EC;
 
        use RunResult as RR;
 

	
 
        loop {
 
            let step_result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, ctx);
 
            match step_result {
 
                Err(reason) => {
 
                    // TODO: @temp
 
                    println!("Evaluation error:\n{}", reason);
 
                    todo!("proper error handling/bubbling up");
 
                },
 
                Ok(continuation) => match continuation {
 
                    // TODO: Probably want to remove this translation
 
                    EC::Stepping => continue,
 
                    EC::BranchInconsistent => return RR::BranchInconsistent,
 
                    EC::ComponentTerminated => return RR::ComponentTerminated,
 
                    EC::SyncBlockStart => return RR::ComponentAtSyncStart,
 
                    EC::SyncBlockEnd => return RR::BranchAtSyncEnd,
 
                    EC::NewComponent(definition_id, monomorph_idx, args) =>
 
                        return RR::NewComponent(definition_id, monomorph_idx, args),
 
                    EC::NewChannel =>
 
                        return RR::NewChannel,
 
                    EC::NewFork =>
 
                        return RR::BranchFork,
 
                    EC::BlockFires(port_id) => return RR::BranchMissingPortState(port_id),
 
                    EC::BlockGet(port_id) => return RR::BranchGet(port_id),
 
                    EC::Put(port_id, value_group) => {
 
                        return RR::BranchPut(port_id, value_group);
 
                    },
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
// TODO: @remove the old stuff
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, &mut context);
 
            match result {
 
                Err(err) => {
 
                    println!("Evaluation error:\n{}", err);
 
                    panic!("proper error handling when component fails");
 
                },
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::BranchInconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::ComponentTerminated => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(definition_id, monomorph_idx, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        // Look up definition
 
                        let mut moved_ports = HashSet::new();
 
                        for arg in args.values.iter() {
 
                            match arg {
 
                                Value::Output(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                Value::Input(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                _ => {}
 
                            }
 
                        }
 
                        for region in args.regions.iter() {
 
                            for arg in region {
 
                                match arg {
 
                                    Value::Output(port) => { moved_ports.insert(*port); },
 
                                    Value::Input(port) => { moved_ports.insert(*port); },
 
                                    _ => {},
 
                                }
 
                            }
 
                        }
 
                        let init_state = ComponentState { prompt: Prompt::new(&pd.types, &pd.heap, definition_id, monomorph_idx, args) };
 
                        context.new_component(moved_ports, init_state);
 
                        // Continue stepping
 
@@ -528,55 +522,48 @@ impl RunContext for EvalContext<'_> {
 
        }
 
    }
 

	
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
                let to = Value::Input(to);
 
                return Some((from, to));
 
            },
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        // Never actually used in the old runtime
 
        return None;
 
    }
 
}
 

	
 
// TODO: @remove once old runtime has disappeared
 
impl EvalContext<'_> {
 
    // fn random(&mut self) -> LongValue {
 
    //     match self {
 
    //         // EvalContext::None => unreachable!(),
 
    //         EvalContext::Nonsync(_context) => todo!(),
 
    //         EvalContext::Sync(_) => unreachable!(),
 
    //     }
 
    // }
 
    fn new_component(&mut self, moved_ports: HashSet<PortId>, init_state: ComponentState) -> () {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
                let to = Value::Input(to);
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
src/protocol/parser/mod.rs
Show inline comments
 
@@ -151,49 +151,48 @@ impl Parser {
 
        ));
 
        insert_builtin_function(&mut parser, "length", &["T"], |id| (
 
            vec![
 
                ("array", quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::UInt32]) // TODO: @PtrInt
 
        ));
 
        insert_builtin_function(&mut parser, "assert", &[], |_id| (
 
            vec![
 
                ("condition", quick_type(&[PTV::Bool])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 
        insert_builtin_function(&mut parser, "print", &[], |_id| (
 
            vec![
 
                ("message", quick_type(&[PTV::String])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 

	
 
        parser
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<(), ParseError> {
 
        // TODO: @Optimize
 
        let mut token_buffer = TokenBuffer::new();
 
        self.pass_tokenizer.tokenize(&mut source, &mut token_buffer)?;
 

	
 
        let module = Module{
 
            source,
 
            tokens: token_buffer,
 
            root_id: RootId::new_invalid(),
 
            name: None,
 
            version: None,
 
            phase: ModuleCompilationPhase::Tokenized,
 
        };
 
        self.modules.push(module);
 

	
 
        Ok(())
 
    }
 

	
 
    pub fn parse(&mut self) -> Result<(), ParseError> {
 
        let mut pass_ctx = PassCtx{
 
            heap: &mut self.heap,
 
            symbols: &mut self.symbol_table,
 
            pool: &mut self.string_pool,
 
            arch: &self.arch,
 
        };
 

	
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -259,49 +259,48 @@ impl PassDefinitions {
 

