Files
@ 0d5a89aea247
Branch filter:
Location: CSY/reowolf/src/protocol/eval/executor.rs
0d5a89aea247
52.9 KiB
application/rls-services+xml
halfway shared-memory new consensus algorithm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 |
use std::collections::VecDeque;
use super::value::*;
use super::store::*;
use super::error::*;
use crate::protocol::*;
use crate::protocol::ast::*;
use crate::protocol::type_table::*;
macro_rules! debug_enabled { () => { false }; }
macro_rules! debug_log {
($format:literal) => {
enabled_debug_print!(false, "exec", $format);
};
($format:literal, $($args:expr),*) => {
enabled_debug_print!(false, "exec", $format, $($args),*);
};
}
#[derive(Debug, Clone)]
pub(crate) enum ExprInstruction {
EvalExpr(ExpressionId),
PushValToFront,
}
#[derive(Debug, Clone)]
pub(crate) struct Frame {
pub(crate) definition: DefinitionId,
pub(crate) monomorph_idx: i32,
pub(crate) position: StatementId,
pub(crate) expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
pub(crate) expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
pub(crate) max_stack_size: u32,
}
impl Frame {
/// Creates a new execution frame. Does not modify the stack in any way.
pub fn new(heap: &Heap, definition_id: DefinitionId, monomorph_idx: i32) -> Self {
let definition = &heap[definition_id];
let first_statement = match definition {
Definition::Component(definition) => definition.body,
Definition::Function(definition) => definition.body,
_ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
};
// Another not-so-pretty thing that has to be replaced somewhere in the
// future...
fn determine_max_stack_size(heap: &Heap, block_id: BlockStatementId, max_size: &mut u32) {
let block_stmt = &heap[block_id];
debug_assert!(block_stmt.next_unique_id_in_scope >= 0);
// Check current block
let cur_size = block_stmt.next_unique_id_in_scope as u32;
if cur_size > *max_size { *max_size = cur_size; }
// And child blocks
for child_scope in &block_stmt.scope_node.nested {
determine_max_stack_size(heap, child_scope.to_block(), max_size);
}
}
let mut max_stack_size = 0;
determine_max_stack_size(heap, first_statement, &mut max_stack_size);
Frame{
definition: definition_id,
monomorph_idx,
position: first_statement.upcast(),
expr_stack: VecDeque::with_capacity(128),
expr_values: VecDeque::with_capacity(128),
max_stack_size,
}
}
/// Prepares a single expression for execution. This involves walking the
/// expression tree and putting them in the `expr_stack` such that
/// continuously popping from its back will evaluate the expression. The
/// results of each expression will be stored by pushing onto `expr_values`.
pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
debug_assert!(self.expr_stack.is_empty());
self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
self.serialize_expression(heap, expr_id);
}
/// Prepares multiple expressions for execution (i.e. evaluating all
/// function arguments or all elements of an array/union literal). Per
/// expression this works the same as `prepare_single_expression`. However
/// after each expression is evaluated we insert a `PushValToFront`
/// instruction
pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
debug_assert!(self.expr_stack.is_empty());
self.expr_values.clear();
for expr_id in expr_ids {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *expr_id);
}
}
/// Performs depth-first serialization of expression tree. Let's not care
/// about performance for a temporary runtime implementation
fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
match &heap[id] {
Expression::Assignment(expr) => {
self.serialize_expression(heap, expr.left);
self.serialize_expression(heap, expr.right);
},
Expression::Binding(expr) => {
self.serialize_expression(heap, expr.bound_to);
self.serialize_expression(heap, expr.bound_from);
},
Expression::Conditional(expr) => {
self.serialize_expression(heap, expr.test);
},
Expression::Binary(expr) => {
self.serialize_expression(heap, expr.left);
self.serialize_expression(heap, expr.right);
},
Expression::Unary(expr) => {
self.serialize_expression(heap, expr.expression);
},
Expression::Indexing(expr) => {
self.serialize_expression(heap, expr.index);
self.serialize_expression(heap, expr.subject);
},
Expression::Slicing(expr) => {
self.serialize_expression(heap, expr.from_index);
self.serialize_expression(heap, expr.to_index);
self.serialize_expression(heap, expr.subject);
},
Expression::Select(expr) => {
self.serialize_expression(heap, expr.subject);
},
Expression::Literal(expr) => {
// Here we only care about literals that have subexpressions
match &expr.value {
Literal::Null | Literal::True | Literal::False |
Literal::Character(_) | Literal::String(_) |
Literal::Integer(_) | Literal::Enum(_) => {
// No subexpressions
},
Literal::Struct(literal) => {
// Note: fields expressions are evaluated in programmer-
// specified order. But struct construction expects them
// in type-defined order. I might want to come back to
// this.
