Files @ 090935e00933
Branch filter:

Location: CSY/reowolf/src/runtime_old/setup.rs

090935e00933 41.4 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Remove debug logging
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
use crate::common::*;
use crate::runtime::*;

impl TokenTarget {
    // subdivides the domain of usize into
    // [NET_ENDPOINT][UDP_ENDPOINT  ]
    // ^0            ^usize::MAX/2   ^usize::MAX
    const HALFWAY_INDEX: usize = usize::MAX / 2;
}
impl From<Token> for TokenTarget {
    fn from(Token(index): Token) -> Self {
        if let Some(shifted) = index.checked_sub(Self::HALFWAY_INDEX) {
            TokenTarget::UdpEndpoint { index: shifted }
        } else {
            TokenTarget::NetEndpoint { index }
        }
    }
}
impl Into<Token> for TokenTarget {
    fn into(self) -> Token {
        match self {
            TokenTarget::UdpEndpoint { index } => Token(index + Self::HALFWAY_INDEX),
            TokenTarget::NetEndpoint { index } => Token(index),
        }
    }
}
impl Connector {
    /// Create a new connector structure with the given protocol description (via Arc to facilitate sharing).
    /// The resulting connector will start in the setup phase, and cannot be used for communication until the
    /// `connect` procedure completes.
    /// # Safety
    /// The correctness of the system's underlying distributed algorithms requires that no two
    /// connectors have the same ID. If the user does not know the identifiers of other connectors in the
    /// system, it is advised to guess it using Connector::random_id (relying on the exceptionally low probability of an error).
    /// Sessions with duplicate connector identifiers will not result in any memory unsafety, but cannot be guaranteed
    /// to preserve their configured protocols.
    /// Fortunately, in most realistic cases, the presence of duplicate connector identifiers will result in an
    /// error during `connect`, observed as a peer misbehaving.
    pub fn new(
        mut logger: Box<dyn Logger>,
        proto_description: Arc<ProtocolDescription>,
        connector_id: ConnectorId,
    ) -> Self {
        log!(&mut *logger, "Created with connector_id {:?}", connector_id);
        let mut id_manager = IdManager::new(connector_id);
        let native_component_id = id_manager.new_component_id();
        Self {
            unphased: ConnectorUnphased {
                proto_description,
                proto_components: Default::default(),
                logger,
                native_component_id,
                ips: IdAndPortState { id_manager, port_info: Default::default() },
            },
            phased: ConnectorPhased::Setup(Box::new(ConnectorSetup {
                net_endpoint_setups: Default::default(),
                udp_endpoint_setups: Default::default(),
            })),
        }
    }

    /// Conceptually, this returning [p0, g1] is sugar for:
    /// 1. create port pair [p0, g0]
    /// 2. create port pair [p1, g1]
    /// 3. create udp component with interface of moved ports [p1, g0]
    /// 4. return [p0, g1]
    pub fn new_udp_mediator_component(
        &mut self,
        local_addr: SocketAddr,
        peer_addr: SocketAddr,
    ) -> Result<[PortId; 2], WrongStateError> {
        let Self { unphased: cu, phased } = self;
        match phased {
            ConnectorPhased::Communication(..) => Err(WrongStateError),
            ConnectorPhased::Setup(setup) => {
                let udp_index = setup.udp_endpoint_setups.len();
                let udp_cid = cu.ips.id_manager.new_component_id();
                // allocates 4 new port identifiers, two for each logical channel,
                // one channel per direction (into and out of the component)
                let mut npid = || cu.ips.id_manager.new_port_id();
                let [nin, nout, uin, uout] = [npid(), npid(), npid(), npid()];
                // allocate the native->udp_mediator channel's ports
                cu.ips.port_info.map.insert(
                    nout,
                    PortInfo {
                        route: Route::LocalComponent,
                        polarity: Putter,
                        peer: Some(uin),
                        owner: cu.native_component_id,
                    },
                );
                cu.ips.port_info.map.insert(
                    uin,
                    PortInfo {
                        route: Route::UdpEndpoint { index: udp_index },
                        polarity: Getter,
                        peer: Some(uin),
                        owner: udp_cid,
                    },
                );
                // allocate the udp_mediator->native channel's ports
                cu.ips.port_info.map.insert(
                    uout,
                    PortInfo {
                        route: Route::UdpEndpoint { index: udp_index },
                        polarity: Putter,
                        peer: Some(uin),
                        owner: udp_cid,
                    },
                );
                cu.ips.port_info.map.insert(
                    nin,
                    PortInfo {
                        route: Route::LocalComponent,
                        polarity: Getter,
                        peer: Some(uout),
                        owner: cu.native_component_id,
                    },
                );
                // allocate the two ports owned by the UdpMediator component
                // Remember to setup this UdpEndpoint setup during `connect` later.
                setup.udp_endpoint_setups.push(UdpEndpointSetup {
                    local_addr,
                    peer_addr,
                    getter_for_incoming: nin,
                });

