Files @ 031c9d14adaa
Branch filter:

Location: CSY/reowolf/src/protocol/parser/mod.rs

031c9d14adaa 11.5 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Merge branch 'feat-bytecode'

Adds size/alignment/offset computations to the type system and detects
potentially infinite types. If the type is potentially infinite but
contains a union that can break that type loop, then all other variants
of that union are supposed to be allocated on the heap. If the type
is potentially infinite but cannot be broken up, then we throw the
appropriate error.

The size/alignment/offset computations are not yet employed in the
runtime. But prepares Reowolf for a proper bytecode/IR implementation.
pub(crate) mod symbol_table;
pub(crate) mod type_table;
pub(crate) mod tokens;
pub(crate) mod token_parsing;
pub(crate) mod pass_tokenizer;
pub(crate) mod pass_symbols;
pub(crate) mod pass_imports;
pub(crate) mod pass_definitions;
pub(crate) mod pass_validation_linking;
pub(crate) mod pass_typing;
mod visitor;

use tokens::*;
use crate::collections::*;
use visitor::Visitor;
use pass_tokenizer::PassTokenizer;
use pass_symbols::PassSymbols;
use pass_imports::PassImport;
use pass_definitions::PassDefinitions;
use pass_validation_linking::PassValidationLinking;
use pass_typing::{PassTyping, ResolveQueue};
use symbol_table::*;
use type_table::TypeTable;

use crate::protocol::ast::*;
use crate::protocol::input_source::*;

use crate::protocol::ast_printer::ASTWriter;

#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum ModuleCompilationPhase {
    Tokenized,              // source is tokenized
    SymbolsScanned,         // all definitions are linked to their type class
    ImportsResolved,        // all imports are added to the symbol table
    DefinitionsParsed,      // produced the AST for the entire module
    TypesAddedToTable,      // added all definitions to the type table
    ValidatedAndLinked,     // AST is traversed and has linked the required AST nodes
    // When we continue with the compiler:
    // Typed,                  // Type inference and checking has been performed
}

pub struct Module {
    // Buffers
    pub source: InputSource,
    pub tokens: TokenBuffer,
    // Identifiers
    pub root_id: RootId,
    pub name: Option<(PragmaId, StringRef<'static>)>,
    pub version: Option<(PragmaId, i64)>,
    pub phase: ModuleCompilationPhase,
}

// TODO: This is kind of wrong. Because when we're producing bytecode we would
//       like the bytecode itself to not have the notion of the size of a pointer
//       type. But until I figure out what we do want I'll just set everything
//       to a 64-bit architecture.
pub struct TargetArch {
    pub array_size_alignment: (usize, usize),
    pub slice_size_alignment: (usize, usize),
    pub string_size_alignment: (usize, usize),
    pub port_size_alignment: (usize, usize),
    pub pointer_size_alignment: (usize, usize),
}

pub struct PassCtx<'a> {
    heap: &'a mut Heap,
    symbols: &'a mut SymbolTable,
    pool: &'a mut StringPool,
    arch: &'a TargetArch,
}

pub struct Parser {
    // Storage of all information created/gathered during compilation.
    pub(crate) heap: Heap,
    pub(crate) string_pool: StringPool, // Do not deallocate, holds all strings
    pub(crate) modules: Vec<Module>,
    pub(crate) symbol_table: SymbolTable,
    pub(crate) type_table: TypeTable,
    // Compiler passes, used as little state machine that keep their memory
    // around.
    pass_tokenizer: PassTokenizer,
    pass_symbols: PassSymbols,
    pass_import: PassImport,
    pass_definitions: PassDefinitions,
    pass_validation: PassValidationLinking,
    pass_typing: PassTyping,
    // Compiler options
    pub write_ast_to: Option<String>,
    pub(crate) arch: TargetArch,
}

