Files
@ 0d46914f7c2e
Branch filter:
Location: CSY/reowolf/src/runtime2/consensus.rs
0d46914f7c2e
56.6 KiB
application/rls-services+xml
WIP on fixing bug where only partial sync region is available after error
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 | use crate::collections::VecSet;
use crate::protocol::eval::ValueGroup;
use super::ConnectorId;
use super::branch::BranchId;
use super::port::{ChannelId, PortIdLocal};
use super::inbox::{
Message, DataHeader, SyncHeader, ChannelAnnotation, BranchMarker,
DataMessage,
SyncCompMessage, SyncCompContent,
SyncPortMessage, SyncPortContent,
SyncControlMessage, SyncControlContent
};
use super::scheduler::{ComponentCtx, ComponentPortChange};
struct BranchAnnotation {
channel_mapping: Vec<ChannelAnnotation>,
cur_marker: BranchMarker,
}
#[derive(Debug)]
pub(crate) struct LocalSolution {
component: ConnectorId,
final_branch_id: BranchId,
port_mapping: Vec<(ChannelId, BranchMarker)>,
}
#[derive(Debug, Clone)]
pub(crate) struct GlobalSolution {
component_branches: Vec<(ConnectorId, BranchId)>,
channel_mapping: Vec<(ChannelId, BranchMarker)>, // TODO: This can go, is debugging info
}
#[derive(Debug, PartialEq, Eq)]
pub enum RoundConclusion {
Failure,
Success(BranchId),
}
// -----------------------------------------------------------------------------
// Consensus
// -----------------------------------------------------------------------------
struct Peer {
id: ConnectorId,
encountered_this_round: bool,
expected_sync_round: u32,
}
/// The consensus algorithm. Currently only implemented to find the component
/// with the highest ID within the sync region and letting it handle all the
/// local solutions.
///
/// The type itself serves as an experiment to see how code should be organized.
// TODO: Flatten all datastructures
// TODO: Have a "branch+port position hint" in case multiple operations are
// performed on the same port to prevent repeated lookups
// TODO: A lot of stuff should be batched. Like checking all the sync headers
// and sending "I have a higher ID" messages. Should reduce locking by quite a
// bit.
pub(crate) struct Consensus {
// --- State that is cleared after each round
// Local component's state
highest_connector_id: ConnectorId,
branch_annotations: Vec<BranchAnnotation>, // index is branch ID
branch_markers: Vec<BranchId>, // index is branch marker, maps to branch
// Gathered state from communication
encountered_ports: VecSet<PortIdLocal>, // to determine if we should send "port remains silent" messages.
solution_combiner: SolutionCombiner,
handled_wave: bool, // encountered notification wave in this round
conclusion: Option<RoundConclusion>,
ack_remaining: u32,
// --- Persistent state
peers: Vec<Peer>,
sync_round: u32,
// --- Workspaces
workspace_ports: Vec<PortIdLocal>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum Consistency {
Valid,
Inconsistent,
}
impl Consensus {
pub fn new() -> Self {
return Self {
highest_connector_id: ConnectorId::new_invalid(),
branch_annotations: Vec::new(),
branch_markers: Vec::new(),
encountered_ports: VecSet::new(),
solution_combiner: SolutionCombiner::new(),
handled_wave: false,
conclusion: None,
ack_remaining: 0,
peers: Vec::new(),
sync_round: 0,
workspace_ports: Vec::new(),
}
}
// --- Controlling sync round and branches
/// Returns whether the consensus algorithm is running in sync mode
pub fn is_in_sync(&self) -> bool {
return !self.branch_annotations.is_empty();
}
/// TODO: Remove this once multi-fire is in place
#[deprecated]
pub fn get_annotation(&self, branch_id: BranchId, channel_id: PortIdLocal) -> &ChannelAnnotation {
let branch = &self.branch_annotations[branch_id.index as usize];
let port = branch.channel_mapping.iter().find(|v| v.channel_id.index == channel_id.index).unwrap();
return port;
}
/// Sets up the consensus algorithm for a new synchronous round. The
/// provided ports should be the ports the component owns at the start of
/// the sync round.
pub fn start_sync(&mut self, ctx: &ComponentCtx) {
debug_assert!(!self.highest_connector_id.is_valid());
debug_assert!(self.branch_annotations.is_empty());
debug_assert!(self.solution_combiner.local.is_empty());
// We'll use the first "branch" (the non-sync one) to store our ports,
// this allows cloning if we created a new branch.
self.branch_annotations.push(BranchAnnotation{
channel_mapping: ctx.get_ports().iter()
.map(|v| ChannelAnnotation {
channel_id: v.channel_id,
registered_id: None,
expected_firing: None,
})
.collect(),
cur_marker: BranchMarker::new_invalid(),
});
self.branch_markers.push(BranchId::new_invalid());
self.highest_connector_id = ctx.id;
}
/// Notifies the consensus algorithm that a new branch has appeared. Must be
/// called for each forked branch in the execution tree.
pub fn notify_of_new_branch(&mut self, parent_branch_id: BranchId, new_branch_id: BranchId) {
// If called correctly. Then each time we are notified the new branch's
// index is the length in `branch_annotations`.
