Files @ 5da3dcf76c51
Branch filter:

Location: CSY/reowolf/src/runtime2/connector.rs

5da3dcf76c51 24.8 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Remove stale todo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
// connector.rs
//
// Represents a component. A component (and the scheduler that is running it)
// has many properties that are not easy to subdivide into aspects that are
// conceptually handled by particular data structures. That is to say: the code
// that we run governs: running PDL code, keeping track of ports, instantiating
// new components and transports (i.e. interacting with the runtime), running
// a consensus algorithm, etc. But on the other hand, our data is rather
// simple: we have a speculative execution tree, a set of ports that we own,
// and a bit of code that we should run.
//
// So currently the code is organized as following:
// - The scheduler that is running the component is the authoritative source on
//     ports during *non-sync* mode. The consensus algorithm is the
//     authoritative source during *sync* mode. They retrieve each other's
//     state during the transitions. Hence port data exists duplicated between
//     these two datastructures.
// - The execution tree is where executed branches reside. But the execution
//     tree is only aware of the tree shape itself (and keeps track of some
//     queues of branches that are in a particular state), and tends to store
//     the PDL program state. The consensus algorithm is also somewhat aware
//     of the execution tree, but only in terms of what is needed to complete
//     a sync round (for now, that means the port mapping in each branch).
//     Hence once more we have properties conceptually associated with branches
//     in two places.
// - TODO: Write about handling messages, consensus wrapping data
// - TODO: Write about way information is exchanged between PDL/component and scheduler through ctx

use std::sync::atomic::AtomicBool;

use crate::{PortId, ProtocolDescription};
use crate::protocol::eval::{EvalContinuation, EvalError, Prompt, Value, ValueGroup};
use crate::protocol::RunContext;

use super::branch::{BranchId, ExecTree, QueueKind, SpeculativeState, PreparedStatement};
use super::consensus::{Consensus, Consistency, RoundConclusion, find_ports_in_value_group};
use super::inbox::{DataMessage, Message, SyncCompMessage, SyncPortMessage, SyncControlMessage, PublicInbox};
use super::native::Connector;
use super::port::{PortKind, PortIdLocal};
use super::scheduler::{ComponentCtx, SchedulerCtx, MessageTicket};

pub(crate) struct ConnectorPublic {
    pub inbox: PublicInbox,
    pub sleeping: AtomicBool,
}

impl ConnectorPublic {
    pub fn new(initialize_as_sleeping: bool) -> Self {
        ConnectorPublic{
            inbox: PublicInbox::new(),
            sleeping: AtomicBool::new(initialize_as_sleeping),
        }
    }
}

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
enum Mode {
    NonSync,    // running non-sync code
    Sync,       // running sync code (in potentially multiple branches)
    SyncError,  // encountered an unrecoverable error in sync mode
    Error,      // encountered an error in non-sync mode (or finished handling the sync mode error).
}

#[derive(Debug)]
pub(crate) enum ConnectorScheduling {
    Immediate,          // Run again, immediately
    Later,              // Schedule for running, at some later point in time
    NotNow,             // Do not reschedule for running
    Exit,               // Connector has exited
}

pub(crate) struct ConnectorPDL {
    mode: Mode,
    eval_error: Option<EvalError>,
    tree: ExecTree,
    consensus: Consensus,
    last_finished_handled: Option<BranchId>,
}

struct ConnectorRunContext<'a> {
    branch_id: BranchId,
    consensus: &'a Consensus,
    prepared: PreparedStatement,
}

impl<'a> RunContext for ConnectorRunContext<'a>{
    fn performed_put(&mut self, _port: PortId) -> bool {
        return match self.prepared.take() {
            PreparedStatement::None => false,
            PreparedStatement::PerformedPut => true,
            taken => unreachable!("prepared statement is '{:?}' during 'performed_put()'", taken)
        };
    }

    fn performed_get(&mut self, _port: PortId) -> Option<ValueGroup> {
        return match self.prepared.take() {
            PreparedStatement::None => None,
            PreparedStatement::PerformedGet(value) => Some(value),
            taken => unreachable!("prepared statement is '{:?}' during 'performed_get()'", taken),
        };
    }

    fn fires(&mut self, port: PortId) -> Option<Value> {
        todo!("Remove fires() now");
        let port_id = PortIdLocal::new(port.0.u32_suffix);
        let annotation = self.consensus.get_annotation(self.branch_id, port_id);
        return annotation.expected_firing.map(|v| Value::Bool(v));
    }

