Files @ 031c9d14adaa
Branch filter:

Location: CSY/reowolf/src/protocol/tests/parser_binding.rs

031c9d14adaa 5.5 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Merge branch 'feat-bytecode'

Adds size/alignment/offset computations to the type system and detects
potentially infinite types. If the type is potentially infinite but
contains a union that can break that type loop, then all other variants
of that union are supposed to be allocated on the heap. If the type
is potentially infinite but cannot be broken up, then we throw the
appropriate error.

The size/alignment/offset computations are not yet employed in the
runtime. But prepares Reowolf for a proper bytecode/IR implementation.
use super::*;

#[test]
fn test_correct_binding() {
    Tester::new_single_source_expect_ok("binding bare", "
        enum TestEnum{ A, B }
        union TestUnion{ A(u32), B }
        struct TestStruct{ u32 field }

        func foo() -> u32 {
            auto lit_enum_a = TestEnum::A;
            auto lit_enum_b = TestEnum::B;
            auto lit_union_a = TestUnion::A(0);
            auto lit_union_b = TestUnion::B;
            auto lit_struct = TestStruct{ field: 0 };

            if (let test_enum_a = lit_enum_a)   { auto can_use = test_enum_a; }
            if (let test_enum_b = lit_enum_b)   { auto can_use = test_enum_b; }
            if (let test_union_a = lit_union_a) { auto can_use = test_union_a; }
            if (let test_union_b = lit_union_b) { auto can_use = test_union_b; }
            if (let test_struct = lit_struct)   { auto can_use = test_struct; }

            return 0;
        }
    ").for_function("foo", |f| { f
        .for_variable("test_enum_a", |v| { v.assert_concrete_type("TestEnum"); })
        .for_variable("test_enum_b", |v| { v.assert_concrete_type("TestEnum"); })
        .for_variable("test_union_a", |v| { v.assert_concrete_type("TestUnion"); })
        .for_variable("test_union_b", |v| { v.assert_concrete_type("TestUnion"); })
        .for_variable("test_struct", |v| { v.assert_concrete_type("TestStruct"); });
    });
}

#[test]
fn test_incorrect_binding() {
    Tester::new_single_source_expect_err("binding at statement level", "
        func foo() -> bool {
            return let a = 5;
        }
    ").error(|e| { e
        .assert_num(1)
        .assert_occurs_at(0, "let")
        .assert_msg_has(0, "only be used inside the testing expression");
    });

    Tester::new_single_source_expect_err("nested bindings", "
        struct Struct{ bool field }
        func foo() -> bool {
            if (let Struct{ field: let a = Struct{ field: false } } = Struct{ field: true }) {
                return test;
            }
            return false;
        }
    ").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "let a = ")
        .assert_msg_has(0, "nested binding")
        .assert_occurs_at(1, "let Struct")
        .assert_msg_has(1, "outer binding");
    });
}

#[test]
fn test_boolean_ops_on_binding() {
    Tester::new_single_source_expect_ok("apply && to binding result", "
        union TestUnion{ Two(u16), Four(u32), Eight(u64) }
        func foo() -> u32 {
            auto lit_2 = TestUnion::Two(2);
            auto lit_4 = TestUnion::Four(4);
            auto lit_8 = TestUnion::Eight(8);

            // Testing combined forms of bindings
            if (
                let TestUnion::Two(test_2) = lit_2 &&
                let TestUnion::Four(test_4) = lit_4 &&
                let TestUnion::Eight(test_8) = lit_8
            ) {
                auto valid_2 = test_2;
                auto valid_4 = test_4;
                auto valid_8 = test_8;
            }

            // Testing in combination with regular expressions, and to the correct
            // literals
            if (let TestUnion::Two(inter_a) = lit_2 && 5 + 2 == 7)               { inter_a = 0; }
            if (5 + 2 == 7 && let TestUnion::Two(inter_b) = lit_2)               { inter_b = 0; }
            if (2 + 2 == 4 && let TestUnion::Two(inter_c) = lit_2 && 3 + 3 == 8) { inter_c = 0; }

            // Testing with the 'incorrect' target union
            if (let TestUnion::Four(nope) = lit_2 && let TestUnion::Two(zilch) = lit_8) { }

            return 0;
        }
    ").for_function("foo", |f| { f
        .for_variable("valid_2", |v| { v.assert_concrete_type("u16"); })
        .for_variable("valid_4", |v| { v.assert_concrete_type("u32"); })
        .for_variable("valid_8", |v| { v.assert_concrete_type("u64"); })
        .for_variable("inter_a", |v| { v.assert_concrete_type("u16"); })
        .for_variable("inter_b", |v| { v.assert_concrete_type("u16"); })
        .for_variable("inter_c", |v| { v.assert_concrete_type("u16"); });
    });

    Tester::new_single_source_expect_err("apply || before binding", "
        enum Test{ A, B }
        func foo() -> u32 {
            if (let a = Test::A || 5 + 2 == 7) {
                auto mission_impossible = 5;
            }
            return 0;
        }
    ").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "let a")
        .assert_msg_has(0, "only the logical-and operator")
        .assert_occurs_at(1, "||")
        .assert_msg_has(1, "disallowed operation");
    });

    Tester::new_single_source_expect_err("apply || after binding", "
        enum Test{ A, B }
        func foo() -> u32 {
            if (5 + 2 == 7 || let b = Test::B) {
                auto magic_number = 7;
            }
            return 0;
        }
    ").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "let b")
        .assert_msg_has(0, "only the logical-and operator")
        .assert_occurs_at(1, "||")
        .assert_msg_has(1, "disallowed operation");
    });

    Tester::new_single_source_expect_err("apply || before and after binding", "
        enum Test{ A, B }
        func foo() -> u32 {
            if (1 + 2 == 3 || (let a = Test::A && let b = Test::B) || (2 + 2 == 4)) {
                auto darth_vader_says = \"Noooooooooo\";
            }
            return 0;
        }
    ").error(|e| { e
        .assert_num(2)
        .assert_occurs_at(0, "let a")
        .assert_msg_has(0, "only the logical-and operator")
        .assert_occurs_at(1, "|| (let a")
        .assert_msg_has(1, "disallowed operation");
    });
}