                // update owned sets
                cu.ips
                    .port_info
                    .owned
                    .entry(cu.native_component_id)
                    .or_default()
                    .extend([nin, nout].iter().copied());
                cu.ips.port_info.owned.insert(udp_cid, maplit::hashset! {uin, uout});
                // Return the native's output, input port pair
                Ok([nout, nin])
            }
        }
    }

    /// Adds a "dangling" port to the connector in the setup phase,
    /// to be formed into channel during the connect procedure with the given
    /// transport layer information.
    pub fn new_net_port(
        &mut self,
        polarity: Polarity,
        sock_addr: SocketAddr,
        endpoint_polarity: EndpointPolarity,
    ) -> Result<PortId, WrongStateError> {
        let Self { unphased: cu, phased } = self;
        match phased {
            ConnectorPhased::Communication(..) => Err(WrongStateError),
            ConnectorPhased::Setup(setup) => {
                // allocate a single dangling port with a `None` peer (for now)
                let new_pid = cu.ips.id_manager.new_port_id();
                cu.ips.port_info.map.insert(
                    new_pid,
                    PortInfo {
                        route: Route::LocalComponent,
                        peer: None,
                        owner: cu.native_component_id,
                        polarity,
                    },
                );
                log!(
                    cu.logger,
                    "Added net port {:?} with polarity {:?} addr {:?} endpoint_polarity {:?}",
                    new_pid,
                    polarity,
                    &sock_addr,
                    endpoint_polarity
                );
                // Remember to setup this NetEndpoint setup during `connect` later.
                setup.net_endpoint_setups.push(NetEndpointSetup {
                    sock_addr,
                    endpoint_polarity,
                    getter_for_incoming: new_pid,
                });
                // update owned set
                cu.ips.port_info.owned.entry(cu.native_component_id).or_default().insert(new_pid);
                Ok(new_pid)
            }
        }
    }

    /// Finalizes the connector's setup procedure and forms a distributed system with
    /// all other connectors reachable through network channels. This procedure represents
    /// a synchronization barrier, and upon successful return, the connector can no longer add new network ports,
    /// but is ready to begin the first communication round.
    /// Initially, the connector has a singleton set of _batches_, the only element of which is empty.
    /// This single element starts off selected. The selected batch is modified with `put` and `get`,
    /// and new batches are added and selected with `next_batch`. See `sync` for an explanation of the
    /// purpose of these batches.
    pub fn connect(&mut self, timeout: Option<Duration>) -> Result<(), ConnectError> {
        use ConnectError as Ce;
        let Self { unphased: cu, phased } = self;
        match &phased {
            ConnectorPhased::Communication { .. } => {
                log!(cu.logger, "Call to connecting in connected state");
                Err(Ce::AlreadyConnected)
            }
            ConnectorPhased::Setup(setup) => {
                // Idea: Clone `self.unphased`, and then pass the replica to
                // `connect_inner` to do the work, attempting to create a new connector structure
                // in connected state without encountering any errors.
                // If anything goes wrong during `connect_inner`, we simply keep the original `cu`.

                // Ideally, we'd simply clone `cu` in its entirety.
                // However, it isn't clonable, because of the pesky logger.
                // Solution: the original and clone ConnectorUnphased structures
                // 'share' the original logger by using `mem::swap` strategically to pass a dummy back and forth,
                // such that the real logger is wherever we need it to be without violating any invariants.
                let mut cu_clone = ConnectorUnphased {
                    logger: Box::new(DummyLogger),
                    proto_components: cu.proto_components.clone(),
                    native_component_id: cu.native_component_id.clone(),
                    ips: cu.ips.clone(),
                    proto_description: cu.proto_description.clone(),
                };
                // cu has REAL logger...
                std::mem::swap(&mut cu.logger, &mut cu_clone.logger);
                // ... cu_clone has REAL logger.
                match Self::connect_inner(cu_clone, setup, timeout) {
                    Ok(connected_connector) => {
                        *self = connected_connector;
                        Ok(())
                    }
                    Err((err, mut logger)) => {
                        // Put the original logger back in place (in self.unphased, AKA `cu`).
                        // cu_clone has REAL logger...
                        std::mem::swap(&mut cu.logger, &mut logger);
                        // ... cu has REAL logger.
                        Err(err)
                    }
                }
            }
        }
    }