let mut _num_pushed = 0;
for want_field_idx in 0..literal.fields.len() {
for field in &literal.fields {
if field.field_idx == want_field_idx {
_num_pushed += 1;
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, field.value);
}
}
}
debug_assert_eq!(_num_pushed, literal.fields.len())
},
Literal::Union(literal) => {
for value_expr_id in &literal.values {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *value_expr_id);
}
},
Literal::Array(value_expr_ids) => {
for value_expr_id in value_expr_ids {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *value_expr_id);
}
}
}
},
Expression::Cast(expr) => {
self.serialize_expression(heap, expr.subject);
}
Expression::Call(expr) => {
for arg_expr_id in &expr.arguments {
self.expr_stack.push_back(ExprInstruction::PushValToFront);
self.serialize_expression(heap, *arg_expr_id);
}
},
Expression::Variable(_expr) => {
// No subexpressions
}
}
}
}
type EvalResult = Result<EvalContinuation, EvalError>;
pub enum EvalContinuation {
Stepping,
Inconsistent,
Terminal,
SyncBlockStart,
SyncBlockEnd,
NewComponent(DefinitionId, i32, ValueGroup),
NewChannel,
BlockFires(PortId),
BlockGet(PortId),
Put(PortId, Value),
}
// Note: cloning is fine, methinks. cloning all values and the heap regions then
// we end up with valid "pointers" to heap regions.
#[derive(Debug, Clone)]
pub struct Prompt {
pub(crate) frames: Vec<Frame>,
pub(crate) store: Store,
}
impl Prompt {
pub fn new(_types: &TypeTable, heap: &Heap, def: DefinitionId, monomorph_idx: i32, args: ValueGroup) -> Self {
let mut prompt = Self{
frames: Vec::new(),
store: Store::new(),
};
// Maybe do typechecking in the future?
debug_assert!((monomorph_idx as usize) < _types.get_base_definition(&def).unwrap().definition.procedure_monomorphs().len());
let new_frame = Frame::new(heap, def, monomorph_idx);
let max_stack_size = new_frame.max_stack_size;
prompt.frames.push(new_frame);
args.into_store(&mut prompt.store);
prompt.store.reserve_stack(max_stack_size);
prompt
}
/// Big 'ol function right here. Didn't want to break it up unnecessarily.
/// It consists of, in sequence: executing any expressions that should be
/// executed before the next statement can be evaluated, then a section that
/// performs debug printing, and finally a section that takes the next
/// statement and executes it. If the statement requires any expressions to
/// be evaluated, then they will be added such that the next time `step` is
/// called, all of these expressions are indeed evaluated.
pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
// Helper function to transfer multiple values from the expression value
// array into a heap region (e.g. constructing arrays or structs).
fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
let heap_pos = store.alloc_heap();
// Do the transformation first (because Rust...)
for val_idx in 0..num_values {
cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
}
// And now transfer to the heap region
let values = &mut store.heap_regions[heap_pos as usize].values;
debug_assert!(values.is_empty());
values.reserve(num_values);
for _ in 0..num_values {
values.push(cur_frame.expr_values.pop_front().unwrap());
}
heap_pos
}
// Helper function to make sure that an index into an aray is valid.