debug_assert!(self.branch_annotations.len() == new_branch_id.index as usize);
let parent_branch_annotations = &self.branch_annotations[parent_branch_id.index as usize];
let new_marker = BranchMarker::new(self.branch_markers.len() as u32);
let new_branch_annotations = BranchAnnotation{
channel_mapping: parent_branch_annotations.channel_mapping.clone(),
cur_marker: new_marker,
};
self.branch_annotations.push(new_branch_annotations);
self.branch_markers.push(new_branch_id);
}
/// Notifies the consensus algorithm that a particular branch has
/// encountered an unrecoverable error.
pub fn notify_of_fatal_branch(&mut self, failed_branch_id: BranchId, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
debug_assert!(self.is_in_sync());
// Check for trivial case, where branch has not yet communicated within
// the consensus algorithm
let branch = &self.branch_annotations[failed_branch_id.index as usize];
if branch.channel_mapping.iter().all(|v| v.registered_id.is_none()) {
return Some(RoundConclusion::Failure);
}
// We need to go through the hassle of notifying all participants in the
// sync round that we've encountered an error.
// --- notify leader
let maybe_conclusion = self.send_to_leader_or_handle_as_leader(SyncCompContent::LocalFailure, ctx);
// --- initiate discovery wave (to let leader know about all components)
self.handled_wave = true;
for mapping in &self.branch_annotations[0].channel_mapping {
let channel_id = mapping.channel_id;
let port_info = ctx.get_port_by_channel_id(channel_id).unwrap();
let message = SyncPortMessage{
sync_header: self.create_sync_header(ctx),
source_port: port_info.self_id,
target_port: port_info.peer_id,
content: SyncPortContent::NotificationWave,
};
// Note: submitting the message might fail. But we're attempting to
// handle the error anyway.
// TODO: Think about this a second time: how do we make sure the
// entire network will fail if we reach this condition
let _unused = ctx.submit_message(Message::SyncPort(message));
}
return maybe_conclusion;
}
/// Notifies the consensus algorithm that a branch has reached the end of
/// the sync block. A final check for consistency will be performed that the
/// caller has to handle. Note that
pub fn notify_of_finished_branch(&self, branch_id: BranchId) -> Consistency {
debug_assert!(self.is_in_sync());
let branch = &self.branch_annotations[branch_id.index as usize];
for mapping in &branch.channel_mapping {
match mapping.expected_firing {
Some(expected) => {
if expected != mapping.registered_id.is_some() {
// Inconsistent speculative state and actual state
debug_assert!(mapping.registered_id.is_none()); // because if we did fire on a silent port, we should've caught that earlier
return Consistency::Inconsistent;
}
},
None => {},
}
}
return Consistency::Valid;
}
/// Notifies the consensus algorithm that a particular branch has assumed
/// a speculative value for its port mapping.
pub fn notify_of_speculative_mapping(&mut self, branch_id: BranchId, port_id: PortIdLocal, does_fire: bool, ctx: &ComponentCtx) -> Consistency {
debug_assert!(self.is_in_sync());
let port_desc = ctx.get_port_by_id(port_id).unwrap();
let channel_id = port_desc.channel_id;
let branch = &mut self.branch_annotations[branch_id.index as usize];
for mapping in &mut branch.channel_mapping {
if mapping.channel_id == channel_id {
match mapping.expected_firing {
None => {
// Not yet mapped, perform speculative mapping
mapping.expected_firing = Some(does_fire);
return Consistency::Valid;
},
Some(current) => {
// Already mapped
if current == does_fire {
return Consistency::Valid;
} else {
return Consistency::Inconsistent;
}
}
}
}
}
unreachable!("notify_of_speculative_mapping called with unowned port");
}
/// Generates a new local solution from a finished branch. If the component
/// is not the leader of the sync region then it will be sent to the
/// appropriate component. If it is the leader then there is a chance that
/// this solution completes a global solution. In that case the solution
/// branch ID will be returned.
pub(crate) fn handle_new_finished_sync_branch(&mut self, branch_id: BranchId, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
// Turn the port mapping into a local solution
let source_mapping = &self.branch_annotations[branch_id.index as usize].channel_mapping;
let mut target_mapping = Vec::with_capacity(source_mapping.len());
for port in source_mapping {
// Note: if the port is silent, and we've never communicated
// over the port, then we need to do so now, to let the peer
// component know about our sync leader state.