	
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        // Parse function's argument list
 
        let mut parameter_section = self.variables.start_section();
 
        consume_parameter_list(
 
            &module.source, iter, ctx, &mut parameter_section, module_scope, definition_id
 
        )?;
 
        let parameters = parameter_section.into_vec();
 

	
 
        // Consume return types
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let mut return_types = self.parser_types.start_section();
 
        let mut open_curly_pos = iter.last_valid_pos(); // bogus value
 
        consume_comma_separated_until(
 
            TokenKind::OpenCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let poly_vars = ctx.heap[definition_id].poly_vars();
 
                consume_parser_type(source, iter, &ctx.symbols, &ctx.heap, poly_vars, module_scope, definition_id, false, 0)
 
            },
 
            &mut return_types, "a return type", Some(&mut open_curly_pos)
 
        )?;
 
        let return_types = return_types.into_vec();
 

	
 
        // TODO: @ReturnValues
 
        match return_types.len() {
 
            0 => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "expected a return type")),
 
            1 => {},
 
            _ => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "multiple return types are not (yet) allowed")),
 
        }
 

	
 
        // Consume block
 
        let body = self.consume_block_statement_without_leading_curly(module, iter, ctx, open_curly_pos)?;
 

	
 
        // Assign everything in the preallocated AST node
 
        let function = ctx.heap[definition_id].as_function_mut();
 
        function.return_types = return_types;
 
        function.parameters = parameters;
 
        function.body = body;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_component_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        // Consume component variant and name
 
        let (_variant_text, _) = consume_any_ident(&module.source, iter)?;
 
        debug_assert!(_variant_text == KW_PRIMITIVE || _variant_text == KW_COMPOSITE);
src/protocol/parser/pass_tokenizer.rs
Show inline comments
 
@@ -136,78 +136,48 @@ impl PassTokenizer {
 
        if !self.curly_stack.is_empty() {
 
            // Let's not add a lot of heuristics and just tell the programmer
 
            // that something is wrong
 
            let last_unmatched_open = self.curly_stack.pop().unwrap();
 
            return Err(ParseError::new_error_str_at_pos(
 
                source, last_unmatched_open, "unmatched opening curly brace '{'"
 
            ));
 
        }
 

	
 
        // Ranges that did not depend on curly braces may have missing tokens.
 
        // So close all of the active tokens
 
        while self.stack_idx != 0 {
 
            self.pop_range(target, target.tokens.len() as u32);
 
        }
 

	
 
        // And finally, we may have a token range at the end that doesn't belong
 
        // to a range yet, so insert a "code" range if this is the case.
 
        debug_assert_eq!(self.stack_idx, 0);
 
        let last_registered_idx = target.ranges[0].end;
 
        let last_token_idx = target.tokens.len() as u32;
 
        if last_registered_idx != last_token_idx {
 
            self.add_code_range(target, 0, last_registered_idx, last_token_idx, NO_RELATION);
 
        }
 

	
 
        // TODO: @remove once I'm sure the algorithm works. For now it is better
 
        //  if the debugging is a little more expedient
 
        if cfg!(debug_assertions) {
 
            // For each range make sure its children make sense
 
            for parent_idx in 0..target.ranges.len() {
 
                let cur_range = &target.ranges[parent_idx];
 
                if cur_range.num_child_ranges == 0 {
 
                    assert_eq!(cur_range.first_child_idx, NO_RELATION);
 
                    assert_eq!(cur_range.last_child_idx, NO_RELATION);
 
                } else {
 
                    assert_ne!(cur_range.first_child_idx, NO_RELATION);
 
                    assert_ne!(cur_range.last_child_idx, NO_RELATION);
 

	
 
                    let mut child_counter = 0u32;
 
                    let mut last_valid_child_idx = cur_range.first_child_idx;
 
                    let mut child_idx = cur_range.first_child_idx;
 
                    while child_idx != NO_RELATION {
 
                        let child_range = &target.ranges[child_idx as usize];
 
                        assert_eq!(child_range.parent_idx, parent_idx as i32);
 
                        last_valid_child_idx = child_idx;
 
                        child_idx = child_range.next_sibling_idx;
 
                        child_counter += 1;
 
                    }
 

	
 
                    assert_eq!(cur_range.last_child_idx, last_valid_child_idx);
 
                    assert_eq!(cur_range.num_child_ranges, child_counter);
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn is_line_comment_start(&self, first_char: u8, source: &InputSource) -> bool {
 
        return first_char == b'/' && Some(b'/') == source.lookahead(1);
 
    }
 

	
 
    fn is_block_comment_start(&self, first_char: u8, source: &InputSource) -> bool {
 
        return first_char == b'/' && Some(b'*') == source.lookahead(1);
 
    }
 

	
 
    fn maybe_parse_punctuation(
 
        &mut self, first_char: u8, source: &mut InputSource, target: &mut TokenBuffer
 
    ) -> Result<Option<(TokenKind, InputPosition)>, ParseError> {
 
        debug_assert!(first_char != b'#', "'#' needs special handling");
 
        debug_assert!(first_char != b'\'', "'\'' needs special handling");
 
        debug_assert!(first_char != b'"', "'\"' needs special handling");
 

