Changeset - e914af987c85
[Not reviewed]
0 7 0
MH - 4 years ago 2021-05-31 14:30:29
contact@maxhenger.nl
fix string-related bugs
7 files changed with 176 insertions and 63 deletions:
0 comments (0 inline, 0 general)
src/protocol/eval/store.rs
Show inline comments
 
@@ -86,132 +86,133 @@ impl Store {
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                return self.clone_value(self.heap_regions[heap_pos as usize].values[region_idx as usize].clone())
 
            }
 
        }
 
    }
 

	
 
    /// Potentially reads a reference value. The supplied `Value` might not
 
    /// actually live in the store's stack or heap, but live on the expression
 
    /// stack. Generally speaking you only want to call this if the value comes
 
    /// from the expression stack due to borrowing issues.
 
    pub(crate) fn maybe_read_ref<'a>(&'a self, value: &'a Value) -> &'a Value {
 
        match value {
 
            Value::Ref(value_id) => self.read_ref(*value_id),
 
            _ => value,
 
        }
 
    }
 

	
 
    /// Returns an immutable reference to the value pointed to by an address
 
    pub(crate) fn read_ref(&self, address: ValueId) -> &Value {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
                return &self.stack[cur_pos];
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                return &self.heap_regions[heap_pos as usize].values[region_idx as usize];
 
            }
 
        }
 
    }
 

	
 
    /// Returns a mutable reference to the value pointed to by an address
 
    pub(crate) fn read_mut_ref(&mut self, address: ValueId) -> &mut Value {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
                return &mut self.stack[cur_pos];
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                return &mut self.heap_regions[heap_pos as usize].values[region_idx as usize];
 
            }
 
        }
 
    }
 

	
 
    /// Writes a value
 
    pub(crate) fn write(&mut self, address: ValueId, value: Value) {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
                self.drop_value(self.stack[cur_pos].get_heap_pos());
 
                self.stack[cur_pos] = value;
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                let heap_pos = heap_pos as usize;
 
                let region_idx = region_idx as usize;
 
                self.drop_value(self.heap_regions[heap_pos].values[region_idx].get_heap_pos());
 
                self.heap_regions[heap_pos].values[region_idx] = value
 
            }
 
        }
 
    }
 

	
 
    /// This thing takes a cloned Value, because of borrowing issues (which is
 
    /// either a direct value, or might contain an index to a heap value), but
 
    /// should be treated by the programmer as a reference (i.e. don't call
 
    /// `drop_value(thing)` after calling `clone_value(thing.clone())`.
 
    pub(crate) fn clone_value(&mut self, value: Value) -> Value {
 
        // Quickly check if the value is not on the heap
 
        let source_heap_pos = value.get_heap_pos();
 
        if source_heap_pos.is_none() {
 
            // We can do a trivial copy, unless we're dealing with a value
 
            // reference
 
            return match value {
 
                Value::Ref(ValueId::Stack(stack_pos)) => {
 
                    let abs_stack_pos = self.cur_stack_boundary + stack_pos as usize + 1;
 
                    self.clone_value(self.stack[abs_stack_pos].clone())
 
                },
 
                Value::Ref(ValueId::Heap(heap_pos, val_idx)) => {
 
                    self.clone_value(self.heap_regions[heap_pos as usize].values[val_idx as usize].clone())
 
                },
 
                _ => value,
 
            };
 
        }
 

	
 
        // Value does live on heap, copy it
 
        let source_heap_pos = source_heap_pos.unwrap() as usize;
 
        let target_heap_pos = self.alloc_heap();
 
        let target_heap_pos_usize = target_heap_pos as usize;
 

	
 
        let num_values = self.heap_regions[source_heap_pos].values.len();
 
        for value_idx in 0..num_values {
 
            let cloned = self.clone_value(self.heap_regions[source_heap_pos].values[value_idx].clone());
 
            self.heap_regions[target_heap_pos_usize].values.push(cloned);
 
        }
 

	
 
        match value {
 
            Value::Message(_) => Value::Message(target_heap_pos),
 
            Value::String(_) => Value::String(target_heap_pos),
 
            Value::Array(_) => Value::Array(target_heap_pos),
 
            Value::Union(tag, _) => Value::Union(tag, target_heap_pos),
 
            Value::Struct(_) => Value::Struct(target_heap_pos),
 
            _ => unreachable!("performed clone_value on heap, but {:?} is not a heap value", value),
 
        }
 
    }
 

	
 
    pub(crate) fn drop_value(&mut self, value: Option<HeapPos>) {
 
        if let Some(heap_pos) = value {
 
            self.drop_heap_pos(heap_pos);
 
        }
 
    }
 

	
 
    pub(crate) fn drop_heap_pos(&mut self, heap_pos: HeapPos) {
 
        let num_values = self.heap_regions[heap_pos as usize].values.len();
 
        for value_idx in 0..num_values {
 
            if let Some(other_heap_pos) = self.heap_regions[heap_pos as usize].values[value_idx].get_heap_pos() {
 
                self.drop_heap_pos(other_heap_pos);
 
            }
 
        }
 

	
 
        self.heap_regions[heap_pos as usize].values.clear();
 
        self.free_regions.push_back(heap_pos);
 
    }
 

	
 
    pub(crate) fn alloc_heap(&mut self) -> HeapPos {
 
        if self.free_regions.is_empty() {
 
            let idx = self.heap_regions.len() as HeapPos;
 
            self.heap_regions.push(HeapAllocation{ values: Vec::new() });
 
            return idx;
 
        } else {
 
            let idx = self.free_regions.pop_back().unwrap();
 
            return idx;
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/eval/value.rs
Show inline comments
 
@@ -48,192 +48,193 @@ pub enum Value {
 
    SInt64(i64),
 
    Array(HeapPos),
 
    // Instances of user-defined types
 
    Enum(i64),
 
    Union(i64, HeapPos),
 
    Struct(HeapPos),
 
}
 

	
 
macro_rules! impl_union_unpack_as_value {
 
    ($func_name:ident, $variant_name:path, $return_type:ty) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $return_type {
 
                match self {
 
                    $variant_name(v) => *v,
 
                    _ => panic!(concat!("called ", stringify!($func_name()), " on {:?}"), self),
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
impl_union_unpack_as_value!(as_stack_boundary, Value::PrevStackBoundary, isize);
 
impl_union_unpack_as_value!(as_ref,     Value::Ref,     ValueId);
 
impl_union_unpack_as_value!(as_input,   Value::Input,   PortId);
 
impl_union_unpack_as_value!(as_output,  Value::Output,  PortId);
 
impl_union_unpack_as_value!(as_message, Value::Message, HeapPos);
 
impl_union_unpack_as_value!(as_bool,    Value::Bool,    bool);
 
impl_union_unpack_as_value!(as_char,    Value::Char,    char);
 
impl_union_unpack_as_value!(as_string,  Value::String,  HeapPos);
 
impl_union_unpack_as_value!(as_uint8,   Value::UInt8,   u8);
 
impl_union_unpack_as_value!(as_uint16,  Value::UInt16,  u16);
 
impl_union_unpack_as_value!(as_uint32,  Value::UInt32,  u32);
 
impl_union_unpack_as_value!(as_uint64,  Value::UInt64,  u64);
 
impl_union_unpack_as_value!(as_sint8,   Value::SInt8,   i8);
 
impl_union_unpack_as_value!(as_sint16,  Value::SInt16,  i16);
 
impl_union_unpack_as_value!(as_sint32,  Value::SInt32,  i32);
 
impl_union_unpack_as_value!(as_sint64,  Value::SInt64,  i64);
 
impl_union_unpack_as_value!(as_array,   Value::Array,   HeapPos);
 
impl_union_unpack_as_value!(as_enum,    Value::Enum,    i64);
 
impl_union_unpack_as_value!(as_struct,  Value::Struct,  HeapPos);
 

	
 
impl Value {
 
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
 
        match self {
 
            Value::Union(tag, v) => (*tag, *v),
 
            _ => panic!("called as_union on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn is_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_unsigned_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_signed_integer(&self) -> bool {
 
        match self {
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn as_unsigned_integer(&self) -> u64 {
 
        match self {
 
            Value::UInt8(v)  => *v as u64,
 
            Value::UInt16(v) => *v as u64,
 
            Value::UInt32(v) => *v as u64,
 
            Value::UInt64(v) => *v as u64,
 
            _ => unreachable!("called as_unsigned_integer on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_signed_integer(&self) -> i64 {
 
        match self {
 
            Value::SInt8(v)  => *v as i64,
 
            Value::SInt16(v) => *v as i64,
 
            Value::SInt32(v) => *v as i64,
 
            Value::SInt64(v) => *v as i64,
 
            _ => unreachable!("called as_signed_integer on {:?}", self)
 
        }
 
    }
 

	
 
    /// Returns the heap position associated with the value. If the value
 
    /// doesn't store anything in the heap then we return `None`.
 
    pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
 
        match self {
 
            Value::Message(v) => Some(*v),
 
            Value::String(v) => Some(*v),
 
            Value::Array(v) => Some(*v),
 
            Value::Union(_, v) => Some(*v),
 
            Value::Struct(v) => Some(*v),
 
            _ => None
 
        }
 
    }
 
}
 

	
 
/// When providing arguments to a new component, or when transferring values
 
/// from one component's store to a newly instantiated component, one has to
 
/// transfer stack and heap values. This `ValueGroup` represents such a
 
/// temporary group of values with potential heap allocations.
 
///
 
/// Constructing such a ValueGroup manually requires some extra care to make
 
/// sure all elements of `values` point to valid elements of `regions`.
 
///
 
/// Again: this is a temporary thing, hopefully removed once we move to a
 
/// bytecode interpreter.
 
pub struct ValueGroup {
 
    pub(crate) values: Vec<Value>,
 
    pub(crate) regions: Vec<Vec<Value>>
 
}
 

	
 
impl ValueGroup {
 
    pub(crate) fn new_stack(values: Vec<Value>) -> Self {
 
        debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
 
        Self{
 
            values,
 
            regions: Vec::new(),
 
        }
 
    }
 
    pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
 
        let mut group = ValueGroup{
 
            values: Vec::with_capacity(values.len()),
 
            regions: Vec::with_capacity(values.len()), // estimation
 
        };
 

	
 
        for value in values {
 
            let transferred = group.retrieve_value(value, store);
 
            group.values.push(transferred);
 
        }
 

	
 
        group
 
    }
 

	
 
    /// Transfers a provided value from a store into a local value with its
 
    /// heap allocations (if any) stored in the ValueGroup. Calling this
 
    /// function will not store the returned value in the `values` member.
 
    fn retrieve_value(&mut self, value: &Value, from_store: &Store) -> Value {
 
        let value = from_store.maybe_read_ref(value);
 
        if let Some(heap_pos) = value.get_heap_pos() {
 
            // Value points to a heap allocation, so transfer the heap values
 
            // internally.
 
            let from_region = &from_store.heap_regions[heap_pos as usize].values;
 
            let mut new_region = Vec::with_capacity(from_region.len());
 
            for value in from_region {
 
                let transferred = self.retrieve_value(value, from_store);
 
                new_region.push(transferred);
 
            }
 

	
 
            // Region is constructed, store internally and return the new value.
 
            let new_region_idx = self.regions.len() as HeapPos;
 
            self.regions.push(new_region);
 