    // Given an immutable setup structure, and my own (cloned) ConnetorUnphased,
    // attempt to complete the setup procedure and return a new connector in Connected state.
    // If anything goes wrong, throw everything in the bin, except for the Logger, which is
    // the only structure that sees lasting effects of the failed attempt.
    fn connect_inner(
        mut cu: ConnectorUnphased,
        setup: &ConnectorSetup,
        timeout: Option<Duration>,
    ) -> Result<Self, (ConnectError, Box<dyn Logger>)> {
        log!(cu.logger, "~~~ CONNECT called timeout {:?}", timeout);
        let deadline = timeout.map(|to| Instant::now() + to);
        // `try_complete` is a helper function, which DOES NOT own `cu`, and returns ConnectError on err.
        // This outer function takes its output and wraps it alongside `cu` (which it owns)
        // as appropriate for Err(...) and OK(...) cases.
        let mut try_complete = || {
            // connect all endpoints in parallel; send and receive peer ids through ports
            let mut endpoint_manager = setup_endpoints_and_pair_ports(
                &mut *cu.logger,
                &setup.net_endpoint_setups,
                &setup.udp_endpoint_setups,
                &mut cu.ips.port_info,
                &deadline,
            )?;
            log!(
                cu.logger,
                "Successfully connected {} endpoints. info now {:#?} {:#?}",
                endpoint_manager.net_endpoint_store.endpoint_exts.len(),
                &cu.ips.port_info,
                &endpoint_manager,
            );
            // leader election and tree construction. Learn our role in the consensus tree,
            // from learning who are our children/parents (neighbors) in the consensus tree.
            let neighborhood = init_neighborhood(
                cu.ips.id_manager.connector_id,
                &mut *cu.logger,
                &mut endpoint_manager,
                &deadline,
            )?;
            log!(cu.logger, "Successfully created neighborhood {:?}", &neighborhood);
            // Put it all together with an initial round index of zero.
            let comm = ConnectorCommunication {
                round_index: 0,
                endpoint_manager,
                neighborhood,
                native_batches: vec![Default::default()],
                round_result: Ok(None), // no previous round yet
            };
            log!(cu.logger, "connect() finished. setup phase complete");
            Ok(comm)
        };
        match try_complete() {
            Ok(comm) => {
                Ok(Self { unphased: cu, phased: ConnectorPhased::Communication(Box::new(comm)) })
            }
            Err(err) => Err((err, cu.logger)),
        }
    }
}

// Given a set of net_ and udp_ endpoints to setup,
// port information to flesh out (by discovering peers through channels)
// and a deadline in which to do it,
// try to return:
// - An EndpointManager, containing all the set up endpoints
// - new information about ports acquired through the newly-created channels
fn setup_endpoints_and_pair_ports(
    logger: &mut dyn Logger,
    net_endpoint_setups: &[NetEndpointSetup],
    udp_endpoint_setups: &[UdpEndpointSetup],
    port_info: &mut PortInfoMap,
    deadline: &Option<Instant>,
) -> Result<EndpointManager, ConnectError> {
    use ConnectError as Ce;
    const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
    const RETRY_PERIOD: Duration = Duration::from_millis(200);

    // The data for a net endpoint's setup in progress
    struct NetTodo {
        // becomes completed once sent_local_port && recv_peer_port.is_some()
        // we send local port if we haven't already and we receive a writable event
        // we recv peer port if we haven't already and we receive a readbale event
        todo_endpoint: NetTodoEndpoint,
        endpoint_setup: NetEndpointSetup,
        sent_local_port: bool,          // true <-> I've sent my local port
        recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
    }

    // The data for a udp endpoint's setup in progress
    struct UdpTodo {
        // becomes completed once we receive our first writable event
        getter_for_incoming: PortId,
        sock: UdpSocket,
    }