	
 
        let pos = source.pos();
 
        let token_kind;
 
        if first_char == b'!' {
 
            source.consume();
 
            if Some(b'=') == source.next() {
 
                source.consume();
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -896,50 +896,48 @@ struct VarData {
 
impl VarData {
 
    fn new_channel(var_type: InferenceType, other_port: VariableId) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: Some(other_port) }
 
    }
 
    fn new_local(var_type: InferenceType) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: None }
 
    }
 
}
 

	
 
impl PassTyping {
 
    pub(crate) fn new() -> Self {
 
        PassTyping {
 
            reserved_idx: -1,
 
            definition_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            poly_vars: Vec::new(),
 
            stmt_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
 
            expr_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
 
            var_types: HashMap::new(),
 
            expr_types: Vec::new(),
 
            extra_data: Vec::new(),
 
            expr_queued: DequeSet::new(),
 
        }
 
    }
 

	
 
    // TODO: @cleanup Unsure about this, maybe a pattern will arise after
 
    //  a while.
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module().root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 

	
 
            let first_concrete_part = match definition {
 
                Definition::Function(definition) => {
 
                    if definition.poly_vars.is_empty() {
 
                        Some(ConcreteTypePart::Function(*definition_id, 0))
 
                    } else {
 
                        None
 
                    }
 
                }
 
                Definition::Component(definition) => {
 
                    if definition.poly_vars.is_empty() {
 
                        Some(ConcreteTypePart::Component(*definition_id, 0))
 
                    } else {
 
                        None
 
                    }
 
                },
 
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => None,
 
            };
src/protocol/parser/token_parsing.rs
Show inline comments
 
@@ -266,49 +266,48 @@ pub(crate) fn consume_comma_separated<T, F, E>(
 
    consumer_fn: F, target: &mut E, item_name_and_article: &'static str,
 
    list_name_and_article: &'static str, close_pos: Option<&mut InputPosition>
 
) -> Result<(), ParseError>
 
    where F: FnMut(&InputSource, &mut TokenIter, &mut PassCtx) -> Result<T, ParseError>,
 
          E: Extendable<Value=T>
 
{
 
    let first_pos = iter.last_valid_pos();
 
    match maybe_consume_comma_separated(
 
        open_delim, close_delim, source, iter, ctx, consumer_fn, target,
 
        item_name_and_article, close_pos
 
    ) {
 
        Ok(true) => Ok(()),
 
        Ok(false) => {
 
            return Err(ParseError::new_error_at_pos(
 
                source, first_pos,
 
                format!("expected {}", list_name_and_article)
 
            ));
 
        },
 
        Err(err) => Err(err)
 
    }
 
}
 

	
 
/// Consumes an integer literal, may be binary, octal, hexadecimal or decimal,
 
/// and may have separating '_'-characters.
 
/// TODO: @Cleanup, @Performance
 
pub(crate) fn consume_integer_literal(source: &InputSource, iter: &mut TokenIter, buffer: &mut String) -> Result<(u64, InputSpan), ParseError> {
 
    if Some(TokenKind::Integer) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected an integer literal"));
 
    }
 
    let integer_span = iter.next_span();
 
    iter.consume();
 

	
 
    let integer_text = source.section_at_span(integer_span);
 

	
 
    // Determine radix and offset from prefix
 
    let (radix, input_offset, radix_name) =
 
        if integer_text.starts_with(b"0b") || integer_text.starts_with(b"0B") {
 
            // Binary number
 
            (2, 2, "binary")
 
        } else if integer_text.starts_with(b"0o") || integer_text.starts_with(b"0O") {
 
            // Octal number
 
            (8, 2, "octal")
 
        } else if integer_text.starts_with(b"0x") || integer_text.starts_with(b"0X") {
 
            // Hexadecimal number
 
            (16, 2, "hexadecimal")
 
        } else {
 
            (10, 0, "decimal")
 
        };
 

	
src/protocol/parser/tokens.rs
Show inline comments
 
@@ -279,49 +279,48 @@ impl<'a> TokenIter<'a> {
 

	
 
        return None;
 
    }
 

	
 
    /// Returns the start position belonging to the token returned by `next`. If
 
    /// there is not a next token, then we return the end position of the
 
    /// previous token.
 
    pub(crate) fn last_valid_pos(&self) -> InputPosition {
 
        if self.cur < self.end {
 
            // Return token position
 
            return self.tokens[self.cur].pos
 
        }
 

	
 
        // Return previous token end
 
        let token = &self.tokens[self.cur - 1];
 
        return if token.kind == TokenKind::SpanEnd {
 
            token.pos
 
        } else {
 
            token.pos.with_offset(token.kind.num_characters())
 
        };
 
    }
 

	
 
    /// Returns the token range belonging to the token returned by `next`. This
 
    /// assumes that we're not at the end of the range we're iterating over.
 
