Files @ 392c59600687
Branch filter:

Location: CSY/reowolf/src/protocol/tests/parser_inference.rs

392c59600687 14.7 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
mh
Test non-ascii string literals and recursion
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/// parser_inference.rs
///
/// Simple tests for the type inferences

use super::*;

#[test]
fn test_integer_inference() {
    Tester::new_single_source_expect_ok(
        "by arguments",
        "
        func call(u8 b, u16 s, u32 i, u64 l) -> u32 {
            auto b2 = b;
            auto s2 = s;
            auto i2 = i;
            auto l2 = l;
            return i2;
        }
        "
    ).for_function("call", |f| { f
        .for_variable("b2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u8");
        })
        .for_variable("s2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u16");
        })
        .for_variable("i2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u32");
        })
        .for_variable("l2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u64");
        });
    });

    Tester::new_single_source_expect_ok(
        "by assignment",
        "
        func call() -> u32 {
            u8 b1 = 0; u16 s1 = 0; u32 i1 = 0; u64 l1 = 0;
            auto b2 = b1;
            auto s2 = s1;
            auto i2 = i1;
            auto l2 = l1;
            return 0;
        }"
    ).for_function("call", |f| { f
        .for_variable("b2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u8");
        })
        .for_variable("s2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u16");
        })
        .for_variable("i2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u32");
        })
        .for_variable("l2", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("u64");
        });
    });
}

#[test]
fn test_binary_expr_inference() {
    Tester::new_single_source_expect_ok(
        "compatible types",
        "func call() -> s32 {
            s8 b0 = 0;
            s8 b1 = 1;
            s16 s0 = 0;
            s16 s1 = 1;
            s32 i0 = 0;
            s32 i1 = 1;
            s64 l0 = 0;
            s64 l1 = 1;
            auto b = b0 + b1;
            auto s = s0 + s1;
            auto i = i0 + i1;
            auto l = l0 + l1;
            return i;
        }"
    ).for_function("call", |f| { f
        .for_expression_by_source(
            "b0 + b1", "+", 
            |e| { e.assert_concrete_type("s8"); }
        )
        .for_expression_by_source(
            "s0 + s1", "+", 
            |e| { e.assert_concrete_type("s16"); }
        )
        .for_expression_by_source(
            "i0 + i1", "+", 
            |e| { e.assert_concrete_type("s32"); }
        )
        .for_expression_by_source(
            "l0 + l1", "+", 
            |e| { e.assert_concrete_type("s64"); }
        );
    });

    Tester::new_single_source_expect_err(
        "incompatible types", 
        "func call() -> s32 {
            s8 b = 0;
            s64 l = 1;
            auto r = b + l;
            return 0;
        }"
    ).error(|e| { e
        .assert_ctx_has(0, "b + l")
        .assert_msg_has(0, "cannot apply")
        .assert_occurs_at(0, "+")
        .assert_msg_has(1, "has type 's8'")
        .assert_msg_has(2, "has type 's64'");
    });
}



#[test]
fn test_struct_inference() {
    Tester::new_single_source_expect_ok(
        "by function calls",
        "
        struct Pair<T1, T2>{ T1 first, T2 second }
        func construct<T1, T2>(T1 first, T2 second) -> Pair<T1, T2> {
            return Pair{ first: first, second: second };
        }
        func fix_t1<T2>(Pair<s8, T2> arg) -> s32 { return 0; }
        func fix_t2<T1>(Pair<T1, s32> arg) -> s32 { return 0; }
        func test() -> s32 {
            auto first = 0;
            auto second = 1;
            auto pair = construct(first, second);
            fix_t1(pair);
            fix_t2(pair);
            return 0;
        }
        "
    ).for_function("test", |f| { f
        .for_variable("first", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("s8");
        })
        .for_variable("second", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("s32");
        })
        .for_variable("pair", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Pair<s8,s32>");
        });
    });

    Tester::new_single_source_expect_ok(
        "by field access",
        "
        struct Pair<T1, T2>{ T1 first, T2 second }
        func construct<T1, T2>(T1 first, T2 second) -> Pair<T1, T2> {
            return Pair{ first: first, second: second };
        }
        func test() -> s32 {
            auto first = 0;
            auto second = 1;
            auto pair = construct(first, second);
            s8 assign_first = 0;
            s64 assign_second = 1;
            pair.first = assign_first;
            pair.second = assign_second;
            return 0;
        }
        "
    ).for_function("test", |f| { f
        .for_variable("first", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("s8");
        })
        .for_variable("second", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("s64");
        })
        .for_variable("pair", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Pair<s8,s64>");
        });
    });