	
 
            return match value {
 
                Value::Message(_)    => Value::Message(new_region_idx),
 
                Value::String(_)     => Value::String(new_region_idx),
 
                Value::Array(_)      => Value::Array(new_region_idx),
 
                Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
 
                Value::Struct(_)     => Value::Struct(new_region_idx),
 
                _ => unreachable!(),
 
            };
 
        } else {
 
            return value.clone();
 
        }
 
    }
 

	
 
    /// Transfers the heap values and the stack values into the store. Stack
 
    /// values are pushed onto the Store's stack in the order in which they
 
    /// appear in the value group.
 
    pub(crate) fn into_store(self, store: &mut Store) {
 
        for value in &self.values {
 
            let transferred = self.provide_value(value, store);
 
            store.stack.push(transferred);
 
        }
 
    }
 

	
 
    fn provide_value(&self, value: &Value, to_store: &mut Store) -> Value {
 
        if let Some(from_heap_pos) = value.get_heap_pos() {
 
            let from_heap_pos = from_heap_pos as usize;
 
            let to_heap_pos = to_store.alloc_heap();
 
            let to_heap_pos_usize = to_heap_pos as usize;
 
            to_store.heap_regions[to_heap_pos_usize].values.reserve(self.regions[from_heap_pos].len());
 

	
 
            for value in &self.regions[from_heap_pos as usize] {
 
                let transferred = self.provide_value(value, to_store);
src/protocol/parser/pass_typing.rs
Show inline comments
 
/// pass_typing
 
///
 
/// Performs type inference and type checking. Type inference is implemented by
 
/// applying constraints on (sub)trees of types. During this process the
 
/// resolver takes the `ParserType` structs (the representation of the types
 
/// written by the programmer), converts them to `InferenceType` structs (the
 
/// temporary data structure used during type inference) and attempts to arrive
 
/// at `ConcreteType` structs (the representation of a fully checked and
 
/// validated type).
 
///
 
/// The resolver will visit every statement and expression relevant to the
 
/// procedure and insert and determine its initial type based on context (e.g. a
 
/// return statement's expression must match the function's return type, an
 
/// if statement's test expression must evaluate to a boolean). When all are
 
/// visited we attempt to make progress in evaluating the types. Whenever a type
 
/// is progressed we queue the related expressions for further type progression.
 
/// Once no more expressions are in the queue the algorithm is finished. At this
 
/// point either all types are inferred (or can be trivially implicitly
 
/// determined), or we have incomplete types. In the latter case we return an
 
/// error.
 
///
 
/// TODO: Needs a thorough rewrite:
 
///  0. polymorph_progress is intentionally broken at the moment. Make it work
 
///     again and use a normal VecSomething.
 
///  1. The foundation for doing all of the work with predetermined indices
 
///     instead of with HashMaps is there, but it is not really used because of
 
///     time constraints. When time is available, rewrite the system such that
 
///     AST IDs are not needed, and only indices into arrays are used.
 
///  2. We're doing a lot of extra work. It seems better to apply the initial
 
///     type based on expression parents, and immediately apply forced
 
///     constraints (arg to a fires() call must be port-like). All of the \
 
///     progress_xxx calls should then only be concerned with "transmitting"
 
///     type inference across their parent/child expressions.
 
///  3. Remove the `msg` type?
 
///  4. Disallow certain types in certain operations (e.g. `Void`).
 

	
 
macro_rules! debug_log_enabled {
 
    () => { false };
 
}
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "types", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "types", $format, $($args),*);
 
    };
 
}
 

	
 
use std::collections::{HashMap, HashSet};
 

	
 
use crate::collections::DequeSet;
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::ModuleCompilationPhase;
 
use crate::protocol::parser::type_table::*;
 
use crate::protocol::parser::token_parsing::*;
 
use super::visitor::{
 
    STMT_BUFFER_INIT_CAPACITY,
 
    EXPR_BUFFER_INIT_CAPACITY,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
};
 

	
 
const VOID_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Void ];
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Message, InferenceTypePart::UInt8 ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const CHARACTER_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Character ];
 
const STRING_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::String ];
 
const STRING_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::String, InferenceTypePart::Character ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
 
const SLICE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Slice, InferenceTypePart::Unknown ];
 
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];
 

	
 
/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub(crate) enum InferenceTypePart {
 
    // When we infer types of AST elements that support polymorphic arguments,
 
    // then we might have the case that multiple embedded types depend on the
 
    // polymorphic type (e.g. func bla(T a, T[] b) -> T[][]). If we can infer
 
    // the type in one place (e.g. argument a), then we may propagate this
 
    // information to other types (e.g. argument b and the return type). For
 
    // this reason we place markers in the `InferenceType` instances such that
 
    // we know which part of the type was originally a polymorphic argument.
 
    Marker(u32),
 
    // Completely unknown type, needs to be inferred
 
    Unknown,
 
    // Partially known type, may be inferred to to be the appropriate related 
 
    // type.
 
    // IndexLike,      // index into array/slice
 
    NumberLike,     // any kind of integer/float
 
    IntegerLike,    // any kind of integer
 
    ArrayLike,      // array or slice. Note that this must have a subtype
 
    PortLike,       // input or output port
 
    // Special types that cannot be instantiated by the user
 
    Void, // For builtin functions that do not return anything
 
    // Concrete types without subtypes
 
    Bool,
 
    UInt8,
 
    UInt16,
 
    UInt32,
 
    UInt64,
 
    SInt8,
 
    SInt16,
 
    SInt32,
 
    SInt64,
 
    Character,
 
    String,
 
    // One subtype
 
    Message,
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // A user-defined type with any number of subtypes
 
    Instance(DefinitionId, u32)
 
}
 

	
 
impl InferenceTypePart {
 
    fn is_marker(&self) -> bool {
 
        match self {
 
            InferenceTypePart::Marker(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    /// Checks if the type is concrete, markers are interpreted as concrete
 
    /// types.
 
    fn is_concrete(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Unknown | ITP::NumberLike |
 
            ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => false,
 
            _ => true
 
        }
 
    }
 

	
 
    fn is_concrete_number(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_integer(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_msg_array_or_slice(&self) -> bool {
 
    fn is_concrete_arraylike(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Array | ITP::Slice | ITP::Message => true,
 
            ITP::Array | ITP::Slice | ITP::String | ITP::Message => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_port(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Input | ITP::Output => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    /// Checks if a part is less specific than the argument. Only checks for 
 
    /// single-part inference (i.e. not the replacement of an `Unknown` variant 
 
    /// with the argument)
 
    fn may_be_inferred_from(&self, arg: &InferenceTypePart) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        (*self == ITP::IntegerLike && arg.is_concrete_integer()) ||
 
        (*self == ITP::NumberLike && (arg.is_concrete_number() || *arg == ITP::IntegerLike)) ||
 
        (*self == ITP::ArrayLike && arg.is_concrete_msg_array_or_slice()) ||
 
        (*self == ITP::ArrayLike && arg.is_concrete_arraylike()) ||
 
        (*self == ITP::PortLike && arg.is_concrete_port())
 
    }
 

	
 
    /// Checks if a part is more specific
 

	
 
    /// Returns the change in "iteration depth" when traversing this particular
 
    /// part. The iteration depth is used to traverse the tree in a linear 
 
    /// fashion. It is basically `number_of_subtypes - 1`
 
    fn depth_change(&self) -> i32 {
 
        use InferenceTypePart as ITP;
 
        match &self {
 
            ITP::Unknown | ITP::NumberLike | ITP::IntegerLike |
 
            ITP::Void | ITP::Bool |
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 |
 
            ITP::Character | ITP::String => {
 
            ITP::Character => {
 
                -1
 
            },
 
            ITP::Marker(_) |
 
            ITP::ArrayLike | ITP::Message | ITP::Array | ITP::Slice |
 
            ITP::PortLike | ITP::Input | ITP::Output => {
 
            ITP::PortLike | ITP::Input | ITP::Output | ITP::String => {
 
                // One subtype, so do not modify depth
 
                0
 
            },
 
            ITP::Instance(_, num_args) => {
 
                (*num_args as i32) - 1
 
            }
 
        }
 
    }
 
}
 

	
 
impl From<ConcreteTypePart> for InferenceTypePart {
 
    fn from(v: ConcreteTypePart) -> InferenceTypePart {
 
        use ConcreteTypePart as CTP;
 
        use InferenceTypePart as ITP;
 

	
 
        match v {
 
            CTP::Void => ITP::Void,
 
            CTP::Message => ITP::Message,
 
            CTP::Bool => ITP::Bool,
 
            CTP::UInt8 => ITP::UInt8,
 
            CTP::UInt16 => ITP::UInt16,
 
            CTP::UInt32 => ITP::UInt32,
 
            CTP::UInt64 => ITP::UInt64,
 
            CTP::SInt8 => ITP::SInt8,
 
            CTP::SInt16 => ITP::SInt16,
 
            CTP::SInt32 => ITP::SInt32,
 
            CTP::SInt64 => ITP::SInt64,
 
            CTP::Character => ITP::Character,
 
            CTP::String => ITP::String,
 
            CTP::Array => ITP::Array,
 
            CTP::Slice => ITP::Slice,
 
            CTP::Input => ITP::Input,
 
            CTP::Output => ITP::Output,
 
            CTP::Instance(id, num) => ITP::Instance(id, num),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
struct InferenceType {
 
    has_marker: bool,
 
    is_done: bool,
 
    parts: Vec<InferenceTypePart>,
 
}
 

	
 
impl InferenceType {
 
    /// Generates a new InferenceType. The two boolean flags will be checked in
 
    /// debug mode.
 
    fn new(has_marker: bool, is_done: bool, parts: Vec<InferenceTypePart>) -> Self {
 
        if cfg!(debug_assertions) {
 
            debug_assert!(!parts.is_empty());
 
            let parts_body_marker = parts.iter().any(|v| v.is_marker());
 
            debug_assert_eq!(has_marker, parts_body_marker);
 
            let parts_done = parts.iter().all(|v| v.is_concrete());
 
            debug_assert_eq!(is_done, parts_done, "{:?}", parts);
 
        }
 
        Self{ has_marker, is_done, parts }
 
    }
 

	
 
    /// Replaces a type subtree with the provided subtree. The caller must make
 
    /// sure the the replacement is a well formed type subtree.
 
    fn replace_subtree(&mut self, start_idx: usize, with: &[InferenceTypePart]) {
 
        let end_idx = Self::find_subtree_end_idx(&self.parts, start_idx);
 
        debug_assert_eq!(with.len(), Self::find_subtree_end_idx(with, 0));
 
        self.parts.splice(start_idx..end_idx, with.iter().cloned());
 
        self.recompute_is_done();
 
    }
 

	
 
    // TODO: @performance, might all be done inline in the type inference methods
 
    fn recompute_is_done(&mut self) {
 
        self.is_done = self.parts.iter().all(|v| v.is_concrete());
 
    }
 

	
 
    /// Seeks a body marker starting at the specified position. If a marker is
 
    /// found then its value and the index of the type subtree that follows it
 
    /// is returned.
 
    fn find_marker(&self, mut start_idx: usize) -> Option<(u32, usize)> {
 
        while start_idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = &self.parts[start_idx] {
 
                return Some((*marker, start_idx + 1))
 
            }
 

	
 
            start_idx += 1;
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Returns an iterator over all body markers and the partial type tree that
 
    /// follows those markers. If it is a problem that `InferenceType` is 
 
    /// borrowed by the iterator, then use `find_body_marker`.
 
    fn marker_iter(&self) -> InferenceTypeMarkerIter {
 
        InferenceTypeMarkerIter::new(&self.parts)
 
    }
 

	
 
    /// Given that the `parts` are a depth-first serialized tree of types, this
 
    /// function finds the subtree anchored at a specific node. The returned 
 
    /// index is exclusive.
 
    fn find_subtree_end_idx(parts: &[InferenceTypePart], start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let mut idx = start_idx;
 

	
 
        while idx < parts.len() {
 
            depth += parts[idx].depth_change();
 
            if depth == 0 {
 
                return idx + 1;
 
            }
 
            idx += 1;
 
        }
 

	
 
        // If here, then the inference type is malformed
 
        unreachable!();
 
        unreachable!("Malformed type: {:?}", parts);
 
    }
 

	
 
    /// Call that attempts to infer the part at `to_infer.parts[to_infer_idx]` 
 
    /// using the subtree at `template.parts[template_idx]`. Will return 
 
    /// `Some(depth_change_due_to_traversal)` if type inference has been 
 
    /// applied. In this case the indices will also be modified to point to the 
 
    /// next part in both templates. If type inference has not (or: could not) 
 
    /// be applied then `None` will be returned. Note that this might mean that 
 
    /// the types are incompatible.
 
