Files @ 031c9d14adaa
Branch filter:

Location: CSY/reowolf/src/ffi/pseudo_socket_api.rs

031c9d14adaa 7.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Merge branch 'feat-bytecode'

Adds size/alignment/offset computations to the type system and detects
potentially infinite types. If the type is potentially infinite but
contains a union that can break that type loop, then all other variants
of that union are supposed to be allocated on the heap. If the type
is potentially infinite but cannot be broken up, then we throw the
appropriate error.

The size/alignment/offset computations are not yet employed in the
runtime. But prepares Reowolf for a proper bytecode/IR implementation.
use super::*;

use core::ops::DerefMut;
use libc::{sockaddr, socklen_t};
use std::{
    collections::HashMap,
    ffi::c_void,
    net::SocketAddr,
    os::raw::c_int,
    sync::{Mutex, RwLock},
};
///////////////////////////////////////////////////////////////////

struct FdAllocator {
    next: Option<c_int>,
    freed: Vec<c_int>,
}
enum ConnectorComplexPhased {
    Setup { local: Option<SocketAddr>, peer: Option<SocketAddr> },
    Communication { putter: PortId, getter: PortId },
}
struct ConnectorComplex {
    // invariant: .connector.phased and .phased are variants Setup/Communication in lockstep.
    connector: Connector,
    phased: ConnectorComplexPhased,
}
#[derive(Default)]
struct CcMap {
    fd_to_cc: HashMap<c_int, Mutex<ConnectorComplex>>,
    fd_allocator: FdAllocator,
}
///////////////////////////////////////////////////////////////////
unsafe fn payload_from_raw(bytes_ptr: *const c_void, bytes_len: usize) -> Payload {
    let bytes_ptr = std::mem::transmute(bytes_ptr);
    let bytes = &*slice_from_raw_parts(bytes_ptr, bytes_len);
    Payload::from(bytes)
}
unsafe fn libc_to_std_sockaddr(addr: *const sockaddr, addr_len: socklen_t) -> Option<SocketAddr> {
    os_socketaddr::OsSocketAddr::from_raw_parts(addr as _, addr_len as usize).into_addr()
}
impl Default for FdAllocator {
    fn default() -> Self {
        // negative FDs aren't used s.t. they are available for error signalling
        Self { next: Some(0), freed: vec![] }
    }
}
impl FdAllocator {
    fn alloc(&mut self) -> c_int {
        if let Some(fd) = self.freed.pop() {
            return fd;
        }
        if let Some(fd) = self.next {
            self.next = fd.checked_add(1);
            return fd;
        }
        panic!("No more Connector FDs to allocate!")
    }
    fn free(&mut self, fd: c_int) {
        self.freed.push(fd);
    }
}
lazy_static::lazy_static! {
    static ref CC_MAP: RwLock<CcMap> = Default::default();
    static ref TRIVIAL_PD: Arc<ProtocolDescription> = {
        Arc::new(ProtocolDescription::parse(b"").unwrap())
    };
}
impl ConnectorComplex {
    fn try_become_connected(&mut self) {
        match self.phased {
            ConnectorComplexPhased::Setup { local: Some(local), peer: Some(peer) } => {
                // complete setup
                let [putter, getter] =
                    self.connector.new_udp_mediator_component(local, peer).unwrap();
                self.connector.connect(None).unwrap();
                self.phased = ConnectorComplexPhased::Communication { putter, getter }
            }
            _ => {} // setup incomplete
        }
    }
}
/////////////////////////////////
#[no_mangle]
pub extern "C" fn rw_socket(_domain: c_int, _type: c_int, _protocol: c_int) -> c_int {
    // get writer lock
    let mut w = if let Ok(w) = CC_MAP.write() { w } else { return RW_LOCK_POISONED };