    Tester::new_single_source_expect_ok(
        "by nested field access",
        "
        struct Node<T1, T2>{ T1 l, T2 r }
        func construct<T1, T2>(T1 l, T2 r) -> Node<T1, T2> {
            return Node{ l: l, r: r };
        }
        func fix_poly<T>(Node<T, T> a) -> s32 { return 0; }
        func test() -> s32 {
            s8 assigned = 0;
            auto thing = construct(assigned, construct(0, 1));
            fix_poly(thing.r);
            thing.r.r = assigned;
            return 0;
        }
        ",
    ).for_function("test", |f| { f
        .for_variable("thing", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Node<s8,Node<s8,s8>>");
        });
    });
}

#[test]
fn test_enum_inference() {
    Tester::new_single_source_expect_ok(
        "no polymorphic vars",
        "
        enum Choice { A, B }
        func test_instances() -> s32 {
            auto foo = Choice::A;
            auto bar = Choice::B;
            return 0;
        }
        "
    ).for_function("test_instances", |f| { f
        .for_variable("foo", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Choice");
        })
        .for_variable("bar", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Choice");
        });
    });

    Tester::new_single_source_expect_ok(
        "one polymorphic var",
        "
        enum Choice<T>{
            A,
            B,
        }
        func fix_as_s8(Choice<s8> arg) -> s32 { return 0; }
        func fix_as_s32(Choice<s32> arg) -> s32 { return 0; }
        func test_instances() -> s32 {
            auto choice_s8 = Choice::A;
            auto choice_s32_1 = Choice::B;
            Choice<auto> choice_s32_2 = Choice::B;
            fix_as_s8(choice_s8);
            fix_as_s32(choice_s32_1);
            return fix_as_s32(choice_s32_2);
        }
        "
    ).for_function("test_instances", |f| { f
        .for_variable("choice_s8", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Choice<s8>");
        })
        .for_variable("choice_s32_1", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Choice<s32>");
        })
        .for_variable("choice_s32_2", |v| { v
            .assert_parser_type("Choice<auto>")
            .assert_concrete_type("Choice<s32>");
        });
    });

    Tester::new_single_source_expect_ok(
        "two polymorphic vars",
        "
        enum Choice<T1, T2>{ A, B, }
        func fix_t1<T>(Choice<s8, T> arg) -> s32 { return 0; }
        func fix_t2<T>(Choice<T, s32> arg) -> s32 { return 0; }
        func test_instances() -> s32 {
            Choice<s8, auto> choice1 = Choice::A;
            Choice<auto, s32> choice2 = Choice::A;
            Choice<auto, auto> choice3 = Choice::B;
            auto choice4 = Choice::B;
            fix_t1(choice1); fix_t1(choice2); fix_t1(choice3); fix_t1(choice4);
            fix_t2(choice1); fix_t2(choice2); fix_t2(choice3); fix_t2(choice4);
            return 0;
        }
        "
    ).for_function("test_instances", |f| { f
        .for_variable("choice1", |v| { v
            .assert_parser_type("Choice<s8,auto>")
            .assert_concrete_type("Choice<s8,s32>");
        })
        .for_variable("choice2", |v| { v
            .assert_parser_type("Choice<auto,s32>")
            .assert_concrete_type("Choice<s8,s32>");
        })
        .for_variable("choice3", |v| { v
            .assert_parser_type("Choice<auto,auto>")
            .assert_concrete_type("Choice<s8,s32>");
        })
        .for_variable("choice4", |v| { v
            .assert_parser_type("auto")
            .assert_concrete_type("Choice<s8,s32>");
        });
    });
}

#[test]
fn test_failed_variable_inference() {
    Tester::new_single_source_expect_err(
        "variable assignment mismatch",
        "
        func call() -> u32 {
            u16 val16 = 0;
            u32 val32 = 0;
            auto a = val16;
            a = val32;
            return 0;
        }
        "
    ).error(|e| { e
        .assert_num(2)
        .assert_msg_has(0, "type 'u16'")
        .assert_msg_has(1, "type 'u32'");
    });
}

#[test]
fn test_failed_polymorph_inference() {
    Tester::new_single_source_expect_err(
        "function call inference mismatch",
        "
        func poly<T>(T a, T b) -> s32 { return 0; }
        func call() -> s32 {
            s8 first_arg = 5;
            s64 second_arg = 2;
            return poly(first_arg, second_arg);
        }
        "
    ).error(|e| { e
        .assert_num(3)
        .assert_ctx_has(0, "poly(first_arg, second_arg)")
        .assert_occurs_at(0, "poly")
        .assert_msg_has(0, "Conflicting type for polymorphic variable 'T'")
        .assert_occurs_at(1, "second_arg")
        .assert_msg_has(1, "inferred it to 's64'")
        .assert_occurs_at(2, "first_arg")
        .assert_msg_has(2, "inferred it to 's8'");
    });