    /// TODO: @cleanup Phase out?
 
    pub(crate) fn next_positions(&self) -> (InputPosition, InputPosition) {
 
        debug_assert!(self.cur < self.end);
 
        let token = &self.tokens[self.cur];
 
        if token.kind.has_span_end() {
 
            let span_end = &self.tokens[self.cur + 1];
 
            debug_assert_eq!(span_end.kind, TokenKind::SpanEnd);
 
            (token.pos, span_end.pos)
 
        } else {
 
            let offset = token.kind.num_characters();
 
            (token.pos, token.pos.with_offset(offset))
 
        }
 
    }
 

	
 
    /// See `next_positions`
 
    pub(crate) fn next_span(&self) -> InputSpan {
 
        let (begin, end) = self.next_positions();
 
        return InputSpan::from_positions(begin, end)
 
    }
 

	
 
    /// Advances the iterator to the next (meaningful) token.
 
    pub(crate) fn consume(&mut self) {
 
        if let Some(kind) = self.next_including_comments() {
 
            if kind.has_span_end() {
 
                self.cur += 2;
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -854,49 +854,49 @@ impl TypeTable {
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Struct(StructType{
 
                fields,
 
                monomorphs: Vec::new(),
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(())
 
    }
 

	
 
    /// Builds base function type.
 
    fn build_base_function_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base function already built");
 
        let definition = ctx.heap[definition_id].as_function();
 
        let root_id = definition.defined_in;
 

	
 
        // Check and construct return types and argument types.
 
        debug_assert_eq!(definition.return_types.len(), 1, "not one return type"); // TODO: @ReturnValues
 
        debug_assert_eq!(definition.return_types.len(), 1, "not one return type");
 
        for return_type in &definition.return_types {
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, return_type, definition.builtin
 
            )?;
 
        }
 

	
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for parameter_id in &definition.parameters {
 
            let parameter = &ctx.heap[*parameter_id];
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &parameter.parser_type, definition.builtin
 
            )?;
 

	
 
            arguments.push(FunctionArgument{
 
                identifier: parameter.identifier.clone(),
 
                parser_type: parameter.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Check conflict of identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &arguments, |arg| &arg.identifier, "function argument"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
src/protocol/parser/visitor.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::{type_table::*, Module};
 
use crate::protocol::symbol_table::{SymbolTable};
 

	
 
type Unit = ();
 
pub(crate) type VisitorResult = Result<Unit, ParseError>;
 

	
 
/// Globally configured vector capacity for statement buffers in visitor 
 
/// implementations
 
pub(crate) const STMT_BUFFER_INIT_CAPACITY: usize = 256;
 
/// Globally configured vector capacity for expression buffers in visitor
 
/// implementations
 
pub(crate) const EXPR_BUFFER_INIT_CAPACITY: usize = 256;
 

	
 
/// General context structure that is used while traversing the AST.
 
/// TODO: Revise, visitor abstraction is starting to get in the way of programming
 
pub(crate) struct Ctx<'p> {
 
    pub heap: &'p mut Heap,
 
    pub modules: &'p mut [Module],
 
    pub module_idx: usize, // currently considered module
 
    pub symbols: &'p mut SymbolTable,
 
    pub types: &'p mut TypeTable,
 
    pub arch: &'p crate::protocol::TargetArch,
 
}
 

	
 
impl<'p> Ctx<'p> {
 
    /// Returns module `modules[module_idx]`
 
    pub(crate) fn module(&self) -> &Module {
 
        &self.modules[self.module_idx]
 
    }
 

	
 
    pub(crate) fn module_mut(&mut self) -> &mut Module {
 
        &mut self.modules[self.module_idx]
 
    }
 
}
 

	
 
/// Visitor is a generic trait that will fully walk the AST. The default
 
/// implementation of the visitors is to not recurse. The exception is the
 
/// top-level `visit_definition`, `visit_stmt` and `visit_expr` methods, which
 
/// call the appropriate visitor function.
src/protocol/tests/parser_monomorphs.rs
Show inline comments
 
@@ -67,50 +67,48 @@ fn test_enum_monomorphs() {
 
            auto c = Answer<s32>::Yes;
 
            auto d = Answer<Answer<Answer<s64>>>::No;
 
            return 0;
 
        }
 
        "
 
    ).for_enum("Answer", |e| { e
 
        .assert_num_monomorphs(1)
 
        .assert_has_monomorph("Answer<s8>");
 
    });
 
}
 

	
 
#[test]
 
fn test_union_monomorphs() {
 
    Tester::new_single_source_expect_ok(
 
        "no polymorph",
 
        "
 
        union Trinary { Undefined, Value(bool) }
 
        func do_it() -> s32 { auto a = Trinary::Value(true); return 0; }
 
        "
 
    ).for_union("Trinary", |e| { e
 
        .assert_num_monomorphs(1)
 
        .assert_has_monomorph("Trinary");
 
    });
 

	
 
    // TODO: Does this do what we want? Or do we expect the embedded monomorph
 
    //  Result<s8,s32> to be instantiated as well? I don't think so.
 