    fn created_channel(&mut self) -> Option<(Value, Value)> {
        return match self.prepared.take() {
            PreparedStatement::None => None,
            PreparedStatement::CreatedChannel(ports) => Some(ports),
            taken => unreachable!("prepared statement is '{:?}' during 'created_channel()'", taken),
        };
    }

    fn performed_fork(&mut self) -> Option<bool> {
        return match self.prepared.take() {
            PreparedStatement::None => None,
            PreparedStatement::ForkedExecution(path) => Some(path),
            taken => unreachable!("prepared statement is '{:?}' during 'performed_fork()'", taken),
        };
    }
}

impl Connector for ConnectorPDL {
    fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
        if let Some(scheduling) = self.handle_new_messages(comp_ctx) {
            return scheduling;
        }

        match self.mode {
            Mode::Sync => {
                // Run in sync mode
                let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);

                // Handle any new finished branches
                let mut iter_id = self.last_finished_handled.or(self.tree.get_queue_first(QueueKind::FinishedSync));
                while let Some(branch_id) = iter_id {
                    iter_id = self.tree.get_queue_next(branch_id);
                    self.last_finished_handled = Some(branch_id);

                    if let Some(round_conclusion) = self.consensus.handle_new_finished_sync_branch(branch_id, comp_ctx) {
                        // Actually found a solution
                        return self.enter_non_sync_mode(round_conclusion, comp_ctx);
                    }

                    self.last_finished_handled = Some(branch_id);
                }

                return scheduling;
            },
            Mode::NonSync => {
                let scheduling = self.run_in_deterministic_mode(sched_ctx, comp_ctx);
                return scheduling;
            },
            Mode::SyncError => {
                let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);
                return scheduling;
            },
            Mode::Error => {
                // This shouldn't really be called. Because when we reach exit
                // mode the scheduler should not run the component anymore
                unreachable!("called component run() during error-mode");
            },
        }
    }
}

impl ConnectorPDL {
    pub fn new(initial: Prompt) -> Self {
        Self{
            mode: Mode::NonSync,
            eval_error: None,
            tree: ExecTree::new(initial),
            consensus: Consensus::new(),
            last_finished_handled: None,
        }
    }

    // --- Handling messages

    pub fn handle_new_messages(&mut self, ctx: &mut ComponentCtx) -> Option<ConnectorScheduling> {
        while let Some(ticket) = ctx.get_next_message_ticket() {
            let message = ctx.read_message_using_ticket(ticket);
            let immediate_result = if let Message::Data(_) = message {
                self.handle_new_data_message(ticket, ctx);
                None
            } else {
                match ctx.take_message_using_ticket(ticket) {
                    Message::Data(_) => unreachable!(),
                    Message::SyncComp(message) => {
                        self.handle_new_sync_comp_message(message, ctx)
                    },
                    Message::SyncPort(message) => {
                        self.handle_new_sync_port_message(message, ctx);
                        None
                    },
                    Message::SyncControl(message) => {
                        self.handle_new_sync_control_message(message, ctx)
                    },
                    Message::Control(_) => unreachable!("control message in component"),
                }
            };

            if let Some(result) = immediate_result {
                return Some(result);
            }
        }

        return None;
    }

    pub fn handle_new_data_message(&mut self, ticket: MessageTicket, ctx: &mut ComponentCtx) {
        // Go through all branches that are awaiting new messages and see if
        // there is one that can receive this message.
        if !self.consensus.handle_new_data_message(ticket, ctx) {
            // Message should not be handled now
            return;
        }

        let message = ctx.read_message_using_ticket(ticket).as_data();
        let mut iter_id = self.tree.get_queue_first(QueueKind::AwaitingMessage);
        while let Some(branch_id) = iter_id {
            iter_id = self.tree.get_queue_next(branch_id);

            let branch = &self.tree[branch_id];
            if branch.awaiting_port != message.data_header.target_port { continue; }
            if !self.consensus.branch_can_receive(branch_id, &message) { continue; }