    Tester::new_single_source_expect_err(
        "struct literal inference mismatch",
        "
        struct Pair<T>{ T first, T second }
        func call() -> s32 {
            s8 first_arg = 5;
            s64 second_arg = 2;
            auto pair = Pair{ first: first_arg, second: second_arg };
            return 3;
        }
        "
    ).error(|e| { e
        .assert_num(3)
        .assert_ctx_has(0, "Pair{ first: first_arg, second: second_arg }")
        .assert_occurs_at(0, "Pair{")
        .assert_msg_has(0, "Conflicting type for polymorphic variable 'T'")
        .assert_occurs_at(1, "second_arg")
        .assert_msg_has(1, "inferred it to 's64'")
        .assert_occurs_at(2, "first_arg")
        .assert_msg_has(2, "inferred it to 's8'");
    });

    // Cannot really test literal inference error, but this comes close
    Tester::new_single_source_expect_err(
        "enum literal inference mismatch",
        "
        enum Uninteresting<T>{ Variant }
        func fix_t<T>(Uninteresting<T> arg) -> s32 { return 0; }
        func call() -> s32 {
            auto a = Uninteresting::Variant;
            fix_t<s8>(a);
            fix_t<s32>(a);
            return 4;
        }
        "
    ).error(|e| { e
        .assert_num(2)
        .assert_msg_has(0, "type 'Uninteresting<s8>'")
        .assert_msg_has(1, "type 'Uninteresting<s32>'");
    });

    Tester::new_single_source_expect_err(
        "field access inference mismatch",
        "
        struct Holder<Shazam>{ Shazam a }
        func call() -> s32 {
            s8 to_hold = 0;
            auto holder = Holder{ a: to_hold };
            return holder.a;
        }
        "
    ).error(|e| { e
        .assert_num(3)
        .assert_ctx_has(0, "holder.a")
        .assert_occurs_at(0, "holder.a")
        .assert_msg_has(0, "Conflicting type for polymorphic variable 'Shazam'")
        .assert_msg_has(1, "inferred it to 's8'")
        .assert_msg_has(2, "inferred it to 's32'");
    });

    // Silly regression test
    Tester::new_single_source_expect_err(
        "nested field access inference mismatch",
        "
        struct Node<T1, T2>{ T1 l, T2 r }
        func construct<T1, T2>(T1 l, T2 r) -> Node<T1, T2> { return Node{ l: l, r: r }; }
        func fix_poly<T>(Node<T, T> a) -> s32 { return 0; }
        func test() -> s32 {
            s8 assigned = 0;
            s64 another = 1;
            auto thing = construct(assigned, construct(another, 1));
            fix_poly(thing.r);
            thing.r.r = assigned;
            return 0;
        }
        ",
    );
}


#[test]
fn test_explicit_polymorph_argument() {
    // Failed because array was put at same type depth as u32. So interpreted
    // as a function with two polymorphic arguments
    Tester::new_single_source_expect_ok("explicit with array", "
    func foo<T>(T a, T b) -> T {
        return a @ b;
    }
    func test() -> u32 {
        return foo<u32[]>({1}, {2})[1];
    }").for_function("test", |f| { f
        .call_ok(Some(Value::UInt32(2)));
    });

    Tester::new_single_source_expect_err("multi-explicit with array", "
    func foo<A, B, C>(A a, B b) -> C {
        return (a @ b)[1];
    }
    func test() -> u32 {
        return foo<u32[], u32[], u32, u32>({1}, {2});
    }").error(|e| { e
        .assert_num(1)
        .assert_occurs_at(0, "foo<u32")
        .assert_msg_has(0, "expected 3")
        .assert_msg_has(0, "4 were provided");
    });

    // Failed because type inferencer did not construct polymorph errors by
    // considering that argument/return types failed against explicitly
    // specified polymorphic arguments
    Tester::new_single_source_expect_err("explicit polymorph mismatch", "
    func foo<T>(T a, T b) -> T { return a + b; }
    struct Bar<A, B>{A a, B b}
    func test() -> u32 {
        return foo<Bar<u32, u64>[]>(5, 6);
    }").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "foo<Bar")
        .assert_msg_has(0, "'T' of 'foo'")
        .assert_occurs_at(1, "5, ")
        .assert_msg_has(1, "has type 'Bar<u32, u64>[]")
        .assert_msg_has(1, "inferred it to 'integerlike'");
    });

    // Similar to above, now for return type
    Tester::new_single_source_expect_err("explicit polymorph mismatch", "
    func foo<T>(T a, T b) -> T { return a + b; }
    func test() -> u32 {
        return foo<u64>(5, 6);
    }").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "foo<u64")
        .assert_msg_has(0, "'T' of 'foo'")
        .assert_occurs_at(1, "foo<u64")
        .assert_msg_has(1, "has type 'u64'")
        .assert_msg_has(1, "return type inferred it to 'u32'");
    });
}