    // Substructure of `NetTodo`, which represents the endpoint itself
    enum NetTodoEndpoint {
        Accepting(TcpListener),       // awaiting it's peer initiating the connection
        PeerInfoRecving(NetEndpoint), // awaiting info about peer port through the channel
    }
    ////////////////////////////////////////////

    // Start to construct our return values
    let mut poll = Poll::new().map_err(|_| Ce::PollInitFailed)?;
    let mut events =
        Events::with_capacity((net_endpoint_setups.len() + udp_endpoint_setups.len()) * 2 + 4);
    let [mut net_polled_undrained, udp_polled_undrained] = [VecSet::default(), VecSet::default()];
    let mut delayed_messages = vec![];
    let mut last_retry_at = Instant::now();
    let mut io_byte_buffer = IoByteBuffer::default();

    // Create net/udp todo structures, each already registered with poll
    let mut net_todos = net_endpoint_setups
        .iter()
        .enumerate()
        .map(|(index, endpoint_setup)| {
            let token = TokenTarget::NetEndpoint { index }.into();
            log!(logger, "Net endpoint {} beginning setup with {:?}", index, &endpoint_setup);
            let todo_endpoint = if let EndpointPolarity::Active = endpoint_setup.endpoint_polarity {
                let mut stream = TcpStream::connect(endpoint_setup.sock_addr)
                    .map_err(|_| Ce::TcpInvalidConnect(endpoint_setup.sock_addr))?;
                poll.registry().register(&mut stream, token, BOTH).unwrap();
                NetTodoEndpoint::PeerInfoRecving(NetEndpoint { stream, inbox: vec![] })
            } else {
                let mut listener = TcpListener::bind(endpoint_setup.sock_addr)
                    .map_err(|_| Ce::BindFailed(endpoint_setup.sock_addr))?;
                poll.registry().register(&mut listener, token, BOTH).unwrap();
                NetTodoEndpoint::Accepting(listener)
            };
            Ok(NetTodo {
                todo_endpoint,
                sent_local_port: false,
                recv_peer_port: None,
                endpoint_setup: endpoint_setup.clone(),
            })
        })
        .collect::<Result<Vec<NetTodo>, ConnectError>>()?;
    let udp_todos = udp_endpoint_setups
        .iter()
        .enumerate()
        .map(|(index, endpoint_setup)| {
            let mut sock = UdpSocket::bind(endpoint_setup.local_addr)
                .map_err(|_| Ce::BindFailed(endpoint_setup.local_addr))?;
            sock.connect(endpoint_setup.peer_addr)
                .map_err(|_| Ce::UdpConnectFailed(endpoint_setup.peer_addr))?;
            poll.registry()
                .register(&mut sock, TokenTarget::UdpEndpoint { index }.into(), Interest::WRITABLE)
                .unwrap();
            Ok(UdpTodo { sock, getter_for_incoming: endpoint_setup.getter_for_incoming })
        })
        .collect::<Result<Vec<UdpTodo>, ConnectError>>()?;