let port_desc = ctx.get_port_by_channel_id(port.channel_id).unwrap();
let self_port_id = port_desc.self_id;
let peer_port_id = port_desc.peer_id;
let channel_id = port_desc.channel_id;
if !self.encountered_ports.contains(&self_port_id) {
let message = SyncPortMessage {
sync_header: SyncHeader{
sending_component_id: ctx.id,
highest_component_id: self.highest_connector_id,
sync_round: self.sync_round
},
source_port: self_port_id,
target_port: peer_port_id,
content: SyncPortContent::SilentPortNotification,
};
match ctx.submit_message(Message::SyncPort(message)) {
Ok(_) => {
self.encountered_ports.push(self_port_id);
},
Err(_) => {
// Seems like we were done with this branch, but one of
// the silent ports (in scope) is actually closed
return self.notify_of_fatal_branch(branch_id, ctx);
}
}
}
target_mapping.push((
channel_id,
port.registered_id.unwrap_or(BranchMarker::new_invalid())
));
}
let local_solution = LocalSolution{
component: ctx.id,
final_branch_id: branch_id,
port_mapping: target_mapping,
};
let maybe_conclusion = self.send_to_leader_or_handle_as_leader(SyncCompContent::LocalSolution(local_solution), ctx);
return maybe_conclusion;
}
/// Notifies the consensus algorithm about the chosen branch to commit to
/// memory (may be the invalid "start" branch)
pub fn end_sync(&mut self, branch_id: BranchId, final_ports: &mut Vec<ComponentPortChange>) {
debug_assert!(self.is_in_sync());
// TODO: Handle sending and receiving ports
// Set final ports
let branch = &self.branch_annotations[branch_id.index as usize];
// Clear out internal storage to defaults
self.highest_connector_id = ConnectorId::new_invalid();
self.branch_annotations.clear();
self.branch_markers.clear();
self.encountered_ports.clear();
self.solution_combiner.clear();
self.handled_wave = false;
self.conclusion = None;
self.ack_remaining = 0;
// And modify persistent storage
self.sync_round += 1;
for peer in self.peers.iter_mut() {
peer.encountered_this_round = false;
peer.expected_sync_round += 1;
}
}
// --- Handling messages
/// Prepares a message for sending. Caller should have made sure that
/// sending the message is consistent with the speculative state.
pub fn handle_message_to_send(&mut self, branch_id: BranchId, source_port_id: PortIdLocal, content: &ValueGroup, ctx: &mut ComponentCtx) -> (SyncHeader, DataHeader) {
debug_assert!(self.is_in_sync());
let branch = &mut self.branch_annotations[branch_id.index as usize];
let port_info = ctx.get_port_by_id(source_port_id).unwrap();
if cfg!(debug_assertions) {
// Check for consistent mapping
let port = branch.channel_mapping.iter()
.find(|v| v.channel_id == port_info.channel_id)
.unwrap();
debug_assert!(port.expected_firing == None || port.expected_firing == Some(true));
}
// Check for ports that are being sent
debug_assert!(self.workspace_ports.is_empty());
find_ports_in_value_group(content, &mut self.workspace_ports);
if !self.workspace_ports.is_empty() {
todo!("handle sending ports");
self.workspace_ports.clear();
}
// Construct data header
// TODO: Handle multiple firings. Right now we just assign the current
// branch to the `None` value because we know we can only send once.
let data_header = DataHeader{
expected_mapping: branch.channel_mapping.iter()
.filter(|v| v.registered_id.is_some() || v.channel_id == port_info.channel_id)
.copied()
.collect(),
sending_port: port_info.self_id,
target_port: port_info.peer_id,
new_mapping: branch.cur_marker,
};
// Update port mapping
for mapping in &mut branch.channel_mapping {
if mapping.channel_id == port_info.channel_id {
mapping.expected_firing = Some(true);
mapping.registered_id = Some(branch.cur_marker);
}
}
// Update branch marker
let new_marker = BranchMarker::new(self.branch_markers.len() as u32);
branch.cur_marker = new_marker;
self.branch_markers.push(branch_id);
self.encountered_ports.push(source_port_id);
return (self.create_sync_header(ctx), data_header);
}
/// Handles a new data message by handling the sync header. The caller is
/// responsible for checking for branches that might be able to receive
/// the message.
pub fn handle_new_data_message(&mut self, message: &DataMessage, ctx: &mut ComponentCtx) -> bool {
let handled = self.handle_received_sync_header(&message.sync_header, ctx);
if handled {
self.encountered_ports.push(message.data_header.target_port);
}
return handled;
}
/// Handles a new sync message by handling the sync header and the contents
/// of the message. Returns `Some` with the branch ID of the global solution
/// if the sync solution has been found.
pub fn handle_new_sync_comp_message(&mut self, message: SyncCompMessage, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
if !self.handle_received_sync_header(&message.sync_header, ctx) {
return None;
}
// And handle the contents
debug_assert_eq!(message.target_component_id, ctx.id);
match &message.content {
SyncCompContent::LocalFailure |
SyncCompContent::LocalSolution(_) |
SyncCompContent::PartialSolution(_) |
SyncCompContent::AckFailure |
SyncCompContent::Presence(_, _) => {
// Needs to be handled by the leader
return self.send_to_leader_or_handle_as_leader(message.content, ctx);
},
SyncCompContent::GlobalSolution(solution) => {
// Found a global solution
debug_assert_ne!(self.highest_connector_id, ctx.id); // not the leader
let (_, branch_id) = solution.component_branches.iter()
.find(|(component_id, _)| *component_id == ctx.id)
.unwrap();
return Some(RoundConclusion::Success(*branch_id));
},
SyncCompContent::GlobalFailure => {
// Global failure of round, send Ack to leader
debug_assert_ne!(self.highest_connector_id, ctx.id); // not the leader
let _result = self.send_to_leader_or_handle_as_leader(SyncCompContent::AckFailure, ctx);
debug_assert!(_result.is_none());
return Some(RoundConclusion::Failure);
},
SyncCompContent::Notification => {
// We were just interested in the sync header we handled above
return None;
}
}
}
pub fn handle_new_sync_port_message(&mut self, message: SyncPortMessage, ctx: &mut ComponentCtx) {
if !self.handle_received_sync_header(&message.sync_header, ctx) {
return;
}
debug_assert!(self.is_in_sync());
debug_assert!(ctx.get_port_by_id(message.target_port).is_some());
match message.content {
SyncPortContent::SilentPortNotification => {
// The point here is to let us become part of the sync round and
// take note of the leader in case all of our ports are silent.