fn array_inclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
let array_len = store.heap_regions[array_heap_pos as usize].values.len();
return idx < 0 || idx >= array_len as i64;
}
fn array_exclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
let array_len = store.heap_regions[array_heap_pos as usize].values.len();
return idx < 0 || idx > array_len as i64;
}
fn construct_array_error(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, heap_pos: u32, idx: i64) -> EvalError {
let array_len = prompt.store.heap_regions[heap_pos as usize].values.len();
return EvalError::new_error_at_expr(
prompt, modules, heap, expr_id,
format!("index {} is out of bounds: array length is {}", idx, array_len)
)
}
// Checking if we're at the end of execution
let cur_frame = self.frames.last_mut().unwrap();
if cur_frame.position.is_invalid() {
if heap[cur_frame.definition].is_function() {
todo!("End of function without return, return an evaluation error");
}
return Ok(EvalContinuation::Terminal);
}
debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier().value.as_str());
// Execute all pending expressions
while !cur_frame.expr_stack.is_empty() {
let next = cur_frame.expr_stack.pop_back().unwrap();
debug_log!("Expr stack: {:?}", next);
match next {
ExprInstruction::PushValToFront => {
cur_frame.expr_values.rotate_right(1);
},
ExprInstruction::EvalExpr(expr_id) => {
let expr = &heap[expr_id];
match expr {
Expression::Assignment(expr) => {
let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
let rhs = cur_frame.expr_values.pop_back().unwrap();
// Note: although not pretty, the assignment operator takes ownership
// of the right-hand side value when possible. So we do not drop the
// rhs's optionally owned heap data.
let rhs = self.store.read_take_ownership(rhs);
apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
},
Expression::Binding(_expr) => {
let bind_to = cur_frame.expr_values.pop_back().unwrap();
let bind_from = cur_frame.expr_values.pop_back().unwrap();
let bind_to_heap_pos = bind_to.get_heap_pos();
let bind_from_heap_pos = bind_from.get_heap_pos();
let result = apply_binding_operator(&mut self.store, bind_to, bind_from);
self.store.drop_value(bind_to_heap_pos);
self.store.drop_value(bind_from_heap_pos);
cur_frame.expr_values.push_back(Value::Bool(result));
},
Expression::Conditional(expr) => {
// Evaluate testing expression, then extend the
// expression stack with the appropriate expression
let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
if test_result {
cur_frame.serialize_expression(heap, expr.true_expression);
} else {
cur_frame.serialize_expression(heap, expr.false_expression);
}
},
Expression::Binary(expr) => {
let lhs = cur_frame.expr_values.pop_back().unwrap();
let rhs = cur_frame.expr_values.pop_back().unwrap();
let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
cur_frame.expr_values.push_back(result);
self.store.drop_value(lhs.get_heap_pos());
self.store.drop_value(rhs.get_heap_pos());
},
Expression::Unary(expr) => {
let val = cur_frame.expr_values.pop_back().unwrap();
let result = apply_unary_operator(&mut self.store, expr.operation, &val);
cur_frame.expr_values.push_back(result);
self.store.drop_value(val.get_heap_pos());
},
Expression::Indexing(_expr) => {
// Evaluate index. Never heap allocated so we do
// not have to drop it.
let index = cur_frame.expr_values.pop_back().unwrap();
let index = self.store.maybe_read_ref(&index);
debug_assert!(index.is_integer());
let index = if index.is_signed_integer() {
index.as_signed_integer() as i64
} else {
index.as_unsigned_integer() as i64
};
let subject = cur_frame.expr_values.pop_back().unwrap();
let (deallocate_heap_pos, value_to_push) = match subject {
Value::Ref(value_ref) => {
// Our expression stack value is a reference to something that
// exists in the normal stack/heap. We don't want to deallocate
// this thing. Rather we want to return a reference to it.
let subject = self.store.read_ref(value_ref);
let subject_heap_pos = match subject {
Value::String(v) => *v,
Value::Array(v) => *v,
Value::Message(v) => *v,
_ => unreachable!(),
};
if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
}
(None, Value::Ref(ValueId::Heap(subject_heap_pos, index as u32)))
},
_ => {
// Our value lives on the expression stack, hence we need to
// clone whatever we're referring to. Then drop the subject.
let subject_heap_pos = match &subject {
Value::String(v) => *v,
Value::Array(v) => *v,
Value::Message(v) => *v,
_ => unreachable!(),
};
if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
}
let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, index as u32));
(Some(subject_heap_pos), self.store.clone_value(subject_indexed))
},
};
cur_frame.expr_values.push_back(value_to_push);
self.store.drop_value(deallocate_heap_pos);
},
Expression::Slicing(expr) => {
// Evaluate indices
let from_index = cur_frame.expr_values.pop_back().unwrap();
let from_index = self.store.maybe_read_ref(&from_index);
let to_index = cur_frame.expr_values.pop_back().unwrap();
let to_index = self.store.maybe_read_ref(&to_index);
debug_assert!(from_index.is_integer() && to_index.is_integer());
let from_index = if from_index.is_signed_integer() {
from_index.as_signed_integer()
} else {
from_index.as_unsigned_integer() as i64
};
let to_index = if to_index.is_signed_integer() {
to_index.as_signed_integer()
} else {
to_index.as_unsigned_integer() as i64
};
// Dereference subject if needed
let subject = cur_frame.expr_values.pop_back().unwrap();
let deref_subject = self.store.maybe_read_ref(&subject);
// Slicing needs to produce a copy anyway (with the
// current evaluator implementation)
enum ValueKind{ Array, String, Message }
let (value_kind, array_heap_pos) = match deref_subject {
Value::Array(v) => (ValueKind::Array, *v),
Value::String(v) => (ValueKind::String, *v),
Value::Message(v) => (ValueKind::Message, *v),
_ => unreachable!()
};
if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
}
if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
}
// Again: would love to push directly, but rust...