    // Initially no net connections have failed, and all udp and net endpoint setups are incomplete
    let mut net_connect_to_retry: HashSet<usize> = Default::default();
    let mut setup_incomplete: HashSet<TokenTarget> = {
        let net_todo_targets_iter =
            (0..net_todos.len()).map(|index| TokenTarget::NetEndpoint { index });
        let udp_todo_targets_iter =
            (0..udp_todos.len()).map(|index| TokenTarget::UdpEndpoint { index });
        net_todo_targets_iter.chain(udp_todo_targets_iter).collect()
    };
    // progress by reacting to poll events. continue until every endpoint is set up
    while !setup_incomplete.is_empty() {
        // recompute the timeout for the poll call
        let remaining = match (deadline, net_connect_to_retry.is_empty()) {
            (None, true) => None,
            (None, false) => Some(RETRY_PERIOD),
            (Some(deadline), is_empty) => {
                let dur_to_timeout =
                    deadline.checked_duration_since(Instant::now()).ok_or(Ce::Timeout)?;
                Some(if is_empty { dur_to_timeout } else { dur_to_timeout.min(RETRY_PERIOD) })
            }
        };
        // block until either
        // (a) `events` has been populated with 1+ elements
        // (b) timeout elapses, or
        // (c) RETRY_PERIOD elapses
        poll.poll(&mut events, remaining).map_err(|_| Ce::PollFailed)?;
        if last_retry_at.elapsed() > RETRY_PERIOD {
            // Retry all net connections and reset `last_retry_at`
            last_retry_at = Instant::now();
            for net_index in net_connect_to_retry.drain() {
                // Restart connect procedure for this net endpoint
                let net_todo = &mut net_todos[net_index];
                log!(
                    logger,
                    "Restarting connection with endpoint {:?} {:?}",
                    net_index,
                    net_todo.endpoint_setup.sock_addr
                );
                match &mut net_todo.todo_endpoint {
                    NetTodoEndpoint::PeerInfoRecving(endpoint) => {
                        let mut new_stream = TcpStream::connect(net_todo.endpoint_setup.sock_addr)
                            .expect("mio::TcpStream connect should not fail!");
                        std::mem::swap(&mut endpoint.stream, &mut new_stream);
                        let token = TokenTarget::NetEndpoint { index: net_index }.into();
                        poll.registry().register(&mut endpoint.stream, token, BOTH).unwrap();
                    }
                    _ => unreachable!(),
                }
            }
        }
        for event in events.iter() {
            let token = event.token();
            // figure out which endpoint the event belonged to
            let token_target = TokenTarget::from(token);
            match token_target {
                TokenTarget::UdpEndpoint { index } => {
                    // UdpEndpoints are easy to complete.
                    // Their setup event just has to succeed without error
                    if !setup_incomplete.contains(&token_target) {
                        // spurious wakeup. this endpoint has already been set up!
                        continue;
                    }
                    let udp_todo: &UdpTodo = &udp_todos[index];
                    if event.is_error() {
                        return Err(Ce::BindFailed(udp_todo.sock.local_addr().unwrap()));
                    }
                    setup_incomplete.remove(&token_target);
                }
                TokenTarget::NetEndpoint { index } => {
                    // NetEndpoints are complex to complete,
                    // they must accept/connect to their peer,
                    // and then exchange port info successfully
                    let net_todo = &mut net_todos[index];
                    if let NetTodoEndpoint::Accepting(listener) = &mut net_todo.todo_endpoint {
                        // Passive endpoint that will first try accept the peer's connection
                        match listener.accept() {
                            Err(e) if err_would_block(&e) => continue, // spurious wakeup
                            Err(_) => {
                                log!(logger, "accept() failure on index {}", index);
                                return Err(Ce::AcceptFailed(listener.local_addr().unwrap()));
                            }
                            Ok((mut stream, peer_addr)) => {
                                // successfully accepted the active peer
                                // reusing the token, but now for the stream and not the listener
                                poll.registry().deregister(listener).unwrap();
                                poll.registry().register(&mut stream, token, BOTH).unwrap();
                                log!(
                                    logger,
                                    "Endpoint[{}] accepted a connection from {:?}",
                                    index,
                                    peer_addr
                                );
                                let net_endpoint = NetEndpoint { stream, inbox: vec![] };
                                net_todo.todo_endpoint =
                                    NetTodoEndpoint::PeerInfoRecving(net_endpoint);
                            }
                        }
                    }
                    // OK now let's try and finish exchanging port info
                    if let NetTodoEndpoint::PeerInfoRecving(net_endpoint) =
                        &mut net_todo.todo_endpoint
                    {
                        if event.is_error() {
                            // event signals some error! :(
                            if net_todo.endpoint_setup.endpoint_polarity
                                == EndpointPolarity::Passive
                            {
                                // breaking as the acceptor is currently unrecoverable
                                return Err(Ce::AcceptFailed(
                                    net_endpoint.stream.local_addr().unwrap(),
                                ));
                            }
                            // this actively-connecting endpoint failed to connect!
                            // We will schedule it for a retry
                            net_connect_to_retry.insert(index);
                            continue;
                        }
                        // event wasn't ERROR
                        if net_connect_to_retry.contains(&index) {
                            // spurious wakeup. already scheduled to retry connect later
                            continue;
                        }
                        if !setup_incomplete.contains(&token_target) {
                            // spurious wakeup. this endpoint has already been completed!
                            if event.is_readable() {
                                net_polled_undrained.insert(index);
                            }
                            continue;
                        }
                        let local_info = port_info
                            .map