self.encountered_ports.push(message.target_port);
}
SyncPortContent::NotificationWave => {
// Wave to discover everyone in the network, handling sync
// header takes care of leader discovery, here we need to make
// sure we propagate the wave
if self.handled_wave {
return;
}
self.handled_wave = true;
// Propagate wave to all peers except the one that has sent us
// the wave.
for mapping in &self.branch_annotations[0].channel_mapping {
let channel_id = mapping.channel_id;
let port_desc = ctx.get_port_by_channel_id(channel_id).unwrap();
if port_desc.self_id == message.target_port {
// Wave came from this port, no need to send one back
continue;
}
let message = SyncPortMessage{
sync_header: self.create_sync_header(ctx),
source_port: port_desc.self_id,
target_port: port_desc.peer_id,
content: SyncPortContent::NotificationWave,
};
// As with the other SyncPort where we throw away the
// result: we're dealing with an error here anyway
let _unused = ctx.submit_message(Message::SyncPort(message));
}
}
}
}
pub fn handle_new_sync_control_message(&mut self, message: SyncControlMessage, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
if message.in_response_to_sync_round < self.sync_round {
// Old message
return None
}
match message.content {
SyncControlContent::ChannelIsClosed(_) => {
return Some(RoundConclusion::Failure);
}
}
}
pub fn notify_of_received_message(&mut self, branch_id: BranchId, message: &DataMessage, ctx: &ComponentCtx) {
debug_assert!(self.branch_can_receive(branch_id, message));
let target_port = ctx.get_port_by_id(message.data_header.target_port).unwrap();
let branch = &mut self.branch_annotations[branch_id.index as usize];
for mapping in &mut branch.channel_mapping {
if mapping.channel_id == target_port.channel_id {
// Found the port in which the message should be inserted
mapping.registered_id = Some(message.data_header.new_mapping);
// Check for sent ports
debug_assert!(self.workspace_ports.is_empty());
find_ports_in_value_group(&message.content, &mut self.workspace_ports);
if !self.workspace_ports.is_empty() {
todo!("handle received ports");
self.workspace_ports.clear();
}
return;
}
}
// If here, then the branch didn't actually own the port? Means the
// caller made a mistake
unreachable!("incorrect notify_of_received_message");
}
/// Matches the mapping between the branch and the data message. If they
/// match then the branch can receive the message.
pub fn branch_can_receive(&self, branch_id: BranchId, message: &DataMessage) -> bool {
if let Some(peer) = self.peers.iter().find(|v| v.id == message.sync_header.sending_component_id) {
if message.sync_header.sync_round < peer.expected_sync_round {
return false;
}
}
let annotation = &self.branch_annotations[branch_id.index as usize];
for expected in &message.data_header.expected_mapping {
// If we own the port, then we have an entry in the
// annotation, check if the current mapping matches
for current in &annotation.channel_mapping {
if expected.channel_id == current.channel_id {
if expected.registered_id != current.registered_id {
// IDs do not match, we cannot receive the
// message in this branch
return false;
}
}
}
}
return true;
}
// --- Internal helpers
fn handle_received_sync_header(&mut self, sync_header: &SyncHeader, ctx: &mut ComponentCtx) -> bool {
debug_assert!(sync_header.sending_component_id != ctx.id); // not sending to ourselves
if !self.handle_peer(sync_header) {
// We can drop this package
return false;
}
if sync_header.highest_component_id > self.highest_connector_id {
// Sender has higher component ID. So should be the target of our
// messages. We should also let all of our peers know
self.highest_connector_id = sync_header.highest_component_id;
for peer in self.peers.iter() {
if peer.id == sync_header.sending_component_id || !peer.encountered_this_round {
// Don't need to send it to this one
continue
}
let message = SyncCompMessage {
sync_header: self.create_sync_header(ctx),
target_component_id: peer.id,
content: SyncCompContent::Notification,
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
}
// But also send our locally combined solution
self.forward_local_data_to_new_leader(ctx);
} else if sync_header.highest_component_id < self.highest_connector_id {
// Sender has lower leader ID, so it should know about our higher
// one.
let message = SyncCompMessage {
sync_header: self.create_sync_header(ctx),
target_component_id: sync_header.sending_component_id,
content: SyncCompContent::Notification
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
} // else: exactly equal, so do nothing
return true;
}
/// Handles a (potentially new) peer. Returns `false` if the provided sync
/// number is different then the expected one.
