Files @ 031c9d14adaa
Branch filter:

Location: CSY/reowolf/examples/bench_30/main.c

MH
Merge branch 'feat-bytecode'

Adds size/alignment/offset computations to the type system and detects
potentially infinite types. If the type is potentially infinite but
contains a union that can break that type loop, then all other variants
of that union are supposed to be allocated on the heap. If the type
is potentially infinite but cannot be broken up, then we throw the
appropriate error.

The size/alignment/offset computations are not yet employed in the
runtime. But prepares Reowolf for a proper bytecode/IR implementation.
#include <time.h>
#include "../../reowolf.h"
#include "../utility.c"
FfiSocketAddr addr_new(const uint8_t ipv4[4], uint16_t port) {
    FfiSocketAddr x;
    x.port = port;
    memcpy(x.ipv4, ipv4, sizeof(uint8_t)*4);
    return x;
}
int main(int argc, char** argv) {
    int i, rounds;
    char optimized = argv[1][0];
    char sender = argv[2][0];
    rounds = atoi(argv[3]);
    uint8_t ipv4[4] = { atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), atoi(argv[7]) };
    size_t msg_len = atoi(argv[8]);

    printf("optimized %c, sender %c, rounds %d, addr %d.%d.%d.%d, msg_len %d\n",
        optimized, sender, rounds, ipv4[0], ipv4[1], ipv4[2], ipv4[3], msg_len);

    unsigned char pdl[] = "";
    Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
    printf("Error str `%s`\n", reowolf_error_peek(NULL));
    Connector * c = connector_new_with_id(pd, sender=='y'?1:0);

    PortId ports[5]; // sender always puts 0, receiver always gets 3, 4
    char ident[] = "replicator";
    FfiSocketAddr addrs[2] = {
        addr_new(ipv4, 7000),
        addr_new(ipv4, 7001)
    };
    if(sender=='y') {
        Polarity p = Polarity_Putter;
        EndpointPolarity ep = EndpointPolarity_Active;
        if(optimized=='y') {
            // 1 port: (native)0-->(NETWORK)
            connector_add_net_port(c, &ports[0], addrs[0], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
        } else {
            // 4 ports: (native)0-->1(replicator)2-->(NETWORK)
            //                                   3-->(NETWORK)
            connector_add_port_pair(c, &ports[0], &ports[1]);
            connector_add_net_port(c, &ports[2], addrs[0], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
            connector_add_net_port(c, &ports[3], addrs[1], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
            connector_add_component(c, ident, sizeof(ident)-1, ports+1, 3);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
        }
    } else {
        Polarity p = Polarity_Getter;
        EndpointPolarity ep = EndpointPolarity_Passive;
        if(optimized=='y') {
            // 5 ports: (NETWORK)-->0(replicator)1-->3(native)
            //                                   2-->4
            connector_add_net_port(c, &ports[0], addrs[0], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
            connector_add_port_pair(c, &ports[1], &ports[3]);
            connector_add_port_pair(c, &ports[2], &ports[4]);
            connector_add_component(c, ident, sizeof(ident)-1, ports, 3);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
        } else {
            // 2 ports: (NETWORK)-->3(native)
            //                   -->4
            connector_add_net_port(c, &ports[3], addrs[0], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
            connector_add_net_port(c, &ports[4], addrs[1], p, ep);
            printf("Error str `%s`\n", reowolf_error_peek(NULL));
        }
    }
    connector_connect(c, -1);
    printf("Error str `%s`\n", reowolf_error_peek(NULL));

    char * msg = malloc(msg_len);
    memset(msg, 42, msg_len);
    
    clock_t begin = clock();
    for (i=0; i<rounds; i++) {
        if(sender=='y') {
            connector_put_bytes(c, ports[0], msg, msg_len);
        } else {
            connector_get(c, ports[3]);
            connector_get(c, ports[4]);
        }
        connector_sync(c, -1);
    }
    clock_t end = clock();
    double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
    printf("Time Spent: %f\n", time_spent);

    free(msg);
    return 0;
}