                            .get(&net_todo.endpoint_setup.getter_for_incoming)
                            .expect("Net Setup's getter port info isn't known"); // unreachable
                        if event.is_writable() && !net_todo.sent_local_port {
                            // can write and didn't send setup msg yet? Do so!
                            let _ = net_endpoint.stream.set_nodelay(true);
                            let msg = Msg::SetupMsg(SetupMsg::MyPortInfo(MyPortInfo {
                                owner: local_info.owner,
                                polarity: local_info.polarity,
                                port: net_todo.endpoint_setup.getter_for_incoming,
                            }));
                            net_endpoint
                                .send(&msg, &mut io_byte_buffer)
                                .map_err(|e| {
                                    Ce::NetEndpointSetupError(
                                        net_endpoint.stream.local_addr().unwrap(),
                                        e,
                                    )
                                })
                                .unwrap();
                            log!(logger, "endpoint[{}] sent msg {:?}", index, &msg);
                            net_todo.sent_local_port = true;
                        }
                        if event.is_readable() && net_todo.recv_peer_port.is_none() {
                            // can read and didn't finish recving setup msg yet? Do so!
                            let maybe_msg = net_endpoint.try_recv(logger).map_err(|e| {
                                Ce::NetEndpointSetupError(
                                    net_endpoint.stream.local_addr().unwrap(),
                                    e,
                                )
                            })?;
                            if maybe_msg.is_some() && !net_endpoint.inbox.is_empty() {
                                net_polled_undrained.insert(index);
                            }
                            match maybe_msg {
                                None => {} // msg deserialization incomplete
                                Some(Msg::SetupMsg(SetupMsg::MyPortInfo(peer_info))) => {
                                    log!(
                                        logger,
                                        "endpoint[{}] got peer info {:?}",
                                        index,
                                        peer_info
                                    );
                                    if peer_info.polarity == local_info.polarity {
                                        return Err(ConnectError::PortPeerPolarityMismatch(
                                            net_todo.endpoint_setup.getter_for_incoming,
                                        ));
                                    }
                                    net_todo.recv_peer_port = Some(peer_info.port);
                                    // finally learned the peer of this port!
                                    port_info
                                        .map
                                        .get_mut(&net_todo.endpoint_setup.getter_for_incoming)
                                        .unwrap()
                                        .peer = Some(peer_info.port);
                                    // learned the info of this peer port
                                    port_info.map.entry(peer_info.port).or_insert({
                                        port_info
                                            .owned
                                            .entry(peer_info.owner)
                                            .or_default()
                                            .insert(peer_info.port);
                                        PortInfo {
                                            peer: Some(net_todo.endpoint_setup.getter_for_incoming),
                                            polarity: peer_info.polarity,
                                            owner: peer_info.owner,
                                            route: Route::NetEndpoint { index },
                                        }
                                    });
                                }
                                Some(inappropriate_msg) => {
                                    log!(
                                        logger,
                                        "delaying msg {:?} during channel setup phase",
                                        inappropriate_msg
                                    );
                                    delayed_messages.push((index, inappropriate_msg));
                                }
                            }
                        }
                        // is the setup for this net_endpoint now complete?
                        if net_todo.sent_local_port && net_todo.recv_peer_port.is_some() {
                            // yes! connected, sent my info and received peer's info
                            setup_incomplete.remove(&token_target);
                            log!(logger, "endpoint[{}] is finished!", index);
                        }
                    }
                }
            }
        }
        events.clear();
    }
    log!(logger, "Endpoint setup complete! Cleaning up and building structures");
    let net_endpoint_exts = net_todos
        .into_iter()
        .enumerate()
        .map(|(index, NetTodo { todo_endpoint, endpoint_setup, .. })| NetEndpointExt {
            net_endpoint: match todo_endpoint {
                NetTodoEndpoint::PeerInfoRecving(mut net_endpoint) => {
                    let token = TokenTarget::NetEndpoint { index }.into();
                    poll.registry()
                        .reregister(&mut net_endpoint.stream, token, Interest::READABLE)
                        .unwrap();
                    net_endpoint
                }
                _ => unreachable!(),
            },
            getter_for_incoming: endpoint_setup.getter_for_incoming,
        })
        .collect();
    let udp_endpoint_exts = udp_todos
        .into_iter()
        .enumerate()
        .map(|(index, udp_todo)| {
            let UdpTodo { mut sock, getter_for_incoming } = udp_todo;
            let token = TokenTarget::UdpEndpoint { index }.into();
            poll.registry().reregister(&mut sock, token, Interest::READABLE).unwrap();
            UdpEndpointExt {
                sock,
                outgoing_payloads: Default::default(),
                received_this_round: false,
                getter_for_incoming,
            }
        })
        .collect();
    let endpoint_manager = EndpointManager {
        poll,
        events,
        undelayed_messages: delayed_messages, // no longer delayed
        delayed_messages: Default::default(),
        net_endpoint_store: EndpointStore {
            endpoint_exts: net_endpoint_exts,
            polled_undrained: net_polled_undrained,
        },
        udp_endpoint_store: EndpointStore {
            endpoint_exts: udp_endpoint_exts,
            polled_undrained: udp_polled_undrained,
        },
        io_byte_buffer,
    };
    Ok(endpoint_manager)
}