    ///
 
    /// As this is a helper functions, some assumptions: the parts are not 
 
    /// exactly equal, and neither of them contains a marker. Also: only the
 
    /// `to_infer` parts are checked for inference. It might be that this 
 
    /// function returns `None`, but that that `template` is still compatible
 
    /// with `to_infer`, e.g. when `template` has an `Unknown` part.
 
    fn infer_part_for_single_type(
 
        to_infer: &mut InferenceType, to_infer_idx: &mut usize,
 
        template_parts: &[InferenceTypePart], template_idx: &mut usize,
 
    ) -> Option<i32> {
 
        use InferenceTypePart as ITP;
 

	
 
        let to_infer_part = &to_infer.parts[*to_infer_idx];
 
        let template_part = &template_parts[*template_idx];
 

	
 
        // Check for programmer mistakes
 
        debug_assert_ne!(to_infer_part, template_part);
 
        debug_assert!(!to_infer_part.is_marker(), "marker encountered in 'infer part'");
 
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");
 

	
 
        // Inference of a somewhat-specified type
 
        if to_infer_part.may_be_inferred_from(template_part) {
 
            let depth_change = to_infer_part.depth_change();
 
            debug_assert_eq!(depth_change, template_part.depth_change());
 

	
 
            to_infer.parts[*to_infer_idx] = template_part.clone();
 

	
 
            *to_infer_idx += 1;
 
            *template_idx += 1;
 
            return Some(depth_change);
 
        }
 

	
 
        // Inference of a completely unknown type
 
        if *to_infer_part == ITP::Unknown {
 
            // template part is different, so cannot be unknown, hence copy the
 
            // entire subtree. Make sure not to copy markers.
 
            let template_end_idx = Self::find_subtree_end_idx(template_parts, *template_idx);
 
            to_infer.parts[*to_infer_idx] = template_parts[*template_idx].clone(); // first element
 

	
 
            *to_infer_idx += 1;
 
            for template_idx in *template_idx + 1..template_end_idx {
 
                let template_part = &template_parts[template_idx];
 
                if !template_part.is_marker() {
 
                    to_infer.parts.insert(*to_infer_idx, template_part.clone());
 
                    *to_infer_idx += 1;
 
                }
 
            }
 
            *template_idx = template_end_idx;
 

	
 
            // Note: by definition the LHS was Unknown and the RHS traversed a 
 
            // full subtree.
 
            return Some(-1);
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Call that checks if the `to_check` part is compatible with the `infer`
 
    /// part. This is essentially a copy of `infer_part_for_single_type`, but
 
    /// without actually copying the type parts.
 
    fn check_part_for_single_type(
 
        to_check_parts: &[InferenceTypePart], to_check_idx: &mut usize,
 
        template_parts: &[InferenceTypePart], template_idx: &mut usize
 
    ) -> Option<i32> {
 
        use InferenceTypePart as ITP;
 

	
 
        let to_check_part = &to_check_parts[*to_check_idx];
 
        let template_part = &template_parts[*template_idx];
 

	
 
        // Checking programmer errors
 
        debug_assert_ne!(to_check_part, template_part);
 
        debug_assert!(!to_check_part.is_marker(), "marker encountered in 'to_check part'");
 
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");
 

	
 
        if to_check_part.may_be_inferred_from(template_part) {
 
            let depth_change = to_check_part.depth_change();
 
            debug_assert_eq!(depth_change, template_part.depth_change());
 
            *to_check_idx += 1;
 
            *template_idx += 1;
 
            return Some(depth_change);
 
        }
 

	
 
        if *to_check_part == ITP::Unknown {
 
            *to_check_idx += 1;
 
            *template_idx = Self::find_subtree_end_idx(template_parts, *template_idx);
 

	
 
            // By definition LHS and RHS had depth change of -1
 
@@ -532,243 +504,252 @@ impl InferenceType {
 

	
 
            return SingleInferenceResult::Incompatible
 
        }
 

	
 
        if modified {
 
            to_infer.recompute_is_done();
 
            return SingleInferenceResult::Modified;
 
        } else {
 
            return SingleInferenceResult::Unmodified;
 
        }
 
    }
 

	
 
    /// Checks if both types are compatible, doesn't perform any inference
 
    fn check_subtrees(
 
        type_parts_a: &[InferenceTypePart], start_idx_a: usize,
 
        type_parts_b: &[InferenceTypePart], start_idx_b: usize
 
    ) -> bool {
 
        let mut depth = 1;
 
        let mut idx_a = start_idx_a;
 
        let mut idx_b = start_idx_b;
 

	
 
        while depth > 0 {
 
            let part_a = &type_parts_a[idx_a];
 
            let part_b = &type_parts_b[idx_b];
 

	
 
            if part_a == part_b {
 
                let depth_change = part_a.depth_change();
 
                depth += depth_change;
 
                debug_assert_eq!(depth_change, part_b.depth_change());
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            
 
            if part_a.is_marker() { idx_a += 1; continue; }
 
            if part_b.is_marker() { idx_b += 1; continue; }
 

	
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_a, &mut idx_a, type_parts_b, &mut idx_b
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_b, &mut idx_b, type_parts_a, &mut idx_a
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 

	
 
            return false;
 
        }
 

	
 
        true
 
    }
 

	
 
    /// Performs the conversion of the inference type into a concrete type.
 
    /// By calling this function you must make sure that no unspecified types
 
    /// (e.g. Unknown or IntegerLike) exist in the type.
 
    fn write_concrete_type(&self, concrete_type: &mut ConcreteType) {
 
        use InferenceTypePart as ITP;
 
        use ConcreteTypePart as CTP;
 

	
 
        // Make sure inference type is specified but concrete type is not yet specified
 
        debug_assert!(!self.parts.is_empty());
 
        debug_assert!(concrete_type.parts.is_empty());
 
        concrete_type.parts.reserve(self.parts.len());
 

	
 
        let mut idx = 0;
 
        while idx < self.parts.len() {
 
            let part = &self.parts[idx];
 
            let converted_part = match part {
 
                ITP::Marker(_) => {
 
                    // Markers are removed when writing to the concrete type.
 
                    idx += 1;
 
                    continue;
 
                },
 
                ITP::Unknown | ITP::NumberLike |
 
                ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => {
 
                    // Should not happen if type inferencing works correctly: we
 
                    // should have returned a programmer-readable error or have
 
                    // inferred all types.
 
                    unreachable!("attempted to convert inference type part {:?} into concrete type", part);
 
                },
 
                ITP::Void => CTP::Void,
 
                ITP::Message => CTP::Message,
 
                ITP::Bool => CTP::Bool,
 
                ITP::UInt8 => CTP::UInt8,
 
                ITP::UInt16 => CTP::UInt16,
 
                ITP::UInt32 => CTP::UInt32,
 
                ITP::UInt64 => CTP::UInt64,
 
                ITP::SInt8 => CTP::SInt8,
 
                ITP::SInt16 => CTP::SInt16,
 
                ITP::SInt32 => CTP::SInt32,
 
                ITP::SInt64 => CTP::SInt64,
 
                ITP::Character => CTP::Character,
 
                ITP::String => CTP::String,
 
                ITP::String => {
 
                    // Inferred type has a 'char' subtype to simplify array
 
                    // checking, we remove it here.
 
                    debug_assert_eq!(self.parts[idx + 1], InferenceTypePart::Character);
 
                    idx += 1;
 
                    CTP::String
 
                },
 
                ITP::Array => CTP::Array,
 
                ITP::Slice => CTP::Slice,
 
                ITP::Input => CTP::Input,
 
                ITP::Output => CTP::Output,
 
                ITP::Instance(id, num) => CTP::Instance(*id, *num),
 
            };
 

	
 
            concrete_type.parts.push(converted_part);
 
            idx += 1;
 
        }
 
    }
 

	
 
    /// Writes a human-readable version of the type to a string. This is used
 
    /// to display error messages
 
    fn write_display_name(
 
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
 
    ) -> usize {
 
        use InferenceTypePart as ITP;
 

	
 
        match &parts[idx] {
 
            ITP::Marker(_marker_idx) => {
 
                if debug_log_enabled!() {
 
                    buffer.push_str(&format!("{{Marker:{}}}", *_marker_idx));
 
                }
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            },
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::NumberLike => buffer.push_str("numberlike"),
 
            ITP::IntegerLike => buffer.push_str("integerlike"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("portlike<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
 
            ITP::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
 
            ITP::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
 
            ITP::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
 
            ITP::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
 
            ITP::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
 
            ITP::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
 
            ITP::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
 
            ITP::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
 
            ITP::Character => buffer.push_str(KW_TYPE_CHAR_STR),
 
            ITP::String => buffer.push_str(KW_TYPE_STRING_STR),
 
            ITP::String => {
 
                buffer.push_str(KW_TYPE_STRING_STR);
 
                idx += 1; // skip the 'char' subtype
 
            },
 
            ITP::Message => {
 
                buffer.push_str(KW_TYPE_MESSAGE_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Array => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            ITP::Slice => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(definition.identifier().value.as_str());
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
            },
 
        }
 

	
 
        idx
 
    }
 

	
 
    /// Returns the display name of a (part of) the type tree. Will allocate a
 
    /// string.
 