let new_heap_pos = self.store.alloc_heap();
debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
if to_index > from_index {
let from_index = from_index as usize;
let to_index = to_index as usize;
let mut values = Vec::with_capacity(to_index - from_index);
for idx in from_index..to_index {
let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
values.push(self.store.clone_value(value));
}
self.store.heap_regions[new_heap_pos as usize].values = values;
} // else: empty range
cur_frame.expr_values.push_back(match value_kind {
ValueKind::Array => Value::Array(new_heap_pos),
ValueKind::String => Value::String(new_heap_pos),
ValueKind::Message => Value::Message(new_heap_pos),
});
// Dropping the original subject, because we don't
// want to drop something on the stack
self.store.drop_value(subject.get_heap_pos());
},
Expression::Select(expr) => {
let subject= cur_frame.expr_values.pop_back().unwrap();
let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
// Note: same as above: clone if value lives on expr stack, simply
// refer to it if it already lives on the stack/heap.
let (deallocate_heap_pos, value_to_push) = match subject {
Value::Ref(value_ref) => {
let subject = self.store.read_ref(value_ref);
let subject_heap_pos = subject.as_struct();
(None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
},
_ => {
let subject_heap_pos = subject.as_struct();
let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
(Some(subject_heap_pos), self.store.clone_value(subject_indexed))
},
};
cur_frame.expr_values.push_back(value_to_push);
self.store.drop_value(deallocate_heap_pos);
},
Expression::Literal(expr) => {
let value = match &expr.value {
Literal::Null => Value::Null,
Literal::True => Value::Bool(true),
Literal::False => Value::Bool(false),
Literal::Character(lit_value) => Value::Char(*lit_value),
Literal::String(lit_value) => {
let heap_pos = self.store.alloc_heap();
let values = &mut self.store.heap_regions[heap_pos as usize].values;
let value = lit_value.as_str();
debug_assert!(values.is_empty());
values.reserve(value.len());
for character in value.as_bytes() {
debug_assert!(character.is_ascii());
values.push(Value::Char(*character as char));
}
Value::String(heap_pos)
}
Literal::Integer(lit_value) => {
use ConcreteTypePart as CTP;
let def_types = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
debug_assert_eq!(concrete_type.parts.len(), 1);
match concrete_type.parts[0] {
CTP::UInt8 => Value::UInt8(lit_value.unsigned_value as u8),
CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
CTP::SInt8 => Value::SInt8(lit_value.unsigned_value as i8),
CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
_ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
}
}
Literal::Struct(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.fields.len()
);
Value::Struct(heap_pos)
}
Literal::Enum(lit_value) => {
Value::Enum(lit_value.variant_idx as i64)
}
Literal::Union(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.values.len()
);
Value::Union(lit_value.variant_idx as i64, heap_pos)
}
Literal::Array(lit_value) => {
let heap_pos = transfer_expression_values_front_into_heap(
cur_frame, &mut self.store, lit_value.len()
);
Value::Array(heap_pos)
}
};
cur_frame.expr_values.push_back(value);
},
Expression::Cast(expr) => {
let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
// Typechecking reduced this to two cases: either we
// have casting noop (same types), or we're casting
// between integer/bool/char types.
let subject = cur_frame.expr_values.pop_back().unwrap();
match apply_casting(&mut self.store, output_type, &subject) {
Ok(value) => cur_frame.expr_values.push_back(value),
Err(msg) => {
return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
}
}
self.store.drop_value(subject.get_heap_pos());
}
Expression::Call(expr) => {
// If we're dealing with a builtin we don't do any
// fancy shenanigans at all, just push the result.