    let fd = w.fd_allocator.alloc();
    let cc = ConnectorComplex {
        connector: Connector::new(
            Box::new(crate::DummyLogger),
            TRIVIAL_PD.clone(),
            Connector::random_id(),
        ),
        phased: ConnectorComplexPhased::Setup { local: None, peer: None },
    };
    w.fd_to_cc.insert(fd, Mutex::new(cc));
    fd
}
#[no_mangle]
pub extern "C" fn rw_close(fd: c_int, _how: c_int) -> c_int {
    // ignoring HOW
    // get writer lock
    let mut w = if let Ok(w) = CC_MAP.write() { w } else { return RW_LOCK_POISONED };
    if w.fd_to_cc.remove(&fd).is_some() {
        w.fd_allocator.free(fd);
        RW_OK
    } else {
        RW_CLOSE_FAIL
    }
}
#[no_mangle]
pub unsafe extern "C" fn rw_bind(fd: c_int, addr: *const sockaddr, addr_len: socklen_t) -> c_int {
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
    let addr = match libc_to_std_sockaddr(addr, addr_len) {
        Some(addr) => addr,
        _ => return RW_BAD_SOCKADDR,
    };
    // get outer reader, inner writer locks
    let r = if let Ok(r) = CC_MAP.read() { r } else { return RW_LOCK_POISONED };
    let cc = if let Some(cc) = r.fd_to_cc.get(&fd) { cc } else { return RW_BAD_FD };
    let mut cc = if let Ok(cc) = cc.lock() { cc } else { return RW_LOCK_POISONED };
    match &mut cc.phased {
        ConnectorComplexPhased::Communication { .. } => RW_WRONG_STATE,
        ConnectorComplexPhased::Setup { local, .. } => {
            *local = Some(addr);
            cc.try_become_connected();
            RW_OK
        }
    }
}
#[no_mangle]
pub unsafe extern "C" fn rw_connect(
    fd: c_int,
    addr: *const sockaddr,
    addr_len: socklen_t,
) -> c_int {
    let addr = match libc_to_std_sockaddr(addr, addr_len) {
        Some(addr) => addr,
        _ => return RW_BAD_SOCKADDR,
    };
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
    // get outer reader, inner writer locks
    let r = if let Ok(r) = CC_MAP.read() { r } else { return RW_LOCK_POISONED };
    let cc = if let Some(cc) = r.fd_to_cc.get(&fd) { cc } else { return RW_BAD_FD };
    let mut cc = if let Ok(cc) = cc.lock() { cc } else { return RW_LOCK_POISONED };
    match &mut cc.phased {
        ConnectorComplexPhased::Communication { .. } => RW_WRONG_STATE,
        ConnectorComplexPhased::Setup { peer, .. } => {
            *peer = Some(addr);
            cc.try_become_connected();
            RW_OK
        }
    }
}
#[no_mangle]
pub unsafe extern "C" fn rw_send(
    fd: c_int,
    bytes_ptr: *const c_void,
    bytes_len: usize,
    _flags: c_int,
) -> isize {
    // ignoring flags
    // get outer reader, inner writer locks
    let r = if let Ok(r) = CC_MAP.read() { r } else { return RW_LOCK_POISONED as isize };
    let cc = if let Some(cc) = r.fd_to_cc.get(&fd) { cc } else { return RW_BAD_FD as isize };
    let mut cc = if let Ok(cc) = cc.lock() { cc } else { return RW_LOCK_POISONED as isize };
    let ConnectorComplex { connector, phased } = cc.deref_mut();
    match phased {
        ConnectorComplexPhased::Setup { .. } => RW_WRONG_STATE as isize,
        ConnectorComplexPhased::Communication { putter, .. } => {
            let payload = payload_from_raw(bytes_ptr, bytes_len);
            connector.put(*putter, payload).unwrap();
            connector.sync(None).unwrap();
            bytes_len as isize
        }
    }
}
#[no_mangle]
pub unsafe extern "C" fn rw_recv(
    fd: c_int,
    bytes_ptr: *mut c_void,
    bytes_len: usize,
    _flags: c_int,
) -> isize {
    // ignoring flags
    // get outer reader, inner writer locks
    let r = if let Ok(r) = CC_MAP.read() { r } else { return RW_LOCK_POISONED as isize };
    let cc = if let Some(cc) = r.fd_to_cc.get(&fd) { cc } else { return RW_BAD_FD as isize };
    let mut cc = if let Ok(cc) = cc.lock() { cc } else { return RW_LOCK_POISONED as isize };
    let ConnectorComplex { connector, phased } = cc.deref_mut();
    match phased {
        ConnectorComplexPhased::Setup { .. } => RW_WRONG_STATE as isize,
        ConnectorComplexPhased::Communication { getter, .. } => {
            connector.get(*getter).unwrap();
            connector.sync(None).unwrap();
            let slice = connector.gotten(*getter).unwrap().as_slice();
            if !bytes_ptr.is_null() {
                let cpy_msg_bytes = slice.len().min(bytes_len);
                std::ptr::copy_nonoverlapping(slice.as_ptr(), bytes_ptr as *mut u8, cpy_msg_bytes);
            }
            slice.len() as isize
        }
    }
}