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
 
        let mut buffer = String::with_capacity(parts.len() * 6);
 
        Self::write_display_name(&mut buffer, heap, parts, 0);
 
        buffer
 
    }
 

	
 
    /// Returns the display name of the full type tree. Will allocate a string.
 
    fn display_name(&self, heap: &Heap) -> String {
 
        Self::partial_display_name(heap, &self.parts)
 
    }
 
}
 

	
 
impl Default for InferenceType {
 
    fn default() -> Self {
 
        Self{
 
            has_marker: false,
 
            is_done: false,
 
            parts: Vec::new(),
 
        }
 
    }
 
}
 

	
 
/// Iterator over the subtrees that follow a marker in an `InferenceType`
 
/// instance. Returns immutable slices over the internal parts
 
struct InferenceTypeMarkerIter<'a> {
 
    parts: &'a [InferenceTypePart],
 
    idx: usize,
 
}
 

	
 
impl<'a> InferenceTypeMarkerIter<'a> {
 
    fn new(parts: &'a [InferenceTypePart]) -> Self {
 
        Self{ parts, idx: 0 }
 
    }
 
}
 

	
 
impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
    type Item = (u32, &'a [InferenceTypePart]);
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Iterate until we find a marker
 
        while self.idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 
@@ -948,195 +929,195 @@ impl PassTyping {
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module.phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module.root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 

	
 
            let should_add_to_queue = match definition {
 
                Definition::Function(definition) => definition.poly_vars.is_empty(),
 
                Definition::Component(definition) => definition.poly_vars.is_empty(),
 
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => false,
 
            };
 

	
 
            if should_add_to_queue {
 
                let reserved_idx = ctx.types.reserve_procedure_monomorph_index(definition_id, None);
 
                queue.push(ResolveQueueElement{
 
                    root_id,
 
                    definition_id: *definition_id,
 
                    monomorph_types: Vec::new(),
 
                    reserved_monomorph_idx: reserved_idx,
 
                })
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn handle_module_definition(
 
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
 
    ) -> VisitorResult {
 
        // Visit the definition
 
        debug_assert_eq!(ctx.module.root_id, element.root_id);
 
        self.reset();
 
        debug_assert!(self.poly_vars.is_empty());
 
        self.reserved_idx = element.reserved_monomorph_idx;
 
        self.poly_vars = element.monomorph_types;
 
        self.visit_definition(ctx, element.definition_id)?;
 

	
 
        // Keep resolving types
 
        self.resolve_types(ctx, queue)?;
 
        Ok(())
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.reserved_idx = -1;
 
        self.definition_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.poly_vars.clear();
 
        self.stmt_buffer.clear();
 
        self.expr_buffer.clear();
 
        self.var_types.clear();
 
        self.expr_types.clear();
 
        self.extra_data.clear();
 
        self.expr_queued.clear();
 
    }
 
}
 

	
 
impl Visitor for PassTyping {
 
    // Definitions
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.poly_vars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting component '{}': {}", comp_def.identifier.value.as_str(), id.0.index);
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(comp_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        for param_id in comp_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        // Visit the body and all of its expressions
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.poly_vars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting function '{}': {}", func_def.identifier.value.as_str(), id.0.index);
 
        if debug_log_enabled!() {
 
            debug_log!("Polymorphic variables:");
 
            for (_idx, poly_var) in self.poly_vars.iter().enumerate() {
 
                let mut infer_type_parts = Vec::new();
 
                for concrete_part in &poly_var.parts {
 
                    infer_type_parts.push(InferenceTypePart::from(*concrete_part));
 
                }
 
                Self::determine_inference_type_from_concrete_type(
 
                    &mut infer_type_parts, &poly_var.parts
 
                );
 
                let _infer_type = InferenceType::new(false, true, infer_type_parts);
 
                debug_log!(" - [{:03}] {:?}", _idx, _infer_type.display_name(&ctx.heap));
 
            }
 
        }
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(func_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        // Visit all of the expressions within the body
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        for stmt_id in block.statements.clone() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_types.insert(memory_stmt.variable, VarData::new_local(var_type));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_types.insert(from_local.this, VarData::new_channel(from_var_type, channel_stmt.to));
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_types.insert(to_local.this, VarData::new_channel(to_var_type, channel_stmt.from));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, true_body_id)?;
 
        if let Some(false_body_id) = false_body_id {
 
            self.visit_block_stmt(ctx, false_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
@@ -1633,377 +1614,416 @@ impl PassTyping {
 
                false,
 
            AO::Concatenated =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &ARRAYLIKE_TEMPLATE)?,
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &NUMBERLIKE_TEMPLATE)?,
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &INTEGERLIKE_TEMPLATE)?,
 
        };
 

	
 
        let (progress_arg1, progress_arg2) = self.apply_equal2_constraint(
 
            ctx, upcast_id, arg1_expr_id, 0, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_forced || progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_forced || progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &ctx.heap[id];
 
        let bound_from_id = binding_expr.bound_from;
 
        let bound_to_id = binding_expr.bound_to;
 

	
 
        // Output is always a boolean. The two arguments should be of equal
 
        // type.
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, bound_from_id, 0, bound_to_id, 0)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_from { self.queue_expr(ctx, bound_from_id); }
 
        if progress_to { self.queue_expr(ctx, bound_to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> Result<(), ParseError> {
 
        // Note: test expression type is already enforced
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.true_expression;
 
        let arg2_expr_id = expr.false_expression;
 

	
 
        debug_log!("Conditional expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // I keep confusing myself: this applies equality of types between the
 
        // condition branches' types, and the result from the conditional
 
        // expression, because the result from the conditional is one of the
 
        // branches.
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> Result<(), ParseError> {
 
        // Note: our expression type might be fixed by our parent, but we still
 
        // need to make sure it matches the type associated with our operation.
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_id = expr.left;
 
        let arg2_id = expr.right;
 

	
 
        debug_log!("Binary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = match expr.operation {
 
            BO::Concatenate => {
 
                // Arguments may be arrays/slices, output is always an array
 
                let progress_expr = self.apply_template_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?;
 
                let progress_arg1 = self.apply_template_constraint(ctx, arg1_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_arg2 = self.apply_template_constraint(ctx, arg2_id, &ARRAYLIKE_TEMPLATE)?;
 
                // Two cases: if one of the arguments or the output type is a
 
                // string, then all must be strings. Otherwise the arguments
 
                // must be arraylike and the output will be a array.
 
                let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, upcast_id);
 
                let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg1_id);
 
                let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg2_id);
 

	
 
                let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
 
                let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
 

	
 
                // Note: this statement is an expression returning the progression bools
 
                if someone_is_str {
 
                    // One of the arguments is a string, then all must be strings
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?
 
                } else {
 
                    let progress_expr = if someone_is_not_str {
 
                        // Output must be a normal array
 
                        self.apply_template_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?
 
                    } else {
 
                        // Output may still be anything
 
                        self.apply_template_constraint(ctx, upcast_id, &ARRAYLIKE_TEMPLATE)?
 
                    };
 

	
 
                    let progress_arg1 = self.apply_template_constraint(ctx, arg1_id, &ARRAYLIKE_TEMPLATE)?;
 
                    let progress_arg2 = self.apply_template_constraint(ctx, arg2_id, &ARRAYLIKE_TEMPLATE)?;
 

	
 
                // If they're all arraylike, then we want the subtype to match
 
                let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 1)?;
 
                    // If they're all arraylike, then we want the subtype to match
 
                    let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                        self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 1)?;
 

	
 
                (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
                    (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
                }
 
            },
 
            BO::LogicalAnd => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LogicalOr => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, arg1_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, arg2_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight => {
 
                // All equal of integer type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
            BO::Equality | BO::Inequality => {
 
                // Equal2 on args, forced boolean output
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual => {
 
                // Equal2 on args with numberlike type, forced boolean output
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg_base = self.apply_template_constraint(ctx, arg1_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg_base || progress_arg1, progress_arg_base || progress_arg2)
 
            },
 
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide => {
 
                // All equal of number type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.debug_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> Result<(), ParseError> {
 
        use UnaryOperator as UO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg_id = expr.expression;
 

	
 
        debug_log!("Unary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg  type: {}", self.debug_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg) = match expr.operation {
 
            UO::Positive | UO::Negative => {
 
                // Equal types of numeric class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::BitwiseNot => {
 
                // Equal types of integer class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::LogicalNot => {
 
                // Both bools
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                (progress_expr, progress_arg)
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg  type [{}]: {}", progress_arg, self.debug_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg { self.queue_expr(ctx, arg_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let index_id = expr.index;
 

	
 
        debug_log!("Indexing expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type: {}", self.debug_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Make sure subject is arraylike and index is integerlike
 
        let progress_subject_base = self.apply_template_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_index = self.apply_template_constraint(ctx, index_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject_base || progress_subject, self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type [{}]: {}", progress_index, self.debug_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_index { self.queue_expr(ctx, index_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let from_id = expr.from_index;
 
        let to_id = expr.to_index;
 

	
 
        debug_log!("Slicing expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - FromIdx type: {}", self.debug_get_display_name(ctx, from_id));
 
        debug_log!("   - ToIdx   type: {}", self.debug_get_display_name(ctx, to_id));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Make sure subject is arraylike and indices are of equal integerlike
 
        let progress_subject_base = self.apply_template_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_idx_base = self.apply_template_constraint(ctx, from_id, &INTEGERLIKE_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, from_id, 0, to_id, 0)?;
 

	
 
        // Make sure if output is of Slice<T> then subject is Array<T>
 
        let progress_expr_base = self.apply_template_constraint(ctx, upcast_id, &SLICE_TEMPLATE)?;
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 1, subject_id, 1)?;
 
        let (progress_expr, progress_subject) = match self.type_is_certainly_or_certainly_not_string(ctx, subject_id) {
 
            (true, _) => {
 
                // Certainly a string
 
                (self.apply_forced_constraint(ctx, upcast_id, &STRING_TEMPLATE)?, false)
 
            },
 
            (_, true) => {
 
                // Certainly not a string
 
                let progress_expr_base = self.apply_template_constraint(ctx, upcast_id, &SLICE_TEMPLATE)?;
 
                let (progress_expr, progress_subject) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 1, subject_id, 1)?;
 

	
 
                (progress_expr_base || progress_expr, progress_subject)
 
            },
 
            _ => {
 
                // Could be anything, at least attempt to progress subtype
 
                let progress_expr_base = self.apply_template_constraint(ctx, upcast_id, &ARRAYLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_subject) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 1, subject_id, 1)?;
 

	
 
                (progress_expr_base || progress_expr, progress_subject)
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject_base || progress_subject, self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - FromIdx type [{}]: {}", progress_idx_base || progress_from, self.debug_get_display_name(ctx, from_id));
 
        debug_log!("   - ToIdx   type [{}]: {}", progress_idx_base || progress_to, self.debug_get_display_name(ctx, to_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr_base || progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_idx_base || progress_from { self.queue_expr(ctx, from_id); }
 
        if progress_idx_base || progress_to { self.queue_expr(ctx, to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        
 
        debug_log!("Select expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, ctx.heap[id].subject));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let subject_id = ctx.heap[id].subject;
 
        let subject_expr_idx = ctx.heap[subject_id].get_unique_id_in_definition();
 
        let select_expr = &ctx.heap[id];
 
        let expr_idx = select_expr.unique_id_in_definition;
 

	
 
        let infer_expr = &self.expr_types[expr_idx as usize];
 
        let extra_idx = infer_expr.extra_data_idx;
 

	
 
        fn determine_inference_type_instance<'a>(types: &'a TypeTable, infer_type: &InferenceType) -> Result<Option<&'a DefinedType>, ()> {
 
            for part in &infer_type.parts {
 
                if part.is_marker() || !part.is_concrete() {
 
                    continue;
 
                }
 

	
 
                // Part is concrete, check if it is an instance of something
 
                if let InferenceTypePart::Instance(definition_id, _num_sub) = part {
 
                    // Lookup type definition and ensure the specified field 
 
                    // name exists on the struct
 
                    let definition = types.get_base_definition(definition_id);
 
                    debug_assert!(definition.is_some());
 
                    let definition = definition.unwrap();
 