fn handle_peer(&mut self, sync_header: &SyncHeader) -> bool {
let position = self.peers.iter().position(|v| v.id == sync_header.sending_component_id);
match position {
Some(index) => {
let entry = &mut self.peers[index];
entry.encountered_this_round = true;
// TODO: Proper handling of potential overflow
if sync_header.sync_round >= entry.expected_sync_round {
entry.expected_sync_round = sync_header.sync_round;
return true;
} else {
return false;
}
},
None => {
self.peers.push(Peer{
id: sync_header.sending_component_id,
encountered_this_round: true,
expected_sync_round: sync_header.sync_round,
});
return true;
}
}
}
/// Sends a message towards the leader, if already the leader then the
/// message will be handled immediately.
fn send_to_leader_or_handle_as_leader(&mut self, content: SyncCompContent, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
if self.highest_connector_id == ctx.id {
// We are the leader
match content {
SyncCompContent::LocalFailure => {
if self.solution_combiner.mark_failure_and_check_for_global_failure() {
return self.handle_global_failure_as_leader(ctx);
}
},
SyncCompContent::LocalSolution(local_solution) => {
if let Some(global_solution) = self.solution_combiner.add_solution_and_check_for_global_solution(local_solution) {
return self.handle_global_solution_as_leader(global_solution, ctx);
}
},
SyncCompContent::PartialSolution(partial_solution) => {
if let Some(conclusion) = self.solution_combiner.combine(partial_solution) {
match conclusion {
LeaderConclusion::Solution(global_solution) => {
return self.handle_global_solution_as_leader(global_solution, ctx);
},
LeaderConclusion::Failure => {
return self.handle_global_failure_as_leader(ctx);
}
}
}
},
SyncCompContent::Presence(component_id, presence) => {
if self.solution_combiner.add_presence_and_check_for_global_failure(component_id, &presence) {
return self.handle_global_failure_as_leader(ctx);
}
},
SyncCompContent::AckFailure => {
debug_assert_eq!(Some(RoundConclusion::Failure), self.conclusion);
debug_assert!(self.ack_remaining > 0);
self.ack_remaining -= 1;
if self.ack_remaining == 0 {
return Some(RoundConclusion::Failure);
}
}
SyncCompContent::Notification | SyncCompContent::GlobalSolution(_) |
SyncCompContent::GlobalFailure => {
unreachable!("unexpected message content for leader");
},
}
} else {
// Someone else is the leader
let message = SyncCompMessage {
sync_header: self.create_sync_header(ctx),
target_component_id: self.highest_connector_id,
content,
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
}
return None;
}
fn handle_global_solution_as_leader(&mut self, global_solution: GlobalSolution, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
if self.conclusion.is_some() {
return None;
}
// Handle the global solution
let mut my_final_branch_id = BranchId::new_invalid();
for (connector_id, branch_id) in global_solution.component_branches.iter().copied() {
if connector_id == ctx.id {
// This is our solution branch
my_final_branch_id = branch_id;
continue;
}
let message = SyncCompMessage {
sync_header: self.create_sync_header(ctx),
target_component_id: connector_id,
content: SyncCompContent::GlobalSolution(global_solution.clone()),
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
}
debug_assert!(my_final_branch_id.is_valid());
self.conclusion = Some(RoundConclusion::Success(my_final_branch_id));
return Some(RoundConclusion::Success(my_final_branch_id));
}
fn handle_global_failure_as_leader(&mut self, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
debug_assert!(self.solution_combiner.failure_reported && self.solution_combiner.check_for_global_failure());
if self.conclusion.is_some() {
return None;
}
// TODO: Performance
let mut encountered = VecSet::new();
for presence in &self.solution_combiner.presence {
if presence.added_by != ctx.id {
// Did not add it ourselves
if encountered.push(presence.added_by) {
// Not yet sent a message
let message = SyncCompMessage{
sync_header: self.create_sync_header(ctx),
target_component_id: presence.added_by,
content: SyncCompContent::GlobalFailure,
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
}
}
}
self.conclusion = Some(RoundConclusion::Failure);
if encountered.is_empty() {
// We don't have to wait on Acks
return Some(RoundConclusion::Failure);
} else {
return None;
}
}
#[inline]
fn create_sync_header(&self, ctx: &ComponentCtx) -> SyncHeader {
return SyncHeader{
sending_component_id: ctx.id,
highest_component_id: self.highest_connector_id,
sync_round: self.sync_round,
}
}
fn forward_local_data_to_new_leader(&mut self, ctx: &mut ComponentCtx) {
debug_assert_ne!(self.highest_connector_id, ctx.id);
if let Some(partial_solution) = self.solution_combiner.drain() {
let message = SyncCompMessage {
sync_header: self.create_sync_header(ctx),
target_component_id: self.highest_connector_id,
content: SyncCompContent::PartialSolution(partial_solution),
};
ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
}
}
}
// -----------------------------------------------------------------------------
// Solution storage and algorithms
// -----------------------------------------------------------------------------
// TODO: Remove all debug derives
#[derive(Debug, Clone)]
struct MatchedLocalSolution {
final_branch_id: BranchId,
channel_mapping: Vec<(ChannelId, BranchMarker)>,
matches: Vec<ComponentMatches>,
}
#[derive(Debug, Clone)]
struct ComponentMatches {
target_id: ConnectorId,
target_index: usize,
match_indices: Vec<usize>, // of local solution in connector
}
#[derive(Debug, Clone)]
struct ComponentPeer {
target_id: ConnectorId,
target_index: usize, // in array of global solution components
involved_channels: Vec<ChannelId>,
}
#[derive(Debug, Clone)]
struct ComponentLocalSolutions {
component: ConnectorId,
peers: Vec<ComponentPeer>,
solutions: Vec<MatchedLocalSolution>,
all_peers_present: bool,
}
#[derive(Debug, Clone)]
struct ChannelPresence {
added_by: ConnectorId,
channel: ChannelId,
both_sides_present: bool,
}
// TODO: Flatten? Flatten. Flatten everything.