            // This branch can receive, so fork and given it the message
            let receiving_branch_id = self.tree.fork_branch(branch_id);
            self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
            let receiving_branch = &mut self.tree[receiving_branch_id];

            debug_assert!(receiving_branch.awaiting_port == message.data_header.target_port);
            receiving_branch.awaiting_port = PortIdLocal::new_invalid();
            receiving_branch.prepared = PreparedStatement::PerformedGet(message.content.clone());
            self.consensus.notify_of_received_message(receiving_branch_id, &message, ctx);

            // And prepare the branch for running
            self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
        }
    }

    pub fn handle_new_sync_comp_message(&mut self, message: SyncCompMessage, ctx: &mut ComponentCtx) -> Option<ConnectorScheduling> {
        println!("DEBUG: Actually really handling {:?}", message);
        if let Some(round_conclusion) = self.consensus.handle_new_sync_comp_message(message, ctx) {
            return Some(self.enter_non_sync_mode(round_conclusion, ctx));
        }

        return None;
    }

    pub fn handle_new_sync_port_message(&mut self, message: SyncPortMessage, ctx: &mut ComponentCtx) {
        self.consensus.handle_new_sync_port_message(message, ctx);
    }

    pub fn handle_new_sync_control_message(&mut self, message: SyncControlMessage, ctx: &mut ComponentCtx) -> Option<ConnectorScheduling> {
        if let Some(round_conclusion) = self.consensus.handle_new_sync_control_message(message, ctx) {
            return Some(self.enter_non_sync_mode(round_conclusion, ctx));
        }

        return None;
    }

    // --- Running code

    pub fn run_in_sync_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
        // Check if we have any branch that needs running
        debug_assert!(self.tree.is_in_sync() && self.consensus.is_in_sync());
        let branch_id = self.tree.pop_from_queue(QueueKind::Runnable);
        if branch_id.is_none() {
            return ConnectorScheduling::NotNow;
        }

        // Retrieve the branch and run it
        let branch_id = branch_id.unwrap();
        let branch = &mut self.tree[branch_id];

        let mut run_context = ConnectorRunContext{
            branch_id,
            consensus: &self.consensus,
            prepared: branch.prepared.take(),
        };

        let run_result = Self::run_prompt(&mut branch.code_state, &sched_ctx.runtime.protocol_description, &mut run_context);
        if let Err(eval_error) = run_result {
            self.eval_error = Some(eval_error);
            self.mode = Mode::SyncError;
            if let Some(conclusion) = self.consensus.notify_of_fatal_branch(branch_id, comp_ctx) {
                // We can exit immediately
                return self.enter_non_sync_mode(conclusion, comp_ctx);
            } else {
                // Current branch failed. But we may have other things that are
                // running.
                return ConnectorScheduling::Immediate;
            }
        }
        let run_result = run_result.unwrap();

        // Handle the returned result. Note that this match statement contains
        // explicit returns in case the run result requires that the component's
        // code is ran again immediately
        match run_result {
            EvalContinuation::BranchInconsistent => {
                // Branch became inconsistent
                branch.sync_state = SpeculativeState::Inconsistent;
            },
            EvalContinuation::BlockFires(port_id) => {
                // Branch called `fires()` on a port that has not been used yet.
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);

                // Create two forks, one that assumes the port will fire, and
                // one that assumes the port remains silent
                branch.sync_state = SpeculativeState::HaltedAtBranchPoint;

                let firing_branch_id = self.tree.fork_branch(branch_id);
                let silent_branch_id = self.tree.fork_branch(branch_id);
                self.consensus.notify_of_new_branch(branch_id, firing_branch_id);
                let _result = self.consensus.notify_of_speculative_mapping(firing_branch_id, port_id, true, comp_ctx);
                debug_assert_eq!(_result, Consistency::Valid);
                self.consensus.notify_of_new_branch(branch_id, silent_branch_id);
                let _result = self.consensus.notify_of_speculative_mapping(silent_branch_id, port_id, false, comp_ctx);
                debug_assert_eq!(_result, Consistency::Valid);

                // Somewhat important: we push the firing one first, such that
                // that branch is ran again immediately.
                self.tree.push_into_queue(QueueKind::Runnable, firing_branch_id);
                self.tree.push_into_queue(QueueKind::Runnable, silent_branch_id);

                return ConnectorScheduling::Immediate;
            },
            EvalContinuation::BlockGet(port_id) => {
                // Branch performed a `get()` on a port that does not have a
                // received message on that port.
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);

                branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
                branch.awaiting_port = port_id;
                self.tree.push_into_queue(QueueKind::AwaitingMessage, branch_id);