	
 
                    return Ok(Some(definition))
 
                } else {
 
                    // Expected an instance of something
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is concrete yet
 
            Ok(None)
 
        }
 

	
 
        if infer_expr.field_or_monomorph_idx < 0 {
 
            // We don't know the field or the definition it is pointing to yet
 
            // Not yet known, check if we can determine it
 
            let subject_type = &self.expr_types[subject_expr_idx as usize].expr_type;
 
            let type_def = determine_inference_type_instance(&ctx.types, subject_type);
 

	
 
            match type_def {
 
                Ok(Some(type_def)) => {
 
                    // Subject type is known, check if it is a
 
                    // struct and the field exists on the struct
 
                    let struct_def = if let DefinedTypeVariant::Struct(struct_def) = &type_def.definition {
 
                        struct_def
 
                    } else {
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, select_expr.field_name.span, format!(
 
                                "Can only apply field access to structs, got a subject of type '{}'",
 
                                subject_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    };
 

	
 
                    let mut struct_def_id = None;
 

	
 
                    for (field_def_idx, field_def) in struct_def.fields.iter().enumerate() {
 
                        if field_def.identifier == select_expr.field_name {
 
                            // Set field definition and index
 
                            let infer_expr = &mut self.expr_types[expr_idx as usize];
 
                            infer_expr.field_or_monomorph_idx = field_def_idx as i32;
 
                            struct_def_id = Some(type_def.ast_definition);
 
                            break;
 
                        }
 
                    }
 

	
 
                    if struct_def_id.is_none() {
 
                        let ast_struct_def = ctx.heap[type_def.ast_definition].as_struct();
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, select_expr.field_name.span, format!(
 
                                "this field does not exist on the struct '{}'",
 
                                ast_struct_def.identifier.value.as_str()
 
                            )
 
                        ))
 
                    }
 

	
 
                    // Encountered definition and field index for the
 
                    // first time
 
                    self.insert_initial_select_polymorph_data(ctx, id, struct_def_id.unwrap());
 
                },
 
                Ok(None) => {
 
@@ -2587,192 +2607,208 @@ impl PassTyping {
 
            &mut var_data.var_type as *mut _, 0, expr_type, 0
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            let var_decl = &ctx.heap[var_id];
 
            return Err(ParseError::new_error_at_span(
 
                &ctx.module.source, var_decl.identifier.span, format!(
 
                    "Conflicting types for this variable, previously assigned the type '{}'",
 
                    var_data.var_type.display_name(&ctx.heap)
 
                )
 
            ).with_info_at_span(
 
                &ctx.module.source, var_expr.identifier.span, format!(
 
                    "But inferred to have incompatible type '{}' here",
 
                    expr_type.display_name(&ctx.heap)
 
                )
 
            ))
 
        }
 

	
 
        let progress_var = infer_res.modified_lhs();
 
        let progress_expr = infer_res.modified_rhs();
 

	
 
        if progress_var {
 
            // Let other variable expressions using this type progress as well
 
            for other_expr in var_data.used_at.iter() {
 
                if *other_expr != upcast_id {
 
                    let other_expr_idx = ctx.heap[*other_expr].get_unique_id_in_definition();
 
                    self.expr_queued.push_back(other_expr_idx);
 
                }
 
            }
 

	
 
            // Let a linked port know that our type has updated
 
            if let Some(linked_id) = var_data.linked_var {
 
                // Only perform one-way inference to prevent updating our type,
 
                // this would lead to an inconsistency in the type inference
 
                // algorithm otherwise.
 
                let var_type: *mut _ = &mut var_data.var_type;
 
                let link_data = self.var_types.get_mut(&linked_id).unwrap();
 

	
 
                debug_assert!(
 
                    unsafe{&*var_type}.parts[0] == InferenceTypePart::Input ||
 
                    unsafe{&*var_type}.parts[0] == InferenceTypePart::Output
 
                );
 
                debug_assert!(
 
                    link_data.var_type.parts[0] == InferenceTypePart::Input ||
 
                    link_data.var_type.parts[0] == InferenceTypePart::Output
 
                );
 
                match InferenceType::infer_subtree_for_single_type(&mut link_data.var_type, 1, &unsafe{&*var_type}.parts, 1, false) {
 
                    SingleInferenceResult::Modified => {
 
                        for other_expr in &link_data.used_at {
 
                            let other_expr_idx = ctx.heap[*other_expr].get_unique_id_in_definition();
 
                            self.expr_queued.push_back(other_expr_idx);
 
                        }
 
                    },
 
                    SingleInferenceResult::Unmodified => {},
 
                    SingleInferenceResult::Incompatible => {
 
                        let var_data = self.var_types.get(&var_id).unwrap();
 
                        let link_data = self.var_types.get(&linked_id).unwrap();
 
                        let var_decl = &ctx.heap[var_id];
 
                        let link_decl = &ctx.heap[linked_id];
 

	
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, var_decl.identifier.span, format!(
 
                                "Conflicting types for this variable, assigned the type '{}'",
 
                                var_data.var_type.display_name(&ctx.heap)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module.source, link_decl.identifier.span, format!(
 
                                "Because it is incompatible with this variable, assigned the type '{}'",
 
                                link_data.var_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Var  type [{}]: {}", progress_var, self.var_types.get(&var_id).unwrap().var_type.display_name(&ctx.heap));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 

	
 
        Ok(())
 
    }
 

	
 
    fn queue_expr_parent(&mut self, ctx: &Ctx, expr_id: ExpressionId) {
 
        if let ExpressionParent::Expression(parent_expr_id, _) = &ctx.heap[expr_id].parent() {
 
            let expr_idx = ctx.heap[*parent_expr_id].get_unique_id_in_definition();
 
            self.expr_queued.push_back(expr_idx);
 
        }
 
    }
 

	
 
    fn queue_expr(&mut self, ctx: &Ctx, expr_id: ExpressionId) {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        self.expr_queued.push_back(expr_idx);
 
    }
 

	
 

	
 
    // first returned is certainly string, second is certainly not
 
    fn type_is_certainly_or_certainly_not_string(&self, ctx: &Ctx, expr_id: ExpressionId) -> (bool, bool) {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        if expr_type.is_done {
 
            if expr_type.parts[0] == InferenceTypePart::String {
 
                return (true, false);
 
            } else {
 
                return (false, true);
 
            }
 
        }
 

	
 
        (false, false)
 
    }
 

	
 
    /// Applies a template type constraint: the type associated with the
 
    /// supplied expression will be molded into the provided `template`. But
 
    /// will be considered valid if the template could've been molded into the
 
    /// expression type as well. Hence the template may be fully specified (e.g.
 
    /// a bool) or contain "inference" variables (e.g. an array of T)
 
    fn apply_template_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition(); // TODO: @Temp
 
        let expr_type = &mut self.expr_types[expr_idx as usize].expr_type;
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, false) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, expr_id, template)
 
            )
 
        }
 
    }
 

	
 
    fn apply_template_constraint_to_types(
 
        to_infer: *mut InferenceType, to_infer_start_idx: usize,
 
        template: &[InferenceTypePart], template_start_idx: usize
 
    ) -> Result<bool, ()> {
 
        match InferenceType::infer_subtree_for_single_type(
 
            unsafe{ &mut *to_infer }, to_infer_start_idx,
 
            template, template_start_idx, false
 
        ) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(()),
 
        }
 
    }
 

	
 
    /// Applies a forced constraint: the supplied expression's type MUST be
 
    /// inferred from the template, the other way around is considered invalid.
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &mut self.expr_types[expr_idx as usize].expr_type;
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, true) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, expr_id, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg1_start_idx: usize,
 
        arg2_id: ExpressionId, arg2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        let arg1_expr_idx = ctx.heap[arg1_id].get_unique_id_in_definition(); // TODO: @Temp
 
        let arg2_expr_idx = ctx.heap[arg2_id].get_unique_id_in_definition();
 
        let arg1_type: *mut _ = &mut self.expr_types[arg1_expr_idx as usize].expr_type;
 
        let arg2_type: *mut _ = &mut self.expr_types[arg2_expr_idx as usize].expr_type;
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            arg1_type, arg1_start_idx,
 
            arg2_type, arg2_start_idx
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies an equal2 constraint between a signature type (e.g. a function
 
    /// argument or struct field) and an expression whose type should match that
 
    /// expression. If we make progress on the signature, then we try to see if
 
    /// any of the embedded polymorphic types can be progressed.
 
    ///
 
    /// `outer_expr_id` is the main expression we're progressing (e.g. a 
 
    /// function call), while `expr_id` is the embedded expression we're 
 
    /// matching against the signature. `expression_type` and 
 
    /// `expression_start_idx` belong to `expr_id`.
 
    fn apply_equal2_signature_constraint(
 
        ctx: &Ctx, outer_expr_id: ExpressionId, expr_id: Option<ExpressionId>,
 
        polymorph_data: &mut ExtraData, polymorph_progress: &mut HashSet<u32>,
 
        signature_type: *mut InferenceType, signature_start_idx: usize,
 
        expression_type: *mut InferenceType, expression_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        // Safety: all pointers distinct
 

	
 
        // Infer the signature and expression type
 
        let infer_res = unsafe { 
 
            InferenceType::infer_subtrees_for_both_types(
 
                signature_type, signature_start_idx,
 
                expression_type, expression_start_idx
 
@@ -3319,231 +3355,267 @@ impl PassTyping {
 
            poly_vars: poly_args,
 
            embedded,
 
            returned: union_type
 
        };
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct. Assumes that the select
 
    /// expression's referenced (definition_id, field_idx) has been resolved.
 
    fn insert_initial_select_polymorph_data(
 
        &mut self, ctx: &Ctx, select_id: SelectExpressionId, struct_def_id: DefinitionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Retrieve relevant data
 
        let expr = &ctx.heap[select_id];
 
        let expr_type = &self.expr_types[expr.unique_id_in_definition as usize];
 
        let field_idx = expr_type.field_or_monomorph_idx as usize;
 
        let extra_data_idx = expr_type.extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "initial select polymorph data, but no preallocated ExtraData");
 

	
 
        let definition = ctx.heap[struct_def_id].as_struct();
 

	
 
        // Generate initial polyvar types and struct type
 
        // TODO: @Performance: we can immediately set the polyvars of the subject's struct type
 
        let num_poly_vars = definition.poly_vars.len();
 
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
 
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
 
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
 
        struct_parts.push(ITP::Instance(struct_def_id, num_poly_vars as u32));
 

	
 
        for poly_idx in 0..num_poly_vars {
 
            poly_vars.push(InferenceType::new(true, false, vec![
 
                ITP::Marker(poly_idx as u32), ITP::Unknown,
 
            ]));
 
            struct_parts.push(ITP::Marker(poly_idx as u32));
 
            struct_parts.push(ITP::Unknown);
 
        }
 
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);
 

	
 