    Tester::new_single_source_expect_ok(
 
        "polymorphs",
 
        "
 
        union Result<T, E>{ Ok(T), Err(E) }
 
        func instantiator() -> s32 {
 
            s16 a_s16 = 5;
 
            auto a = Result<s8, bool>::Ok(0);
 
            auto b = Result<bool, s8>::Ok(true);
 
            auto c = Result<Result<s8, s32>, Result<s16, s64>>::Err(Result::Ok(5));
 
            auto d = Result<Result<s8, s32>, auto>::Err(Result<auto, s64>::Ok(a_s16));
 
            return 0;
 
        }
 
        "
 
    ).for_union("Result", |e| { e
 
        .assert_num_monomorphs(5)
 
        .assert_has_monomorph("Result<s8,bool>")
 
        .assert_has_monomorph("Result<bool,s8>")
 
        .assert_has_monomorph("Result<Result<s8,s32>,Result<s16,s64>>")
 
        .assert_has_monomorph("Result<s8,s32>")
 
        .assert_has_monomorph("Result<s16,s64>");
 
    }).for_function("instantiator", |f| { f
 
        .for_variable("d", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("Result<Result<s8,s32>,Result<s16,s64>>");
src/runtime2/branch.rs
Show inline comments
 
@@ -68,49 +68,49 @@ impl PreparedStatement {
 
            return false;
 
        }
 
    }
 

	
 
    pub(crate) fn take(&mut self) -> PreparedStatement {
 
        if let PreparedStatement::None = self {
 
            return PreparedStatement::None;
 
        } else {
 
            let mut replacement = PreparedStatement::None;
 
            std::mem::swap(self, &mut replacement);
 
            return replacement;
 
        }
 
    }
 
}
 

	
 
/// The execution state of a branch. This envelops the PDL code and the
 
/// execution state. And derived from that: if we're ready to keep running the
 
/// code, or if we're halted for some reason (e.g. waiting for a message).
 
pub(crate) struct Branch {
 
    pub id: BranchId,
 
    pub parent_id: BranchId,
 
    // Execution state
 
    pub code_state: Prompt,
 
    pub sync_state: SpeculativeState,
 
    pub awaiting_port: PortIdLocal, // only valid if in "awaiting message" queue. TODO: Maybe put in enum
 
    pub awaiting_port: PortIdLocal, // only valid if in "awaiting message" queue.
 
    pub next_in_queue: BranchId, // used by `ExecTree`/`BranchQueue`
 
    pub prepared: PreparedStatement,
 
}
 

	
 
impl BranchListItem for Branch {
 
    #[inline] fn get_id(&self) -> BranchId { return self.id; }
 
    #[inline] fn set_next_id(&mut self, id: BranchId) { self.next_in_queue = id; }
 
    #[inline] fn get_next_id(&self) -> BranchId { return self.next_in_queue; }
 
}
 

	
 
impl Branch {
 
    /// Creates a new non-speculative branch
 
    pub(crate) fn new_non_sync(component_state: Prompt) -> Self {
 
        Branch {
 
            id: BranchId::new_invalid(),
 
            parent_id: BranchId::new_invalid(),
 
            code_state: component_state,
 
            sync_state: SpeculativeState::RunningNonSync,
 
            awaiting_port: PortIdLocal::new_invalid(),
 
            next_in_queue: BranchId::new_invalid(),
 
            prepared: PreparedStatement::None,
 
        }
 
    }
 

	
src/runtime2/connector.rs
Show inline comments
 
@@ -56,49 +56,48 @@ impl ConnectorPublic {
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
enum Mode {
 
    NonSync,    // running non-sync code
 
    Sync,       // running sync code (in potentially multiple branches)
 
    SyncError,  // encountered an unrecoverable error in sync mode
 
    Error,      // encountered an error in non-sync mode (or finished handling the sync mode error).
 
}
 

	
 
#[derive(Debug)]
 
pub(crate) enum ConnectorScheduling {
 
    Immediate,          // Run again, immediately
 
    Later,              // Schedule for running, at some later point in time
 
    NotNow,             // Do not reschedule for running
 
    Exit,               // Connector has exited
 
}
 

	
 
pub(crate) struct ConnectorPDL {
 
    mode: Mode,
 
    eval_error: Option<EvalError>,
 
    tree: ExecTree,
 
    consensus: Consensus,
 
    last_finished_handled: Option<BranchId>,
 
}
 

	
 
// TODO: Remove remaining fields once 'fires()' is removed from language.
 
struct ConnectorRunContext<'a> {
 
    branch_id: BranchId,
 
    consensus: &'a Consensus,
 
    prepared: PreparedStatement,
 
}
 

	
 
impl<'a> RunContext for ConnectorRunContext<'a>{
 
    fn performed_put(&mut self, _port: PortId) -> bool {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => false,
 
            PreparedStatement::PerformedPut => true,
 
            taken => unreachable!("prepared statement is '{:?}' during 'performed_put()'", taken)
 