#[derive(Debug)]
pub(crate) struct SolutionCombiner {
local: Vec<ComponentLocalSolutions>, // used for finding solution
presence: Vec<ChannelPresence>, // used to detect all channels present in case of failure
failure_reported: bool,
}
struct CheckEntry {
component_index: usize, // component index in combiner's vector
solution_index: usize, // solution entry in the above component entry
parent_entry_index: usize, // parent that caused the creation of this checking entry
match_index_in_parent: usize, // index in the matches array of the parent
solution_index_in_parent: usize,// index in the solution array of the match entry in the parent
}
enum LeaderConclusion {
Solution(GlobalSolution),
Failure,
}
impl SolutionCombiner {
fn new() -> Self {
return Self{
local: Vec::new(),
presence: Vec::new(),
failure_reported: false,
};
}
/// Adds a new local solution to the global solution storage. Will check the
/// new local solutions for matching against already stored local solutions
/// of peer connectors.
fn add_solution_and_check_for_global_solution(&mut self, solution: LocalSolution) -> Option<GlobalSolution> {
let component_id = solution.component;
let solution = MatchedLocalSolution{
final_branch_id: solution.final_branch_id,
channel_mapping: solution.port_mapping,
matches: Vec::new(),
};
// Create an entry for the solution for the particular component
let component_exists = self.local.iter_mut()
.enumerate()
.find(|(_, v)| v.component == component_id);
let (component_index, solution_index, new_component) = match component_exists {
Some((component_index, storage)) => {
// Entry for component exists, so add to solutions
let solution_index = storage.solutions.len();
storage.solutions.push(solution);
(component_index, solution_index, false)
}
None => {
// Entry for component does not exist yet
let component_index = self.local.len();
self.local.push(ComponentLocalSolutions{
component: component_id,
peers: Vec::new(),
solutions: vec![solution],
all_peers_present: false,
});
(component_index, 0, true)
}
};
// If this is a solution of a component that is new to us, then we check
// in the stored solutions which other components are peers of the new
// one.
if new_component {
let cur_ports = &self.local[component_index].solutions[0].channel_mapping;
let mut component_peers = Vec::new();
// Find the matching components
for (other_index, other_component) in self.local.iter().enumerate() {
if other_index == component_index {
// Don't match against ourselves
continue;
}
let mut matching_channels = Vec::new();
for (cur_channel_id, _) in cur_ports {
for (other_channel_id, _) in &other_component.solutions[0].channel_mapping {
if cur_channel_id == other_channel_id {
// We have a shared port
matching_channels.push(*cur_channel_id);
}
}
}
if !matching_channels.is_empty() {
// We share some ports
component_peers.push(ComponentPeer{
target_id: other_component.component,
target_index: other_index,
involved_channels: matching_channels,
});
}
}
let mut num_ports_in_peers = 0;
for peer in &component_peers {
num_ports_in_peers += peer.involved_channels.len();
}
if num_ports_in_peers == cur_ports.len() {
// Newly added component has all required peers present
self.local[component_index].all_peers_present = true;
}
// Add the found component pairing entries to the solution entries
// for the two involved components
for component_match in component_peers {
// Check the other component for having all peers present
let mut num_ports_in_peers = component_match.involved_channels.len();
let other_component = &mut self.local[component_match.target_index];
for existing_peer in &other_component.peers {
num_ports_in_peers += existing_peer.involved_channels.len();
}
if num_ports_in_peers == other_component.solutions[0].channel_mapping.len() {
other_component.all_peers_present = true;
}
other_component.peers.push(ComponentPeer{
target_id: component_id,
target_index: component_index,
involved_channels: component_match.involved_channels.clone(),
});
let new_component = &mut self.local[component_index];
new_component.peers.push(component_match);
}
}
// We're now sure that we know which other components the currently
// considered component is linked up to. Now we need to check those
// entries (if any) to see if any pair of local solutions match
let mut new_component_matches = Vec::new();
let cur_component = &self.local[component_index];
let cur_solution = &cur_component.solutions[solution_index];
for peer in &cur_component.peers {
let mut new_solution_matches = Vec::new();
let other_component = &self.local[peer.target_index];
for (other_solution_index, other_solution) in other_component.solutions.iter().enumerate() {
// Check the port mappings between the pair of solutions.