        // Generate initial field type
 
        let field_type = self.determine_inference_type_from_parser_type_elements(&definition.fields[field_idx].parser_type.elements, false);
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: select_id.upcast(),
 
            definition_id: struct_def_id,
 
            poly_vars,
 
            embedded: vec![InferenceType::new(num_poly_vars != 0, num_poly_vars == 0, struct_parts)],
 
            returned: field_type
 
        };
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type_elements(
 
        &mut self, elements: &[ParserTypeElement],
 
        use_definitions_known_poly_args: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut infer_type = Vec::with_capacity(elements.len());
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        for element in elements {
 
            match &element.variant {
 
                // Compiler-only types
 
                PTV::Void => { infer_type.push(ITP::Void); },
 
                PTV::InputOrOutput => { infer_type.push(ITP::PortLike); has_inferred = true },
 
                PTV::ArrayLike => { infer_type.push(ITP::ArrayLike); has_inferred = true },
 
                PTV::IntegerLike => { infer_type.push(ITP::IntegerLike); has_inferred = true },
 
                // Builtins
 
                PTV::Message => {
 
                    // TODO: @types Remove the Message -> Byte hack at some point...
 
                    infer_type.push(ITP::Message);
 
                    infer_type.push(ITP::UInt8);
 
                },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::UInt8 => { infer_type.push(ITP::UInt8); },
 
                PTV::UInt16 => { infer_type.push(ITP::UInt16); },
 
                PTV::UInt32 => { infer_type.push(ITP::UInt32); },
 
                PTV::UInt64 => { infer_type.push(ITP::UInt64); },
 
                PTV::SInt8 => { infer_type.push(ITP::SInt8); },
 
                PTV::SInt16 => { infer_type.push(ITP::SInt16); },
 
                PTV::SInt32 => { infer_type.push(ITP::SInt32); },
 
                PTV::SInt64 => { infer_type.push(ITP::SInt64); },
 
                PTV::Character => { infer_type.push(ITP::Character); },
 
                PTV::String => { infer_type.push(ITP::String); },
 
                PTV::String => {
 
                    infer_type.push(ITP::String);
 
                    infer_type.push(ITP::Character);
 
                },
 
                // Special markers
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                // With nested types
 
                PTV::Array => { infer_type.push(ITP::Array); },
 
                PTV::Input => { infer_type.push(ITP::Input); },
 
                PTV::Output => { infer_type.push(ITP::Output); },
 
                PTV::PolymorphicArgument(belongs_to_definition, poly_arg_idx) => {
 
                    let poly_arg_idx = *poly_arg_idx;
 
                    if use_definitions_known_poly_args {
 
                        // Refers to polymorphic argument on procedure we're currently processing.
 
                        // This argument is already known.
 
                        debug_assert_eq!(*belongs_to_definition, self.definition_type.definition_id());
 
                        debug_assert!((poly_arg_idx as usize) < self.poly_vars.len());
 

	
 
                        for concrete_part in &self.poly_vars[poly_arg_idx as usize].parts {
 
                            infer_type.push(ITP::from(*concrete_part));
 
                        }
 
                        Self::determine_inference_type_from_concrete_type(
 
                            &mut infer_type, &self.poly_vars[poly_arg_idx as usize].parts
 
                        );
 
                    } else {
 
                        // Polymorphic argument has to be inferred
 
                        has_markers = true;
 
                        has_inferred = true;
 
                        infer_type.push(ITP::Marker(poly_arg_idx));
 
                        infer_type.push(ITP::Unknown)
 
                    }
 
                },
 
                PTV::Definition(definition_id, num_embedded) => {
 
                    infer_type.push(ITP::Instance(*definition_id, *num_embedded));
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Determines the inference type from an already concrete type. Applies the
 
    /// various type "hacks" inside the type inferencer.
 
    fn determine_inference_type_from_concrete_type(parser_type: &mut Vec<InferenceTypePart>, concrete_type: &[ConcreteTypePart]) {
 
        use InferenceTypePart as ITP;
 
        use ConcreteTypePart as CTP;
 

	
 
        for concrete_part in concrete_type {
 
            match concrete_part {
 
                CTP::Void => parser_type.push(ITP::Void),
 
                CTP::Message => parser_type.push(ITP::Message),
 
                CTP::Bool => parser_type.push(ITP::Bool),
 
                CTP::UInt8 => parser_type.push(ITP::UInt8),
 
                CTP::UInt16 => parser_type.push(ITP::UInt16),
 
                CTP::UInt32 => parser_type.push(ITP::UInt32),
 
                CTP::UInt64 => parser_type.push(ITP::UInt64),
 
                CTP::SInt8 => parser_type.push(ITP::SInt8),
 
                CTP::SInt16 => parser_type.push(ITP::SInt16),
 
                CTP::SInt32 => parser_type.push(ITP::SInt32),
 
                CTP::SInt64 => parser_type.push(ITP::SInt64),
 
                CTP::Character => parser_type.push(ITP::Character),
 
                CTP::String => {
 
                    parser_type.push(ITP::String);
 
                    parser_type.push(ITP::Character)
 
                },
 
                CTP::Array => parser_type.push(ITP::Array),
 
                CTP::Slice => parser_type.push(ITP::Slice),
 
                CTP::Input => parser_type.push(ITP::Input),
 
                CTP::Output => parser_type.push(ITP::Output),
 
                CTP::Instance(id, num) => parser_type.push(ITP::Instance(*id, *num)),
 
            }
 
        }
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
 
    /// expression type of an addition operator is the type of the arguments)
 
    /// But the expression type was already set due to our parent (e.g. an
 
    /// "if statement" or a "logical not" always expecting a boolean)
 
    fn construct_expr_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, arg_id: ExpressionId
 
    ) -> ParseError {
 
        // TODO: Expand and provide more meaningful information for humans
 
        let expr = &ctx.heap[expr_id];
 
        let arg_expr = &ctx.heap[arg_id];
 
        let expr_idx = expr.get_unique_id_in_definition();
 
        let arg_expr_idx = arg_expr.get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        let arg_type = &self.expr_types[arg_expr_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_at_span(
 
            &ctx.module.source, expr.operation_span(), format!(
 
                "incompatible types: this expression expected a '{}'",
 
                expr_type.display_name(&ctx.heap)
 
            )
 
        ).with_info_at_span(
 
            &ctx.module.source, arg_expr.full_span(), format!(
 
                "but this expression yields a '{}'",
 
                arg_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_arg_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId
 
    ) -> ParseError {
 
        let expr = &ctx.heap[expr_id];
 
        let arg1 = &ctx.heap[arg1_id];
 
        let arg2 = &ctx.heap[arg2_id];
 

	
 
        let arg1_idx = arg1.get_unique_id_in_definition();
 
        let arg1_type = &self.expr_types[arg1_idx as usize].expr_type;
 
        let arg2_idx = arg2.get_unique_id_in_definition();
 
        let arg2_type = &self.expr_types[arg2_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_str_at_span(
 
            &ctx.module.source, expr.operation_span(),
 
            "incompatible types: cannot apply this expression"
 
        ).with_info_at_span(
 
            &ctx.module.source, arg1.full_span(), format!(
 
                "Because this expression has type '{}'",
 
                arg1_type.display_name(&ctx.heap)
 
            )
 
        ).with_info_at_span(
 
            &ctx.module.source, arg2.full_span(), format!(
 
                "But this expression has type '{}'",
 
                arg2_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_template_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> ParseError {
 
        let expr = &ctx.heap[expr_id];
 
        let expr_idx = expr.get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_at_span(
 
            &ctx.module.source, expr.full_span(), format!(
 
                "incompatible types: got a '{}' but expected a '{}'",
 
                expr_type.display_name(&ctx.heap), 
 
                InferenceType::partial_display_name(&ctx.heap, template)
 
            )
 
        )
 
    }
 

	
 
    /// Constructs a human interpretable error in the case that type inference
 
    /// on a polymorphic variable to a function call or literal construction 
 
    /// failed. This may only be caused by a pair of inference types (which may 
 
    /// come from arguments or the return type) having two different inferred 
 
    /// values for that polymorphic variable.
 
    ///
 
    /// So we find this pair and construct the error using it.
 
    ///
 
    /// We assume that the expression is a function call or a struct literal,
 
    /// and that an actual error has occurred.
 
    fn construct_poly_arg_error(
 
        ctx: &Ctx, poly_data: &ExtraData, expr_id: ExpressionId
 
    ) -> ParseError {
 
        // Helper function to check for polymorph mismatch between two inference
 
        // types.
 
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(u32, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            if !type_a.has_marker || !type_b.has_marker {
 
                return None
 
            }
 

	
 
            for (marker_a, section_a) in type_a.marker_iter() {
 
                for (marker_b, section_b) in type_b.marker_iter() {
 
@@ -3676,151 +3748,151 @@ impl PassTyping {
 
                if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&arg_a, &arg_b) {
 
                    let error = construct_main_error(ctx, poly_data, poly_idx, expr);
 
                    if arg_a_idx == arg_b_idx {
 
                        // Same argument
 
                        let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module.source, arg.full_span(), format!(
 
                                "This argument inferred the conflicting types '{}' and '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a),
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        );
 
                    } else {
 
                        let arg_a = &ctx.heap[expr_args[arg_a_idx]];
 
                        let arg_b = &ctx.heap[expr_args[arg_b_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module.source, arg_a.full_span(), format!(
 
                                "This argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module.source, arg_b.full_span(), format!(
 
                                "While this argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        )
 
                    }
 
                }
 
            }
 

	
 
            // Check with return type
 
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &poly_data.returned) {
 
                let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module.source, arg.full_span(), format!(
 
                            "This argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, section_arg)
 
                        )
 
                    )
 
                    .with_info_at_span(
 
                        &ctx.module.source, expr.full_span(), format!(
 
                            "While the {} inferred it to '{}'",
 
                            expr_return_name,
 
                            InferenceType::partial_display_name(&ctx.heap, section_ret)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        // Now check against the explicitly specified polymorphic variables (if
 
        // any).
 
        for (arg_idx, arg) in poly_data.embedded.iter().enumerate() {
 
            if let Some((poly_idx, poly_section, arg_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, arg) {
 
                let arg = &ctx.heap[expr_args[arg_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module.source, arg.full_span(), format!(
 
                            "The polymorphic variable has type '{}' (which might have been partially inferred) while the argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                            InferenceType::partial_display_name(&ctx.heap, arg_section)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        if let Some((poly_idx, poly_section, ret_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, &poly_data.returned) {
 
            return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                .with_info_at_span(
 
                    &ctx.module.source, expr.full_span(), format!(
 
                        "The polymorphic variable has type '{}' (which might have been partially inferred) while the {} inferred it to '{}'",
 
                        InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                        expr_return_name,
 
                        InferenceType::partial_display_name(&ctx.heap, ret_section)
 
                    )
 
                )
 
        }
 

	
 
        unreachable!("construct_poly_arg_error without actual error found?")
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use super::*;
 
    use crate::protocol::arena::Id;
 
    use InferenceTypePart as ITP;
 
    use InferenceType as IT;
 

	
 
    #[test]
 
    fn test_single_part_inference() {
 
        // lhs argument inferred from rhs
 
        let pairs = [
 
            (ITP::NumberLike, ITP::UInt8),
 
            (ITP::IntegerLike, ITP::SInt32),
 
            (ITP::Unknown, ITP::UInt64),
 
            (ITP::Unknown, ITP::String)
 
            (ITP::Unknown, ITP::Bool)
 