        };
 
    }
 

	
 
    fn performed_get(&mut self, _port: PortId) -> Option<ValueGroup> {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => None,
 
            PreparedStatement::PerformedGet(value) => Some(value),
 
            taken => unreachable!("prepared statement is '{:?}' during 'performed_get()'", taken),
 
        };
 
    }
 

	
 
    fn fires(&mut self, port: PortId) -> Option<Value> {
src/runtime2/consensus.rs
Show inline comments
 
@@ -100,49 +100,48 @@ pub(crate) enum MessageOrigin {
 
impl Consensus {
 
    pub fn new() -> Self {
 
        return Self {
 
            highest_connector_id: ConnectorId::new_invalid(),
 
            branch_annotations: Vec::new(),
 
            branch_markers: Vec::new(),
 
            encountered_ports: VecSet::new(),
 
            solution_combiner: SolutionCombiner::new(),
 
            handled_wave: false,
 
            conclusion: None,
 
            ack_remaining: 0,
 
            peers: Vec::new(),
 
            sync_round: 0,
 
            workspace_ports: Vec::new(),
 
        }
 
    }
 

	
 
    // --- Controlling sync round and branches
 

	
 
    /// Returns whether the consensus algorithm is running in sync mode
 
    pub fn is_in_sync(&self) -> bool {
 
        return !self.branch_annotations.is_empty();
 
    }
 

	
 
    /// TODO: Remove this once multi-fire is in place
 
    #[deprecated]
 
    pub fn get_annotation(&self, branch_id: BranchId, channel_id: PortIdLocal) -> &ChannelAnnotation {
 
        let branch = &self.branch_annotations[branch_id.index as usize];
 
        let port = branch.channel_mapping.iter().find(|v| v.channel_id.index == channel_id.index).unwrap();
 
        return port;
 
    }
 

	
 
    /// Sets up the consensus algorithm for a new synchronous round. The
 
    /// provided ports should be the ports the component owns at the start of
 
    /// the sync round.
 
    pub fn start_sync(&mut self, ctx: &ComponentCtx) {
 
        debug_assert!(!self.highest_connector_id.is_valid());
 
        debug_assert!(self.branch_annotations.is_empty());
 
        debug_assert!(self.solution_combiner.local.is_empty());
 

	
 
        // We'll use the first "branch" (the non-sync one) to store our ports,
 
        // this allows cloning if we created a new branch.
 
        self.branch_annotations.push(BranchAnnotation{
 
            channel_mapping: ctx.get_ports().iter()
 
                .map(|v| ChannelAnnotation {
 
                    channel_id: v.channel_id,
 
                    registered_id: None,
 
                    expected_firing: None,
 
                })
src/runtime2/inbox.rs
Show inline comments
 
use std::sync::Mutex;
 
use std::collections::VecDeque;
 

	
 
use crate::protocol::eval::ValueGroup;
 
use crate::runtime2::consensus::{ComponentPresence, SolutionCombiner};
 
use crate::runtime2::port::ChannelId;
 

	
 
use super::ConnectorId;
 
use super::consensus::{GlobalSolution, LocalSolution};
 
use super::port::PortIdLocal;
 

	
 
// TODO: Remove Debug derive from all types
 

	
 
#[derive(Debug, Copy, Clone)]
 
pub(crate) struct ChannelAnnotation {
 
    pub channel_id: ChannelId,
 
    pub registered_id: Option<BranchMarker>,
 
    pub expected_firing: Option<bool>,
 
}
 

	
 
/// Marker for a branch in a port mapping. A marker is, like a branch ID, a
 
/// unique identifier for a branch, but differs in that a branch only has one
 
/// branch ID, but might have multiple associated markers (i.e. one branch
 
/// performing a `put` three times will generate three markers.
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub(crate) struct BranchMarker{
 
    marker: u32,
 
}
 

	
 
impl BranchMarker {
 
    #[inline]
 
    pub(crate) fn new(marker: u32) -> Self {
 
        debug_assert!(marker != 0);
 
        return Self{ marker };
 
    }
 

	
 
    #[inline]
src/runtime2/mod.rs
Show inline comments
 
@@ -488,49 +488,48 @@ impl RuntimeInner {
 
        if old_num == 1 { // such that we have no more active connectors (for now!)
 
            let num_interfaces = self.active_interfaces.load(Ordering::Acquire);
 
            if num_interfaces == 0 {
 
                self.signal_for_shutdown();
 
            }
 
        }
 
    }
 

	
 
    #[inline]
 
    fn signal_for_shutdown(&self) {
 
        debug_assert_eq!(self.active_interfaces.load(Ordering::Acquire), 0);
 
        debug_assert_eq!(self.active_connectors.load(Ordering::Acquire), 0);
 

	
 
        let _lock = self.connector_queue.lock().unwrap();
 
        let should_signal = self.should_exit
 
            .compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
 
            .is_ok();
 

	
 
        if should_signal {
 
            self.scheduler_notifier.notify_all();
 