// Given a fully-formed endpoint manager,
// construct the consensus tree with:
// 1. decentralized leader election
// 2. centralized tree construction
fn init_neighborhood(
    connector_id: ConnectorId,
    logger: &mut dyn Logger,
    em: &mut EndpointManager,
    deadline: &Option<Instant>,
) -> Result<Neighborhood, ConnectError> {
    use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};

    // storage structure for the state of a distributed wave
    // (for readability)
    #[derive(Debug)]
    struct WaveState {
        parent: Option<usize>,
        leader: ConnectorId,
    }

    // kick off a leader-election wave rooted at myself
    // given the desired wave information
    // (e.g. don't inform my parent if they exist)
    fn do_wave(
        em: &mut EndpointManager,
        awaiting: &mut HashSet<usize>,
        ws: &WaveState,
    ) -> Result<(), ConnectError> {
        awaiting.clear();
        let msg = S(Sm::LeaderWave { wave_leader: ws.leader });
        for index in em.index_iter() {
            if Some(index) != ws.parent {
                em.send_to_setup(index, &msg)?;
                awaiting.insert(index);
            }
        }
        Ok(())
    }
    ///////////////////////
    /*
    Conceptually, we have two distinct disstributed algorithms back-to-back
    1. Leader election using echo algorithm with extinction.
        - Each connector initiates a wave tagged with their ID
        - Connectors participate in waves of GREATER ID, abandoning previous waves
        - Only the wave of the connector with GREATEST ID completes, whereupon they are the leader
    2. Tree construction
        - The leader broadcasts their leadership with msg A
        - Upon receiving their first announcement, connectors reply B, and send A to all peers
        - A controller exits once they have received A or B from each neighbor

    The actual implementation is muddier, because non-leaders aren't aware of termiantion of algorithm 1,
    so they rely on receipt of the leader's announcement to realize that algorithm 2 has begun.