        ];
 
        for (lhs, rhs) in pairs.iter() {
 
            // Using infer-both
 
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
 
            let mut rhs_type = IT::new(false, true, vec![rhs.clone()]);
 
            let result = unsafe{ IT::infer_subtrees_for_both_types(
 
                &mut lhs_type, 0, &mut rhs_type, 0
 
            ) };
 
            assert_eq!(DualInferenceResult::First, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 

	
 
            // Using infer-single
 
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
 
            let rhs_type = IT::new(false, true, vec![rhs.clone()]);
 
            let result = IT::infer_subtree_for_single_type(
 
                &mut lhs_type, 0, &rhs_type.parts, 0, false
 
            );
 
            assert_eq!(SingleInferenceResult::Modified, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 
        }
 
    }
 

	
 
    #[test]
 
    fn test_multi_part_inference() {
 
        let pairs = [
 
            (vec![ITP::ArrayLike, ITP::NumberLike], vec![ITP::Slice, ITP::SInt8]),
 
            (vec![ITP::Unknown], vec![ITP::Input, ITP::Array, ITP::String]),
 
            (vec![ITP::Unknown], vec![ITP::Input, ITP::Array, ITP::String, ITP::Character]),
 
            (vec![ITP::PortLike, ITP::SInt32], vec![ITP::Input, ITP::SInt32]),
 
            (vec![ITP::Unknown], vec![ITP::Output, ITP::SInt32]),
 
            (
 
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Unknown, ITP::Output, ITP::Unknown],
 
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Array, ITP::SInt32, ITP::Output, ITP::SInt32]
 
            )
 
        ];
 

	
 
        for (lhs, rhs) in pairs.iter() {
 
            let mut lhs_type = IT::new(false, false, lhs.clone());
 
            let mut rhs_type = IT::new(false, true, rhs.clone());
 
            let result = unsafe{ IT::infer_subtrees_for_both_types(
 
                &mut lhs_type, 0, &mut rhs_type, 0
 
            ) };
 
            assert_eq!(DualInferenceResult::First, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 

	
 
            let mut lhs_type = IT::new(false, false, lhs.clone());
 
            let rhs_type = IT::new(false, true, rhs.clone());
 
            let result = IT::infer_subtree_for_single_type(
 
                &mut lhs_type, 0, &rhs_type.parts, 0, false
 
            );
 
            assert_eq!(SingleInferenceResult::Modified, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts)
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -619,192 +619,199 @@ impl Visitor for PassValidationLinking {
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        conditional_expr.parent = old_expr_parent;
 
        conditional_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
 
        self.visit_expr(ctx, false_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let binary_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to the result from a binary expression"
 
            ))
 
        }
 

	
 
        let left_expr_id = binary_expr.left;
 
        let right_expr_id = binary_expr.right;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        binary_expr.parent = old_expr_parent;
 
        binary_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let unary_expr = &mut ctx.heap[id];
 
        let expr_id = unary_expr.expression;
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to the result from a unary expression"
 
            ))
 
        }
 

	
 
        let old_expr_parent = self.expr_parent;
 
        unary_expr.parent = old_expr_parent;
 
        unary_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let indexing_expr = &mut ctx.heap[id];
 

	
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        indexing_expr.parent = old_expr_parent;
 
        indexing_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let slicing_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            // TODO: @Slicing
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "assignment to slices should be valid in the final language, but is currently not implemented"
 
            ));
 
        }
 

	
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        slicing_expr.parent = old_expr_parent;
 
        slicing_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let select_expr = &mut ctx.heap[id];
 
        let expr_id = select_expr.subject;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        select_expr.parent = old_expr_parent;
 
        select_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
 
        let literal_expr = &mut ctx.heap[id];
 
        let old_expr_parent = self.expr_parent;
 
        literal_expr.parent = old_expr_parent;
 
        literal_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to a literal expression"
 
            ))
 
        }
 

	
 
        match &mut literal_expr.value {
 
            Literal::Null | Literal::True | Literal::False |
 
            Literal::Character(_) | Literal::String(_) | Literal::Integer(_) => {
 
                // Just the parent has to be set, done above
 
            },
 
            Literal::Struct(literal) => {
 
                let upcast_id = id.upcast();
 
                // Retrieve type definition
 
                let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
 
                let struct_definition = type_definition.definition.as_struct();
 

	
 
                // Make sure all fields are specified, none are specified twice
 
                // and all fields exist on the struct definition
 
                let mut specified = Vec::new(); // TODO: @performance
 
                specified.resize(struct_definition.fields.len(), false);
 

	
 
                for field in &mut literal.fields {
 
                    // Find field in the struct definition
 
                    let field_idx = struct_definition.fields.iter().position(|v| v.identifier == field.identifier);
 
                    if field_idx.is_none() {
 
                        let field_span = field.identifier.span;
 
                        let literal = ctx.heap[id].value.as_struct();
 
                        let ast_definition = &ctx.heap[literal.definition];
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, field_span, format!(
 
                                "This field does not exist on the struct '{}'",
 
                                ast_definition.identifier().value.as_str()
 
                            )
 
                        ));
 
                    }
 
                    field.field_idx = field_idx.unwrap();
 

	
 
                    // Check if specified more than once
 
                    if specified[field.field_idx] {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &ctx.module.source, field.identifier.span,
 
                            "This field is specified more than once"
 
                        ));
 
                    }
 

	
 
                    specified[field.field_idx] = true;
 
                }
 

	
src/protocol/parser/token_parsing.rs
Show inline comments
 
@@ -301,196 +301,200 @@ pub(crate) fn consume_integer_literal(source: &InputSource, iter: &mut TokenIter
 
            (2, 2, "binary")
 
        } else if integer_text.starts_with(b"0o") || integer_text.starts_with(b"0O") {
 
            // Octal number
 
            (8, 2, "octal")
 
        } else if integer_text.starts_with(b"0x") || integer_text.starts_with(b"0X") {
 
            // Hexadecimal number
 
            (16, 2, "hexadecimal")
 
        } else {
 
            (10, 0, "decimal")
 
        };
 

	
 
    // Take out any of the separating '_' characters
 
    buffer.clear();
 
    for char_idx in input_offset..integer_text.len() {
 
        let char = integer_text[char_idx];
 
        if char == b'_' {
 
            continue;
 
        }
 

	
 
        if !((char >= b'0' && char <= b'9') || (char >= b'A' && char <= b'F') || (char >= b'a' || char <= b'f')) {
 
            return Err(ParseError::new_error_at_span(
 
                source, integer_span,
 
                format!("incorrectly formatted {} number", radix_name)
 
            ));
 
        }
 
        buffer.push(char::from(char));
 
    }
 

	
 
    // Use the cleaned up string to convert to integer
 
    match u64::from_str_radix(&buffer, radix) {
 
        Ok(number) => Ok((number, integer_span)),
 
        Err(_) => Err(ParseError::new_error_at_span(
 
            source, integer_span,
 
            format!("incorrectly formatted {} number", radix_name)
 
        )),
 
    }
 
}
 

	
 
/// Consumes a character literal. We currently support a limited number of
 
/// backslash-escaped characters
 
pub(crate) fn consume_character_literal(
 
    source: &InputSource, iter: &mut TokenIter
 
) -> Result<(char, InputSpan), ParseError> {
 
    if Some(TokenKind::Character) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a character literal"));
 
    }
 
    let span = iter.next_span();
 
    iter.consume();
 

	
 
    let char_text = source.section_at_span(span);
 
    if !char_text.is_ascii() {
 
        return Err(ParseError::new_error_str_at_span(
 
            source, span, "expected an ASCII character literal"
 
        ));
 
    }
 

	
 
    match char_text.len() {
 
        0 => return Err(ParseError::new_error_str_at_span(source, span, "too little characters in character literal")),
 
        1 => {
 
            // We already know the text is ascii, so just throw an error if we have the escape
 
            // character.
 
            if char_text[0] == b'\\' {
 
                return Err(ParseError::new_error_str_at_span(source, span, "escape character without subsequent character"));
 
            }
 
            return Ok((char_text[0] as char, span));
 
        },
 
        2 => {
 
            if char_text[0] == b'\\' {
 
                let result = parse_escaped_character(source, span, char_text[1])?;
 
                return Ok((result, span))
 
            }
 
        },
 
        _ => {}
 
    }
 

	
 
    return Err(ParseError::new_error_str_at_span(source, span, "too many characters in character literal"))
 
}
 

	
 
/// Consumes a string literal. We currently support a limited number of
 
/// backslash-escaped characters. Note that the result is stored in the
 
/// buffer.
 
pub(crate) fn consume_string_literal(
 
    source: &InputSource, iter: &mut TokenIter, buffer: &mut String
 
) -> Result<InputSpan, ParseError> {
 
    if Some(TokenKind::String) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a string literal"));
 
    }
 

	
 
    buffer.clear();
 
    let span = iter.next_span();
 
    iter.consume();
 

	
 
    let text = source.section_at_span(span);
 
    if !text.is_ascii() {
 
        return Err(ParseError::new_error_str_at_span(source, span, "expected an ASCII string literal"));
 
    }
 
    buffer.reserve(text.len());
 

	
 
    debug_assert_eq!(text[0], b'"'); // here as kind of a reminder: the span includes the bounding quotation marks
 
    debug_assert_eq!(text[text.len() - 1], b'"');
 

	
 
    buffer.reserve(text.len() - 2);
 

	
 
    let mut was_escape = false;
 
    for idx in 0..text.len() {
 
    for idx in 1..text.len() - 1 {
 
        let cur = text[idx];
 
        if cur != b'\\' {
 
            if was_escape {
 
                let to_push = parse_escaped_character(source, span, cur)?;
 
                buffer.push(to_push);
 
            } else {
 
                buffer.push(cur as char);
 
            }
 
            was_escape = false;
 
        } else {
 
            was_escape = true;
 
        }
 
    }
 

	
 
    debug_assert!(!was_escape); // because otherwise we couldn't have ended the string literal
 

	
 
    Ok(span)
 
}
 

	
 
fn parse_escaped_character(source: &InputSource, literal_span: InputSpan, v: u8) -> Result<char, ParseError> {
 
    let result = match v {
 
        b'r' => '\r',
 
        b'n' => '\n',
 
        b't' => '\t',
 
        b'0' => '\0',
 
        b'\\' => '\\',
 
        b'\'' => '\'',
 
        b'"' => '"',
 
        v => {
 
            let msg = if v.is_ascii_graphic() {
 
                format!("unsupported escape character '{}'", v as char)
 
            } else {
 
                format!("unsupported escape character with (unsigned) byte value {}", v)
 
            };
 
            return Err(ParseError::new_error_at_span(source, literal_span, msg))
 
        },
 
    };
 
    Ok(result)
 
}
 

	
 
pub(crate) fn consume_pragma<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(&'a [u8], InputPosition, InputPosition), ParseError> {
 
    if Some(TokenKind::Pragma) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a pragma"));
 
    }
 
    let (pragma_start, pragma_end) = iter.next_positions();
 
    iter.consume();
 
    Ok((source.section_at_pos(pragma_start, pragma_end), pragma_start, pragma_end))
 
}
 

	
 
pub(crate) fn has_ident(source: &InputSource, iter: &mut TokenIter, expected: &[u8]) -> bool {
 
    peek_ident(source, iter).map_or(false, |section| section == expected)
 
}
 

	
 
pub(crate) fn peek_ident<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Option<&'a [u8]> {
 
    if Some(TokenKind::Ident) == iter.next() {
 
        let (start, end) = iter.next_positions();
 
        return Some(source.section_at_pos(start, end))
 