impl Parser {
    pub fn new() -> Self {
        let mut parser = Parser{
            heap: Heap::new(),
            string_pool: StringPool::new(),
            modules: Vec::new(),
            symbol_table: SymbolTable::new(),
            type_table: TypeTable::new(),
            pass_tokenizer: PassTokenizer::new(),
            pass_symbols: PassSymbols::new(),
            pass_import: PassImport::new(),
            pass_definitions: PassDefinitions::new(),
            pass_validation: PassValidationLinking::new(),
            pass_typing: PassTyping::new(),
            write_ast_to: None,
            arch: TargetArch {
                array_size_alignment: (3*8, 8), // pointer, length, capacity
                slice_size_alignment: (2*8, 8), // pointer, length
                string_size_alignment: (3*8, 8), // pointer, length, capacity
                port_size_alignment: (3*4, 4), // two u32s: connector + port ID
                pointer_size_alignment: (8, 8),
            }
        };

        parser.symbol_table.insert_scope(None, SymbolScope::Global);

        fn quick_type(variants: &[ParserTypeVariant]) -> ParserType {
            let mut t = ParserType{ elements: Vec::with_capacity(variants.len()), full_span: InputSpan::new() };
            for variant in variants {
                t.elements.push(ParserTypeElement{ element_span: InputSpan::new(), variant: variant.clone() });
            }
            t
        }

        use ParserTypeVariant as PTV;
        insert_builtin_function(&mut parser, "get", &["T"], |id| (
            vec![
                ("input", quick_type(&[PTV::Input, PTV::PolymorphicArgument(id.upcast(), 0)]))
            ],
            quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])
        ));
        insert_builtin_function(&mut parser, "put", &["T"], |id| (
            vec![
                ("output", quick_type(&[PTV::Output, PTV::PolymorphicArgument(id.upcast(), 0)])),
                ("value", quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])),
            ],
            quick_type(&[PTV::Void])
        ));
        insert_builtin_function(&mut parser, "fires", &["T"], |id| (
            vec![
                ("port", quick_type(&[PTV::InputOrOutput, PTV::PolymorphicArgument(id.upcast(), 0)]))
            ],
            quick_type(&[PTV::Bool])
        ));
        insert_builtin_function(&mut parser, "create", &["T"], |id| (
            vec![
                ("length", quick_type(&[PTV::IntegerLike]))
            ],
            quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)])
        ));
        insert_builtin_function(&mut parser, "length", &["T"], |id| (
            vec![
                ("array", quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)]))
            ],
            quick_type(&[PTV::UInt32]) // TODO: @PtrInt
        ));
        insert_builtin_function(&mut parser, "assert", &[], |_id| (
            vec![
                ("condition", quick_type(&[PTV::Bool])),
            ],
            quick_type(&[PTV::Void])
        ));

        parser
    }

    pub fn feed(&mut self, mut source: InputSource) -> Result<(), ParseError> {
        // TODO: @Optimize
        let mut token_buffer = TokenBuffer::new();
        self.pass_tokenizer.tokenize(&mut source, &mut token_buffer)?;

        let module = Module{
            source,
            tokens: token_buffer,
            root_id: RootId::new_invalid(),
            name: None,
            version: None,
            phase: ModuleCompilationPhase::Tokenized,
        };
        self.modules.push(module);

        Ok(())
    }

    pub fn parse(&mut self) -> Result<(), ParseError> {
        let mut pass_ctx = PassCtx{
            heap: &mut self.heap,
            symbols: &mut self.symbol_table,
            pool: &mut self.string_pool,
            arch: &self.arch,
        };

        // Advance all modules to the phase where all symbols are scanned
        for module_idx in 0..self.modules.len() {
            self.pass_symbols.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
        }

        // With all symbols scanned, perform further compilation until we can
        // add all base types to the type table.
        for module_idx in 0..self.modules.len() {
            self.pass_import.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
            self.pass_definitions.parse(&mut self.modules, module_idx, &mut pass_ctx)?;
        }

        // Add every known type to the type table
        self.type_table.build_base_types(&mut self.modules, &mut pass_ctx)?;