let mut all_matched = true;
'mapping_check_loop: for (cur_port, cur_branch) in &cur_solution.channel_mapping {
for (other_port, other_branch) in &other_solution.channel_mapping {
if cur_port == other_port {
if cur_branch == other_branch {
// Same port mapping, go to next port
break;
} else {
// Different port mapping, not a match
all_matched = false;
break 'mapping_check_loop;
}
}
}
}
if !all_matched {
continue;
}
// Port mapping between the component pair is the same, so they
// have agreeable local solutions
new_solution_matches.push(other_solution_index);
}
new_component_matches.push(ComponentMatches{
target_id: peer.target_id,
target_index: peer.target_index,
match_indices: new_solution_matches,
});
}
// And now that we have the new solution-to-solution matches, we need to
// add those in the appropriate storage.
for new_component_match in new_component_matches {
let other_component = &mut self.local[new_component_match.target_index];
for other_solution_index in new_component_match.match_indices.iter().copied() {
let other_solution = &mut other_component.solutions[other_solution_index];
// Add a completely new entry for the component, or add it to
// the existing component entry's matches
match other_solution.matches.iter_mut()
.find(|v| v.target_id == component_id)
{
Some(other_match) => {
other_match.match_indices.push(solution_index);
},
None => {
other_solution.matches.push(ComponentMatches{
target_id: component_id,
target_index: component_index,
match_indices: vec![solution_index],
})
}
}
}
let cur_component = &mut self.local[component_index];
let cur_solution = &mut cur_component.solutions[solution_index];
match cur_solution.matches.iter_mut()
.find(|v| v.target_id == new_component_match.target_id)
{
Some(other_match) => {
// Already have an entry
debug_assert_eq!(other_match.target_index, new_component_match.target_index);
other_match.match_indices.extend(&new_component_match.match_indices);
},
None => {
// Create a new entry
cur_solution.matches.push(new_component_match);
}
}
}
return self.check_for_global_solution(component_index, solution_index);
}
fn add_presence_and_check_for_global_failure(&mut self, present_component: ConnectorId, present: &[ChannelId]) -> bool {
'new_channel_loop: for new_channel_id in present {
for presence in &mut self.presence {
if presence.channel == *new_channel_id {
if presence.added_by != present_component {
presence.both_sides_present = true;
}
continue 'new_channel_loop;
}
}
// Not added yet
self.presence.push(ChannelPresence{
added_by: present_component,
channel: *new_channel_id,
both_sides_present: false,
});
}
return self.check_for_global_failure();
}
fn mark_failure_and_check_for_global_failure(&mut self) -> bool {
self.failure_reported = true;
return self.check_for_global_failure();
}
/// Checks if, starting at the provided local solution, a global solution
/// can be formed.
// TODO: At some point, check if divide and conquer is faster?
fn check_for_global_solution(&self, initial_component_index: usize, initial_solution_index: usize) -> Option<GlobalSolution> {
// Small trivial test necessary (but not sufficient) for a global
// solution
for component in &self.local {
if !component.all_peers_present {
return None;
}
}
// Construct initial entry on stack
let mut stack = Vec::with_capacity(self.local.len());
stack.push(CheckEntry{
component_index: initial_component_index,
solution_index: initial_solution_index,
parent_entry_index: 0,
match_index_in_parent: 0,
solution_index_in_parent: 0,
});
'check_last_stack: loop {
let cur_index = stack.len() - 1;
let cur_entry = &stack[cur_index];
// Check if the current component is matching with all other entries
let mut all_match = true;
'check_against_existing: for prev_index in 0..cur_index {
let prev_entry = &stack[prev_index];
let prev_component = &self.local[prev_entry.component_index];
let prev_solution = &prev_component.solutions[prev_entry.solution_index];
for prev_matching_component in &prev_solution.matches {
if prev_matching_component.target_index == cur_entry.component_index {
// Previous entry has shared ports with the current
// entry, so see if we have a composable pair of
// solutions.
if !prev_matching_component.match_indices.contains(&cur_entry.solution_index) {
all_match = false;
break 'check_against_existing;
}
}
}
}
if all_match {
// All components matched until now.
if stack.len() == self.local.len() {
// We have found a global solution
break 'check_last_stack;
}
// Not all components found yet, look for a new one that has not
// yet been added yet.
for (parent_index, parent_entry) in stack.iter().enumerate() {
let parent_component = &self.local[parent_entry.component_index];
let parent_solution = &parent_component.solutions[parent_entry.solution_index];
for (peer_index, peer_component) in parent_solution.matches.iter().enumerate() {
if peer_component.match_indices.is_empty() {
continue;
}
let already_added = stack.iter().any(|v| v.component_index == peer_component.target_index);
if !already_added {
// New component to try
stack.push(CheckEntry{
component_index: peer_component.target_index,
solution_index: peer_component.match_indices[0],
parent_entry_index: parent_index,
match_index_in_parent: peer_index,
solution_index_in_parent: 0,
});
continue 'check_last_stack;
}
}
}
// Cannot find a peer to add. This is possible if, for example,
// we have a component A which has the only connection to
// component B. And B has sent a local solution saying it is
// finished, but the last data message has not yet arrived at A.
// In any case, we just exit the if statement and handle not
// being able to find a new connector as being forced to try a
// new permutation of possible local solutions.