    }
 

	
 
    None
 
}
 

	
 
/// Consumes any identifier and returns it together with its span. Does not
 
/// check if the identifier is a reserved keyword.
 
pub(crate) fn consume_any_ident<'a>(
 
    source: &'a InputSource, iter: &mut TokenIter
 
) -> Result<(&'a [u8], InputSpan), ParseError> {
 
    if Some(TokenKind::Ident) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected an identifier"));
 
    }
 
    let (ident_start, ident_end) = iter.next_positions();
 
    iter.consume();
 
    Ok((source.section_at_pos(ident_start, ident_end), InputSpan::from_positions(ident_start, ident_end)))
 
}
 

	
 
/// Consumes a specific identifier. May or may not be a reserved keyword.
 
pub(crate) fn consume_exact_ident(source: &InputSource, iter: &mut TokenIter, expected: &[u8]) -> Result<InputSpan, ParseError> {
 
    let (ident, pos) = consume_any_ident(source, iter)?;
 
    if ident != expected {
 
        debug_assert!(expected.is_ascii());
 
        return Err(ParseError::new_error_at_pos(
 
            source, iter.last_valid_pos(),
 
            format!("expected the text '{}'", &String::from_utf8_lossy(expected))
 
        ));
 
    }
 
    Ok(pos)
 
}
 

	
 
/// Consumes an identifier that is not a reserved keyword and returns it
 
/// together with its span.
 
pub(crate) fn consume_ident<'a>(
 
    source: &'a InputSource, iter: &mut TokenIter
 
) -> Result<(&'a [u8], InputSpan), ParseError> {
 
    let (ident, span) = consume_any_ident(source, iter)?;
 
    if is_reserved_keyword(ident) {
 
        return Err(ParseError::new_error_str_at_span(source, span, "encountered reserved keyword"));
src/protocol/tests/eval_operators.rs
Show inline comments
 
@@ -51,97 +51,125 @@ fn test_assignment_operators() {
 
    );
 

	
 
    perform_test(
 
        "subtracted",
 
        construct_source("u32", "6", "-= 4"),
 
        Value::UInt32(2)
 
    );
 

	
 
    perform_test(
 
        "shifted left",
 
        construct_source("u32", "2", "<<= 2"),
 
        Value::UInt32(8)
 
    );
 

	
 
    perform_test(
 
        "shifted right",
 
        construct_source("u32", "8", ">>= 2"),
 
        Value::UInt32(2)
 
    );
 

	
 
    perform_test(
 
        "bitwise and",
 
        construct_source("u32", "15", "&= 35"),
 
        Value::UInt32(3)
 
    );
 

	
 
    perform_test(
 
        "bitwise xor",
 
        construct_source("u32", "3", "^= 7"),
 
        Value::UInt32(4)
 
    );
 

	
 
    perform_test(
 
        "bitwise or",
 
        construct_source("u32", "12", "|= 3"),
 
        Value::UInt32(15)
 
    );
 
}
 

	
 
#[test]
 
fn test_binary_integer_operators() {
 
    fn construct_source(value_type: &str, code: &str) -> String {
 
        format!("
 
        func foo() -> {} {{
 
            {}
 
        }}
 
        ", value_type, code)
 
    }
 

	
 
    fn perform_test(test_name: &str, value_type: &str, code: &str, expected_value: Value) {
 
        Tester::new_single_source_expect_ok(test_name, construct_source(value_type, code))
 
            .for_function("foo", move |f| {
 
                f.call_ok(Some(expected_value));
 
            });
 
    }
 

	
 
    perform_test(
 
        "bitwise_or", "u16",
 
        "auto a = 3; return a | 4;", Value::UInt16(7)
 
    );
 
    perform_test(
 
        "bitwise_xor", "u16",
 
        "auto a = 3; return a ^ 7;", Value::UInt16(4)
 
    );
 
    perform_test(
 
        "bitwise and", "u16",
 
        "auto a = 0b110011; return a & 0b011110;", Value::UInt16(0b010010)
 
    );
 
    perform_test(
 
        "shift left", "u16",
 
        "auto a = 0x0F; return a << 4;", Value::UInt16(0xF0)
 
    );
 
    perform_test(
 
        "shift right", "u64",
 
        "auto a = 0xF0; return a >> 4;", Value::UInt64(0x0F)
 
    );
 
    perform_test(
 
        "add", "u32",
 
        "auto a = 5; return a + 5;", Value::UInt32(10)
 
    );
 
    perform_test(
 
        "subtract", "u32",
 
        "auto a = 3; return a - 3;", Value::UInt32(0)
 
    );
 
    perform_test(
 
        "multiply", "u8",
 
        "auto a = 2 * 2; return a * 2 * 2;", Value::UInt8(16)
 
    );
 
    perform_test(
 
        "divide", "u8",
 
        "auto a = 32 / 2; return a / 2 / 2;", Value::UInt8(4)
 
    );
 
    perform_test(
 
        "remainder", "u16",
 
        "auto a = 29; return a % 3;", Value::UInt16(2)
 
    );
 
}
 

	
 
#[test]
 
fn test_string_operators() {
 
    Tester::new_single_source_expect_ok("string concatenation", "
 
func create_concatenated(string left, string right) -> string {
 
    return left @ \", but also \" @ right;
 
}
 
func perform_concatenate(string left, string right) -> string {
 
    left @= \", but also \";
 
    left @= right;
 
    return left;
 
}
 
func foo() -> bool {
 
    auto left = \"Darth Vader\";
 
    auto right = \"Anakin Skywalker\";
 
    auto res1 = create_concatenated(left, right);
 
    auto res2 = perform_concatenate(left, right);
 
    auto expected = \"Darth Vader, but also Anakin Skywalker\";
 

	
 
    return
 
        res1 == expected &&
 
        res2 == \"Darth Vader, but also Anakin Skywalker\" &&
 
        res1 != \"This kind of thing\" && res2 != \"Another likewise kind of thing\";
 
}
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/parser_inference.rs
Show inline comments
 
@@ -368,124 +368,124 @@ fn test_failed_polymorph_inference() {
 
        .assert_occurs_at(0, "Pair{")
 
        .assert_msg_has(0, "Conflicting type for polymorphic variable 'T'")
 
        .assert_occurs_at(1, "second_arg")
 
        .assert_msg_has(1, "inferred it to 's64'")
 
        .assert_occurs_at(2, "first_arg")
 
        .assert_msg_has(2, "inferred it to 's8'");
 
    });
 

	
 
    // Cannot really test literal inference error, but this comes close
 
    Tester::new_single_source_expect_err(
 
        "enum literal inference mismatch",
 
        "
 
        enum Uninteresting<T>{ Variant }
 
        func fix_t<T>(Uninteresting<T> arg) -> s32 { return 0; }
 
        func call() -> s32 {
 
            auto a = Uninteresting::Variant;
 
            fix_t<s8>(a);
 
            fix_t<s32>(a);
 
            return 4;
 
        }
 
        "
 
    ).error(|e| { e
 
        .assert_num(2)
 
        .assert_msg_has(0, "type 'Uninteresting<s8>'")
 
        .assert_msg_has(1, "type 'Uninteresting<s32>'");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "field access inference mismatch",
 
        "
 
        struct Holder<Shazam>{ Shazam a }
 
        func call() -> s32 {
 
            s8 to_hold = 0;
 
            auto holder = Holder{ a: to_hold };
 
            return holder.a;
 
        }
 
        "
 
    ).error(|e| { e
 
        .assert_num(3)
 
        .assert_ctx_has(0, "holder.a")
 
        .assert_occurs_at(0, "holder.a")
 
        .assert_msg_has(0, "Conflicting type for polymorphic variable 'Shazam'")
 
        .assert_msg_has(1, "inferred it to 's8'")
 
        .assert_msg_has(2, "inferred it to 's32'");
 
    });
 

	
 
    // Silly regression test
 
    Tester::new_single_source_expect_err(
 
        "nested field access inference mismatch",
 
        "
 
        struct Node<T1, T2>{ T1 l, T2 r }
 
        func construct<T1, T2>(T1 l, T2 r) -> Node<T1, T2> { return Node{ l: l, r: r }; }
 
        func fix_poly<T>(Node<T, T> a) -> s32 { return 0; }
 
        func test() -> s32 {
 
            s8 assigned = 0;
 
            s64 another = 1;
 
            auto thing = construct(assigned, construct(another, 1));
 
            fix_poly(thing.r);
 
            thing.r.r = assigned;
 
            return 0;
 
        }
 
        ",
 
    );
 
}
 

	
 

	
 
#[test]
 
fn test_explicit_polymorph_argument() {
 
    // Failed because array was put at same type depth as u32. So interpreted
 
    // as a function with two polymorphic arguments
 
    Tester::new_single_source_expect_ok("explicit with array", "
 
    func foo<T>(T a, T b) -> T {
 
        return a @ b;
 
    }
 
    func test() -> u32 {
 
        return foo<u32[]>({1}, {2})[1];
 
    }").for_function("test", |f| { f
 
        .call_ok(Some(Value::UInt32(2)));
 
    });
 

	
 
    Tester::new_single_source_expect_err("multi-explicit with array", "
 
    func foo<A, B, C>(A a, B b) -> C {
 
        return (a @ b)[1];
 
    }
 
    func test() -> u32 {
 
        return foo<u32[], u32[], u32, u32>({1}, {2});
 
    }").error(|e| { e
 
        .assert_num(1)
 
        .assert_occurs_at(0, "foo<u32")
 
        .assert_msg_has(0, "expected 3")
 
        .assert_msg_has(0, "4 were provided");
 
    });
 

	
 
    // Failed because type inferencer did not construct polymorph errors by
 
    // considering that argument/return types failed against explicitly
 
    // specified polymorphic arguments
 
    Tester::new_single_source_expect_err("explicit polymorph mismatch", "
 
    Tester::new_single_source_expect_err("explicit polymorph argument mismatch", "
 
    func foo<T>(T a, T b) -> T { return a + b; }
 
    struct Bar<A, B>{A a, B b}
 
    func test() -> u32 {
 
        return foo<Bar<u32, u64>[]>(5, 6);
 
    }").error(|e| { e
 
        .assert_num(2)
 
        .assert_occurs_at(0, "foo<Bar")
 
        .assert_msg_has(0, "'T' of 'foo'")
 
        .assert_occurs_at(1, "5, ")
 
        .assert_msg_has(1, "has type 'Bar<u32, u64>[]")
 
        .assert_msg_has(1, "inferred it to 'integerlike'");
 
    });
 

	
 
    // Similar to above, now for return type
 
    Tester::new_single_source_expect_err("explicit polymorph mismatch", "
 
    Tester::new_single_source_expect_err("explicit polymorph return mismatch", "
 
    func foo<T>(T a, T b) -> T { return a + b; }
 
    func test() -> u32 {
 
        return foo<u64>(5, 6);
 
    }").error(|e| { e
 
        .assert_num(2)
 
        .assert_occurs_at(0, "foo<u64")
 
        .assert_msg_has(0, "'T' of 'foo'")
 
        .assert_occurs_at(1, "foo<u64")
 
        .assert_msg_has(1, "has type 'u64'")
 
        .assert_msg_has(1, "return type inferred it to 'u32'");
 
    });
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)