                // Note: we only know that a branch is waiting on a message when
                // it reaches the `get` call. But we might have already received
                // a message that targets this branch, so check now.
                let mut any_message_received = false;
                for message in comp_ctx.get_read_data_messages(port_id) {
                    if self.consensus.branch_can_receive(branch_id, &message) {
                        // This branch can receive the message, so we do the
                        // fork-and-receive dance
                        let receiving_branch_id = self.tree.fork_branch(branch_id);
                        let branch = &mut self.tree[receiving_branch_id];
                        branch.awaiting_port = PortIdLocal::new_invalid();
                        branch.prepared = PreparedStatement::PerformedGet(message.content.clone());

                        self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
                        self.consensus.notify_of_received_message(receiving_branch_id, &message, comp_ctx);
                        self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);

                        any_message_received = true;
                    }
                }

                if any_message_received {
                    return ConnectorScheduling::Immediate;
                }
            }
            EvalContinuation::SyncBlockEnd => {
                let consistency = self.consensus.notify_of_finished_branch(branch_id);
                if consistency == Consistency::Valid {
                    branch.sync_state = SpeculativeState::ReachedSyncEnd;
                    self.tree.push_into_queue(QueueKind::FinishedSync, branch_id);
                } else {
                    branch.sync_state = SpeculativeState::Inconsistent;
                }
            },
            EvalContinuation::NewFork => {
                // Like the `NewChannel` result. This means we're setting up
                // a branch and putting a marker inside the RunContext for the
                // next time we run the PDL code
                let left_id = branch_id;
                let right_id = self.tree.fork_branch(left_id);
                self.consensus.notify_of_new_branch(left_id, right_id);
                self.tree.push_into_queue(QueueKind::Runnable, left_id);
                self.tree.push_into_queue(QueueKind::Runnable, right_id);

                let left_branch = &mut self.tree[left_id];
                left_branch.prepared = PreparedStatement::ForkedExecution(true);
                let right_branch = &mut self.tree[right_id];
                right_branch.prepared = PreparedStatement::ForkedExecution(false);
            }
            EvalContinuation::Put(port_id, content) => {
                // Branch is attempting to send data
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);
                let (sync_header, data_header) = self.consensus.handle_message_to_send(branch_id, port_id, &content, comp_ctx);
                let message = DataMessage{ sync_header, data_header, content };
                match comp_ctx.submit_message(Message::Data(message)) {
                    Ok(_) => {
                        // Message is underway
                        branch.prepared = PreparedStatement::PerformedPut;
                        self.tree.push_into_queue(QueueKind::Runnable, branch_id);
                        return ConnectorScheduling::Immediate;
                    },
                    Err(_) => {
                        // We don't own the port
                        let pd = &sched_ctx.runtime.protocol_description;
                        let eval_error = branch.code_state.new_error_at_expr(
                            &pd.modules, &pd.heap,
                            String::from("attempted to 'put' on port that is no longer owned")
                        );
                        self.eval_error = Some(eval_error);
                        self.mode = Mode::SyncError;

                        println!("DEBUGERINO: Notify of fatal branch");
                        if let Some(conclusion) = self.consensus.notify_of_fatal_branch(branch_id, comp_ctx) {
                            println!("DEBUGERINO: Actually got {:?}", conclusion);
                            return self.enter_non_sync_mode(conclusion, comp_ctx);
                        }
                    }
                }
            },
            _ => unreachable!("unexpected run result {:?} in sync mode", run_result),
        }

        // If here then the run result did not require a particular action. We
        // return whether we have more active branches to run or not.
        if self.tree.queue_is_empty(QueueKind::Runnable) {
            return ConnectorScheduling::NotNow;
        } else {
            return ConnectorScheduling::Later;
        }
    }

    pub fn run_in_deterministic_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
        debug_assert!(!self.tree.is_in_sync() && !self.consensus.is_in_sync());

        let branch = self.tree.base_branch_mut();
        debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);

        let mut run_context = ConnectorRunContext{
            branch_id: branch.id,
            consensus: &self.consensus,
            prepared: branch.prepared.take(),
        };
        let run_result = Self::run_prompt(&mut branch.code_state, &sched_ctx.runtime.protocol_description, &mut run_context);
        if let Err(eval_error) = run_result {
            comp_ctx.push_error(eval_error);
            return ConnectorScheduling::Exit
        }
        let run_result = run_result.unwrap();