        }
 
    }
 
}
 

	
 
// TODO: Come back to this at some point
 
unsafe impl Send for RuntimeInner {}
 
unsafe impl Sync for RuntimeInner {}
 

	
 
// -----------------------------------------------------------------------------
 
// ConnectorStore
 
// -----------------------------------------------------------------------------
 

	
 
struct StoreEntry {
 
    connector: ScheduledConnector,
 
    generation: std::sync::atomic::AtomicU32,
 
    num_users: std::sync::atomic::AtomicU32,
 
}
 

	
 
struct ConnectorStore {
 
    // Freelist storage of connectors. Storage should be pointer-stable as
 
    // someone might be mutating the vector while we're executing one of the
 
    // connectors.
 
    entries: RawVec<*mut StoreEntry>,
 
    free: Vec<usize>,
 
}
 

	
 
impl ConnectorStore {
 
    fn with_capacity(capacity: usize) -> Self {
 
        Self {
src/runtime2/native.rs
Show inline comments
 
@@ -442,49 +442,48 @@ impl ApplicationInterface {
 
        // We own all ports, so remove them on this side
 
        for initial_port in &initial_ports {
 
            let position = self.owned_ports.iter().position(|(_, v)| v == initial_port).unwrap();
 
            self.owned_ports.remove(position);
 
        }
 

	
 
        let prompt = self.runtime.protocol_description.new_component_v2(module.as_bytes(), routine.as_bytes(), arguments)?;
 
        let connector = ConnectorPDL::new(prompt);
 

	
 
        // Put on job queue
 
        {
 
            let mut queue = self.job_queue.lock().unwrap();
 
            queue.push_back(ApplicationJob::NewConnector(connector, initial_ports));
 
        }
 

	
 
        self.wake_up_connector_with_ping();
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Queues up a description of a synchronous round to run. Will not actually
 
    /// run the synchronous behaviour in blocking fashion. The results *must* be
 
    /// retrieved using `try_wait` or `wait` for the interface to be considered
 
    /// in non-sync mode.
 
    // TODO: Maybe change API in the future. For now it does the job
 
    pub fn perform_sync_round(&mut self, actions: Vec<ApplicationSyncAction>) -> Result<(), ApplicationStartSyncError> {
 
        if self.is_in_sync {
 
            return Err(ApplicationStartSyncError::AlreadyInSync);
 
        }
 

	
 
        // Check the action ports for consistency
 
        for action in &actions {
 
            let (port_id, expected_kind) = match action {
 
                ApplicationSyncAction::Put(port_id, _) => (*port_id, PortKind::Putter),
 
                ApplicationSyncAction::Get(port_id) => (*port_id, PortKind::Getter),
 
            };
 

	
 
            match self.find_port_by_id(port_id) {
 
                Some(port_kind) => {
 
                    if port_kind != expected_kind {
 
                        return Err(ApplicationStartSyncError::IncorrectPortKind)
 
                    }
 
                },
 
                None => {
 
                    return Err(ApplicationStartSyncError::UnownedPort);
 
                }
 
            }
 
        }
 

	
src/runtime2/port.rs
Show inline comments
 
@@ -37,29 +37,28 @@ pub enum PortKind {
 
    Putter,
 
    Getter,
 
}
 

	
 
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
 
pub enum PortState {
 
    Open,
 
    Closed,
 
}
 

	
 
/// Represents a port inside of the runtime. This is generally the local view of
 
/// a connector on its port, which may not be consistent with the rest of the
 
/// global system (e.g. its peer was moved to a new connector, or the peer might
 
/// have died in the meantime, so it is no longer usable).
 
#[derive(Clone)]
 
pub struct Port {
 
    pub self_id: PortIdLocal,
 
    pub peer_id: PortIdLocal,
 
    pub channel_id: ChannelId,
 
    pub kind: PortKind,
 
    pub state: PortState,
 
    pub peer_connector: ConnectorId, // might be temporarily inconsistent while peer port is sent around in non-sync phase
 
}
 

	
 
// TODO: Turn port ID into its own type
 
pub struct Channel {
 
    pub putter_id: PortIdLocal, // can put on it, so from the connector's point of view, this is an output
 
    pub getter_id: PortIdLocal, // vice versa: can get on it, so an input for the connector
 
}
 
\ No newline at end of file
src/runtime2/scheduler.rs
Show inline comments
 
@@ -256,68 +256,63 @@ impl Scheduler {
 
                    target_component_id: port.peer_connector,
 
                    content: SyncControlContent::ChannelIsClosed(port.peer_id),
 
                };
 
                self.debug_conn(scheduled.ctx.id, &format!("Sending message to {:?} [shutdown]\n --- {:?}", port.peer_connector, message));
 
                self.runtime.send_message_assumed_alive(port.peer_connector, Message::SyncControl(message));
 
            }
 
        }
 
    }
 

	
 