        // Continue compilation with the remaining phases now that the types
        // are all in the type table
        for module_idx in 0..self.modules.len() {
            let mut ctx = visitor::Ctx{
                heap: &mut self.heap,
                modules: &mut self.modules,
                module_idx,
                symbols: &mut self.symbol_table,
                types: &mut self.type_table,
                arch: &self.arch,
            };
            self.pass_validation.visit_module(&mut ctx)?;
        }

        // Perform typechecking on all modules
        let mut queue = ResolveQueue::new();
        for module_idx in 0..self.modules.len() {
            let mut ctx = visitor::Ctx{
                heap: &mut self.heap,
                modules: &mut self.modules,
                module_idx,
                symbols: &mut self.symbol_table,
                types: &mut self.type_table,
                arch: &self.arch,
            };
            PassTyping::queue_module_definitions(&mut ctx, &mut queue);
        };
        while !queue.is_empty() {
            let top = queue.pop().unwrap();
            let mut ctx = visitor::Ctx{
                heap: &mut self.heap,
                modules: &mut self.modules,
                module_idx: top.root_id.index as usize,
                symbols: &mut self.symbol_table,
                types: &mut self.type_table,
                arch: &self.arch,
            };
            self.pass_typing.handle_module_definition(&mut ctx, &mut queue, top)?;
        }

        // Write out desired information
        if let Some(filename) = &self.write_ast_to {
            let mut writer = ASTWriter::new();
            let mut file = std::fs::File::create(std::path::Path::new(filename)).unwrap();
            writer.write_ast(&mut file, &self.heap);
        }

        Ok(())
    }
}

// Note: args and return type need to be a function because we need to know the function ID.
fn insert_builtin_function<T: Fn(FunctionDefinitionId) -> (Vec<(&'static str, ParserType)>, ParserType)> (
    p: &mut Parser, func_name: &str, polymorphic: &[&str], arg_and_return_fn: T) {

    let mut poly_vars = Vec::with_capacity(polymorphic.len());
    for poly_var in polymorphic {
        poly_vars.push(Identifier{ span: InputSpan::new(), value: p.string_pool.intern(poly_var.as_bytes()) });
    }

    let func_ident_ref = p.string_pool.intern(func_name.as_bytes());
    let func_id = p.heap.alloc_function_definition(|this| FunctionDefinition{
        this,
        defined_in: RootId::new_invalid(),
        builtin: true,
        span: InputSpan::new(),
        identifier: Identifier{ span: InputSpan::new(), value: func_ident_ref.clone() },
        poly_vars,
        return_types: Vec::new(),
        parameters: Vec::new(),
        body: BlockStatementId::new_invalid(),
        num_expressions_in_body: -1,
    });

    let (args, ret) = arg_and_return_fn(func_id);

    let mut parameters = Vec::with_capacity(args.len());
    for (arg_name, arg_type) in args {
        let identifier = Identifier{ span: InputSpan::new(), value: p.string_pool.intern(arg_name.as_bytes()) };
        let param_id = p.heap.alloc_variable(|this| Variable{
            this,
            kind: VariableKind::Parameter,
            parser_type: arg_type.clone(),
            identifier,
            relative_pos_in_block: 0,
            unique_id_in_scope: 0
        });
        parameters.push(param_id);
    }

    let func = &mut p.heap[func_id];
    func.parameters = parameters;
    func.return_types.push(ret);

    p.symbol_table.insert_symbol(SymbolScope::Global, Symbol{
        name: func_ident_ref,
        variant: SymbolVariant::Definition(SymbolDefinition{
            defined_in_module: RootId::new_invalid(),
            defined_in_scope: SymbolScope::Global,
            definition_span: InputSpan::new(),
            identifier_span: InputSpan::new(),
            imported_at: None,
            class: DefinitionClass::Function,
            definition_id: func_id.upcast(),
        })
    }).unwrap();
}