        match run_result {
            EvalContinuation::ComponentTerminated => {
                branch.sync_state = SpeculativeState::Finished;
                return ConnectorScheduling::Exit;
            },
            EvalContinuation::SyncBlockStart => {
                comp_ctx.notify_sync_start();
                let sync_branch_id = self.tree.start_sync();
                debug_assert!(self.last_finished_handled.is_none());
                self.consensus.start_sync(comp_ctx);
                self.consensus.notify_of_new_branch(BranchId::new_invalid(), sync_branch_id);
                self.tree.push_into_queue(QueueKind::Runnable, sync_branch_id);
                self.mode = Mode::Sync;

                return ConnectorScheduling::Immediate;
            },
            EvalContinuation::NewComponent(definition_id, monomorph_idx, arguments) => {
                // Note: we're relinquishing ownership of ports. But because
                // we are in non-sync mode the scheduler will handle and check
                // port ownership transfer.
                debug_assert!(comp_ctx.workspace_ports.is_empty());
                find_ports_in_value_group(&arguments, &mut comp_ctx.workspace_ports);

                let new_prompt = Prompt::new(
                    &sched_ctx.runtime.protocol_description.types,
                    &sched_ctx.runtime.protocol_description.heap,
                    definition_id, monomorph_idx, arguments
                );
                let new_component = ConnectorPDL::new(new_prompt);
                comp_ctx.push_component(new_component, comp_ctx.workspace_ports.clone());
                comp_ctx.workspace_ports.clear();

                return ConnectorScheduling::Later;
            },
            EvalContinuation::NewChannel => {
                let (getter, putter) = sched_ctx.runtime.create_channel(comp_ctx.id);
                debug_assert!(getter.kind == PortKind::Getter && putter.kind == PortKind::Putter);
                branch.prepared = PreparedStatement::CreatedChannel((
                    Value::Output(PortId::new(putter.self_id.index)),
                    Value::Input(PortId::new(getter.self_id.index)),
                ));

                comp_ctx.push_port(putter);
                comp_ctx.push_port(getter);

                return ConnectorScheduling::Immediate;
            },
            _ => unreachable!("unexpected run result '{:?}' while running in non-sync mode", run_result),
        }
    }

    /// Helper that moves the component's state back into non-sync mode, using
    /// the provided solution branch ID as the branch that should be comitted to
    /// memory. If this function returns false, then the component is supposed
    /// to exit.
    fn enter_non_sync_mode(&mut self, conclusion: RoundConclusion, ctx: &mut ComponentCtx) -> ConnectorScheduling {
        debug_assert!(self.mode == Mode::Sync || self.mode == Mode::SyncError);

        // Depending on local state decide what to do
        let final_branch_id = match conclusion {
            RoundConclusion::Success(branch_id) => Some(branch_id),
            RoundConclusion::Failure => None,
        };

        if let Some(solution_branch_id) = final_branch_id {
            let mut fake_vec = Vec::new();
            self.tree.end_sync(solution_branch_id);
            self.consensus.end_sync(solution_branch_id, &mut fake_vec);
            debug_assert!(fake_vec.is_empty());

            ctx.notify_sync_end(&[]);
            self.last_finished_handled = None;
            self.eval_error = None; // in case we came from the SyncError mode
            self.mode = Mode::NonSync;

            return ConnectorScheduling::Immediate;
        } else {
            // No final branch, because we're supposed to exit!
            self.last_finished_handled = None;
            self.mode = Mode::Error;
            if let Some(eval_error) = self.eval_error.take() {
                ctx.push_error(eval_error);
            }

            return ConnectorScheduling::Exit;
        }
    }

    /// Runs the prompt repeatedly until some kind of execution-blocking
    /// condition appears.
    #[inline]
    fn run_prompt(prompt: &mut Prompt, pd: &ProtocolDescription, ctx: &mut ConnectorRunContext) -> Result<EvalContinuation, EvalError> {
        loop {
            let result = prompt.step(&pd.types, &pd.heap, &pd.modules, ctx);
            if let Ok(EvalContinuation::Stepping) = result {
                continue;
            }

            return result;
        }
    }
}