    /// Handles changes to the context that were made by the component. This is
 
    /// the way (due to Rust's borrowing rules) that we bubble up changes in the
 
    /// component's state that the scheduler needs to know about (e.g. a message
 
    /// that the component wants to send, a port that has been added).
 
    fn handle_changes_in_context(&mut self, scheduled: &mut ScheduledConnector) {
 
        let connector_id = scheduled.ctx.id;
 

	
 
        // Handling any messages that were sent
 
        while let Some(message) = scheduled.ctx.outbox.pop_front() {
 
            let (target_component_id, over_port) = match &message {
 
                Message::Data(content) => {
 
                    // Data messages are always sent to a particular port, and
 
                    // may end up being rerouted.
 
                    let port_desc = scheduled.ctx.get_port_by_id(content.data_header.sending_port).unwrap();
 
                    debug_assert_eq!(port_desc.peer_id, content.data_header.target_port);
 

	
 
                    if port_desc.state == PortState::Closed {
 
                        todo!("handle sending over a closed port")
 
                    }
 
                    debug_assert_eq!(port_desc.state, PortState::Open); // checked when adding to context
 

	
 
                    (port_desc.peer_connector, true)
 
                },
 
                Message::SyncComp(content) => {
 
                    // Sync messages are always sent to a particular component,
 
                    // the sender must make sure it actually wants to send to
 
                    // the specified component (and is not using an inconsistent
 
                    // component ID associated with a port).
 
                    (content.target_component_id, false)
 
                },
 
                Message::SyncPort(content) => {
 
                    let port_desc = scheduled.ctx.get_port_by_id(content.source_port).unwrap();
 
                    debug_assert_eq!(port_desc.peer_id, content.target_port);
 
                    if port_desc.state == PortState::Closed {
 
                        todo!("handle sending over a closed port")
 
                    }
 
                    debug_assert_eq!(port_desc.state, PortState::Open); // checked when adding to context
 

	
 
                    (port_desc.peer_connector, true)
 
                },
 
                Message::SyncControl(_) => unreachable!("component sending 'SyncControl' messages directly"),
 
                Message::Control(_) => unreachable!("component sending 'Control' messages directly"),
 
            };
 

	
 
            self.debug_conn(connector_id, &format!("Sending message to {:?} [outbox, over port: {}] \n --- {:#?}", target_component_id, over_port, message));
 
            if over_port {
 
                self.runtime.send_message_assumed_alive(target_component_id, message);
 
            } else {
 
                self.runtime.send_message_maybe_destroyed(target_component_id, message);
 
            }
 
        }
 

	
 
        while let Some(state_change) = scheduled.ctx.state_changes.pop_front() {
 
            match state_change {
 
                ComponentStateChange::CreatedComponent(component, initial_ports) => {
 
                    // Creating a new component. Need to relinquish control of
 
                    // the ports.
 
                    let new_component_key = self.runtime.create_pdl_component(component, false);
 
                    let new_connector = self.runtime.get_component_private(&new_component_key);
 

	
 
                    // First pass: transfer ports and the associated messages,
 
@@ -394,49 +389,48 @@ impl Scheduler {
 

	
 
    fn try_go_to_sleep(&self, connector_key: ConnectorKey, connector: &mut ScheduledConnector) {
 
        debug_assert_eq!(connector_key.index, connector.ctx.id.index);
 
        debug_assert_eq!(connector.public.sleeping.load(Ordering::Acquire), false);
 

	
 
        // This is the running connector, and only the running connector may
 
        // decide it wants to sleep again.
 
        connector.public.sleeping.store(true, Ordering::Release);
 

	
 
        // But due to reordering we might have received messages from peers who
 
        // did not consider us sleeping. If so, then we wake ourselves again.
 
        if !connector.public.inbox.is_empty() {
 
            // Try to wake ourselves up (needed because someone might be trying
 
            // the exact same atomic compare-and-swap at this point in time)
 
            let should_wake_up_again = connector.public.sleeping
 
                .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
 
                .is_ok();
 

	
 
            if should_wake_up_again {
 
                self.runtime.push_work(connector_key)
 
            }
 
        }
 
    }
 

	
 
    // TODO: Remove, this is debugging stuff
 
    fn debug(&self, message: &str) {
 
        println!("DEBUG [thrd:{:02} conn:  ]: {}", self.scheduler_id, message);
 
    }
 

	
 
    fn debug_conn(&self, conn: ConnectorId, message: &str) {
 
        println!("DEBUG [thrd:{:02} conn:{:02}]: {}", self.scheduler_id, conn.index, message);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentCtx
 
// -----------------------------------------------------------------------------
 

	
 
enum ComponentStateChange {
 
    CreatedComponent(ConnectorPDL, Vec<PortIdLocal>),
 
    CreatedPort(Port),
 
    ChangedPort(ComponentPortChange),
 
}
 

	
 
#[derive(Clone)]
 
pub(crate) struct ComponentPortChange {
 
    pub is_acquired: bool, // otherwise: released
 
    pub port: Port,
 
}
0 comments (0 inline, 0 general)