    NOTE the distinction between PARENT and LEADER
    */
    log!(logger, "beginning neighborhood construction");
    if em.num_net_endpoints() == 0 {
        log!(logger, "Edge case of no neighbors! No parent an no children!");
        return Ok(Neighborhood { parent: None, children: VecSet::new(vec![]) });
    }
    log!(logger, "Have {} endpoints. Must participate in distributed alg.", em.num_net_endpoints());
    let mut awaiting = HashSet::with_capacity(em.num_net_endpoints());
    // 1+ neighbors. Leader can only be learned by receiving messages
    // loop ends when I know my sink tree parent (implies leader was elected)
    let election_result: WaveState = {
        // initially: No parent, I'm the best leader.
        let mut best_wave = WaveState { parent: None, leader: connector_id };
        // start a wave for this initial state
        do_wave(em, &mut awaiting, &best_wave)?;
        // with 1+ neighbors, progress is only made in response to incoming messages
        em.undelay_all();
        'election: loop {
            log!(logger, "Election loop. awaiting {:?}...", awaiting.iter());
            let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
            log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
            match msg {
                S(Sm::LeaderAnnounce { tree_leader }) => {
                    // A neighbor explicitly tells me who is the leader
                    // they become my parent, and I adopt their announced leader
                    let election_result =
                        WaveState { leader: tree_leader, parent: Some(recv_index) };
                    log!(logger, "Election lost! Result {:?}", &election_result);
                    assert!(election_result.leader >= best_wave.leader);
                    assert_ne!(election_result.leader, connector_id);
                    break 'election election_result;
                }
                S(Sm::LeaderWave { wave_leader }) => {
                    use Ordering as O;
                    match wave_leader.cmp(&best_wave.leader) {
                        O::Less => log!(
                            logger,
                            "Ignoring wave with Id {:?}<{:?}",
                            wave_leader,
                            best_wave.leader
                        ),
                        O::Greater => {
                            log!(
                                logger,
                                "Joining wave with Id {:?}>{:?}",
                                wave_leader,
                                best_wave.leader
                            );
                            best_wave = WaveState { leader: wave_leader, parent: Some(recv_index) };
                            log!(logger, "New wave state {:?}", &best_wave);
                            do_wave(em, &mut awaiting, &best_wave)?;
                            if awaiting.is_empty() {
                                log!(logger, "Special case! Only neighbor is parent. Replying to {:?} msg {:?}", recv_index, &msg);
                                em.send_to_setup(recv_index, &msg)?;
                            }
                        }
                        O::Equal => {
                            assert!(awaiting.remove(&recv_index));
                            log!(
                                logger,
                                "Wave reply from index {:?} for leader {:?}. Now awaiting {} replies",
                                recv_index,
                                best_wave.leader,
                                awaiting.len()
                            );
                            if awaiting.is_empty() {
                                if let Some(parent) = best_wave.parent {
                                    log!(
                                        logger,
                                        "Sub-wave done! replying to parent {:?} msg {:?}",
                                        parent,
                                        &msg
                                    );
                                    em.send_to_setup(parent, &msg)?;
                                } else {
                                    let election_result: WaveState = best_wave;
                                    log!(logger, "Election won! Result {:?}", &election_result);
                                    break 'election election_result;
                                }
                            }
                        }
                    }
                }
                msg @ S(Sm::YouAreMyParent) | msg @ S(Sm::MyPortInfo(_)) => {
                    log!(logger, "Endpont {:?} sent unexpected msg! {:?}", recv_index, &msg);
                    return Err(Ce::SetupAlgMisbehavior);
                }
                msg @ Msg::CommMsg { .. } => {
                    log!(logger, "delaying msg {:?} during election algorithm", msg);
                    em.delayed_messages.push((recv_index, msg));
                }
            }
        }
    };

    // starting algorithm 2. Send a message to every neighbor
    // namely, send "YouAreMyParent" to parent (if they exist),
    // and LeaderAnnounce to everyone else
    log!(logger, "Starting tree construction. Step 1: send one msg per neighbor");
    awaiting.clear();
    for index in em.index_iter() {
        if Some(index) == election_result.parent {
            em.send_to_setup(index, &S(Sm::YouAreMyParent))?;
        } else {
            awaiting.insert(index);
            em.send_to_setup(
                index,
                &S(Sm::LeaderAnnounce { tree_leader: election_result.leader }),
            )?;
        }
    }
    // Receive one message from each neighbor to learn
    // whether they consider me their parent or not.
    let mut children = vec![];
    em.undelay_all();
    while !awaiting.is_empty() {
        log!(logger, "Tree construction_loop loop. awaiting {:?}...", awaiting.iter());
        let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
        log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
        match msg {
            S(Sm::LeaderAnnounce { .. }) => {
                // `recv_index` is not my child
                log!(
                    logger,
                    "Got reply from non-child index {:?}. Children: {:?}",
                    recv_index,
                    children.iter()
                );
                if !awaiting.remove(&recv_index) {
                    return Err(Ce::SetupAlgMisbehavior);
                }
            }
            S(Sm::YouAreMyParent) => {
                if !awaiting.remove(&recv_index) {
                    log!(
                        logger,
                        "Got reply from child index {:?}. Children before... {:?}",
                        recv_index,
                        children.iter()
                    );
                    return Err(Ce::SetupAlgMisbehavior);
                }
                // `recv_index` is my child
                children.push(recv_index);
            }
            msg @ S(Sm::MyPortInfo(_)) | msg @ S(Sm::LeaderWave { .. }) => {
                log!(logger, "discarding old message {:?} during election", msg);
            }
            msg @ Msg::CommMsg { .. } => {
                log!(logger, "delaying msg {:?} during election", msg);
                em.delayed_messages.push((recv_index, msg));
            }
        }
    }
    // Neighborhood complete!
    children.shrink_to_fit();
    let neighborhood =
        Neighborhood { parent: election_result.parent, children: VecSet::new(children) };
    log!(logger, "Neighborhood constructed {:?}", &neighborhood);
    Ok(neighborhood)
}