}
// Either the currently considered local solution is inconsistent
// with other local solutions, or we cannot find a new component to
// add. This is where we perform backtracking as long as needed to
// try a new solution.
while stack.len() > 1 {
// Check if our parent has another solution we can try
let cur_index = stack.len() - 1;
let cur_entry = &stack[cur_index];
let parent_entry = &stack[cur_entry.parent_entry_index];
let parent_component = &self.local[parent_entry.component_index];
let parent_solution = &parent_component.solutions[parent_entry.solution_index];
let match_component = &parent_solution.matches[cur_entry.match_index_in_parent];
debug_assert!(match_component.target_index == cur_entry.component_index);
let new_solution_index_in_parent = cur_entry.solution_index_in_parent + 1;
if new_solution_index_in_parent < match_component.match_indices.len() {
// We can still try a new one
let new_solution_index = match_component.match_indices[new_solution_index_in_parent];
let cur_entry = &mut stack[cur_index];
cur_entry.solution_index_in_parent = new_solution_index_in_parent;
cur_entry.solution_index = new_solution_index;
continue 'check_last_stack;
} else {
// We're out of options here. So pop an entry, then in
// the next iteration of this backtracking loop we try
// to increment that solution
stack.pop();
}
}
// Stack length is 1, hence we're back at our initial solution.
// Since that doesn't yield a global solution, we simply:
return None;
}
// Constructing the representation of the global solution
debug_assert_eq!(stack.len(), self.local.len());
let mut final_branches = Vec::with_capacity(stack.len());
for entry in &stack {
let component = &self.local[entry.component_index];
let solution = &component.solutions[entry.solution_index];
final_branches.push((component.component, solution.final_branch_id));
}
// Just debugging here, TODO: @remove
let mut total_num_channels = 0;
for entry in &stack {
let component = &self.local[entry.component_index];
total_num_channels += component.solutions[0].channel_mapping.len();
}
total_num_channels /= 2;
let mut final_mapping = Vec::with_capacity(total_num_channels);
let mut total_num_checked = 0;
for entry in &stack {
let component = &self.local[entry.component_index];
let solution = &component.solutions[entry.solution_index];
for (channel_id, branch_id) in solution.channel_mapping.iter().copied() {
match final_mapping.iter().find(|(v, _)| *v == channel_id) {
Some((_, encountered_branch_id)) => {
debug_assert_eq!(*encountered_branch_id, branch_id);
total_num_checked += 1;
},
None => {
final_mapping.push((channel_id, branch_id));
}
}
}
}
debug_assert_eq!(total_num_checked, total_num_channels);
return Some(GlobalSolution{
component_branches: final_branches,
channel_mapping: final_mapping,
});
}
/// Checks if all preconditions for global sync failure have been met
fn check_for_global_failure(&self) -> bool {
if !self.failure_reported {
return false;
}
// Failure is reported, if all components are present then we may emit
// the global failure broadcast
// Check if all are present and we're preparing to fail this round
let mut all_present = true;
for presence in &self.presence {
if !presence.both_sides_present {
all_present = false;
break;
}
}
return all_present; // && failure_reported, which is checked above
}
/// Turns the entire (partially resolved) global solution into a structure
/// that can be forwarded to a new parent. The new parent may then merge
/// already obtained information.
fn drain(&mut self) -> Option<SolutionCombiner> {
if self.local.is_empty() && self.presence.is_empty() && !self.failure_reported {
return None;
}
let result = SolutionCombiner{
local: self.local.clone(),
presence: self.presence.clone(),
failure_reported: self.failure_reported,
};
self.local.clear();
self.presence.clear();
self.failure_reported = false;
return Some(result);
}
// TODO: Entire routine is quite wasteful. Combine instead of doing all work
// again.
fn combine(&mut self, combiner: SolutionCombiner) -> Option<LeaderConclusion> {
self.failure_reported = self.failure_reported || combiner.failure_reported;
// Handle local solutions
if self.local.is_empty() {
// Trivial case
self.local = combiner.local;
} else {
for local in combiner.local {
for matched in local.solutions {
let local_solution = LocalSolution{
component: local.component,
final_branch_id: matched.final_branch_id,
port_mapping: matched.channel_mapping,
};
let maybe_solution = self.add_solution_and_check_for_global_solution(local_solution);
if let Some(global_solution) = maybe_solution {
return Some(LeaderConclusion::Solution(global_solution));
}
}
}
}
// Handle channel presence
if self.presence.is_empty() {
// Trivial case
self.presence = combiner.presence
} else {
for presence in combiner.presence {
let global_failure = self.add_presence_and_check_for_global_failure(presence.added_by, &[presence.channel]);
if global_failure {
return Some(LeaderConclusion::Failure);
}
}
}
return None;
}
fn clear(&mut self) {
self.local.clear();
self.presence.clear();
self.failure_reported = false;
}
}
// -----------------------------------------------------------------------------
// Generic Helpers
// -----------------------------------------------------------------------------
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
// Helper to check a value for a port and recurse if needed.
use crate::protocol::eval::Value;
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortIdLocal::new(port_id.0.u32_suffix);
for prev_port in ports.iter() {
if *prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
|