match expr.method {
Method::Get => {
let value = cur_frame.expr_values.pop_front().unwrap();
let value = self.store.maybe_read_ref(&value).clone();
let port_id = if let Value::Input(port_id) = value {
port_id
} else {
unreachable!("executor calling 'get' on value {:?}", value)
};
match ctx.get(port_id, &mut self.store) {
Some(result) => {
// We have the result
cur_frame.expr_values.push_back(result)
},
None => {
// Don't have the result yet, prepare the expression to
// get run again after we've received a message.
cur_frame.expr_values.push_front(value.clone());
cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
return Ok(EvalContinuation::BlockGet(port_id));
}
}
},
Method::Put => {
let port_value = cur_frame.expr_values.pop_front().unwrap();
let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
let port_id = if let Value::Output(port_id) = deref_port_value {
port_id
} else {
unreachable!("executor calling 'put' on value {:?}", deref_port_value)
};
let msg_value = cur_frame.expr_values.pop_front().unwrap();
let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
match deref_msg_value {
Value::Message(_) => {},
_ => {
return Err(EvalError::new_error_at_expr(
self, modules, heap, expr_id,
String::from("Calls to `put` are currently restricted to only send instances of `msg` types. This will change in the future")
));
}
}
if ctx.did_put(port_id) {
// We're fine, deallocate in case the expression value stack
// held an owned value
self.store.drop_value(msg_value.get_heap_pos());
} else {
cur_frame.expr_values.push_front(msg_value);
cur_frame.expr_values.push_front(port_value);
cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
return Ok(EvalContinuation::Put(port_id, deref_msg_value));
}
},
Method::Fires => {
let port_value = cur_frame.expr_values.pop_front().unwrap();
let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
let port_id = match port_value_deref {
Value::Input(port_id) => port_id,
Value::Output(port_id) => port_id,
_ => unreachable!("executor calling 'fires' on value {:?}", value),
};
match ctx.fires(port_id) {
None => {
cur_frame.expr_values.push_front(port_value);
cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
return Ok(EvalContinuation::BlockFires(port_id));
},
Some(value) => {
cur_frame.expr_values.push_back(value);
}
}
},
Method::Create => {
let length_value = cur_frame.expr_values.pop_front().unwrap();
let length_value = self.store.maybe_read_ref(&length_value);
let length = if length_value.is_signed_integer() {
let length_value = length_value.as_signed_integer();
if length_value < 0 {
return Err(EvalError::new_error_at_expr(
self, modules, heap, expr_id,
format!("got length '{}', can only create a message with a non-negative length", length_value)
));
}
length_value as u64
} else {
debug_assert!(length_value.is_unsigned_integer());
length_value.as_unsigned_integer()
};
let heap_pos = self.store.alloc_heap();
let values = &mut self.store.heap_regions[heap_pos as usize].values;
debug_assert!(values.is_empty());
values.resize(length as usize, Value::UInt8(0));
cur_frame.expr_values.push_back(Value::Message(heap_pos));
},
Method::Length => {
let value = cur_frame.expr_values.pop_front().unwrap();
let value_heap_pos = value.get_heap_pos();
let value = self.store.maybe_read_ref(&value);
let heap_pos = match value {
Value::Array(pos) => *pos,
Value::String(pos) => *pos,
_ => unreachable!("length(...) on {:?}", value),
};
let len = self.store.heap_regions[heap_pos as usize].values.len();
// TODO: @PtrInt
cur_frame.expr_values.push_back(Value::UInt32(len as u32));
self.store.drop_value(value_heap_pos);
},
Method::Assert => {
let value = cur_frame.expr_values.pop_front().unwrap();
let value = self.store.maybe_read_ref(&value).clone();
if !value.as_bool() {
return Ok(EvalContinuation::Inconsistent)
}
},
Method::UserComponent => {
// This is actually handled by the evaluation
// of the statement.
debug_assert_eq!(heap[expr.definition].parameters().len(), cur_frame.expr_values.len());
debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
},
Method::UserFunction => {
// Push a new frame. Note that all expressions have
// been pushed to the front, so they're in the order
// of the definition.
let num_args = expr.arguments.len();
// Determine stack boundaries
let cur_stack_boundary = self.store.cur_stack_boundary;
let new_stack_boundary = self.store.stack.len();
// Push new boundary and function arguments for new frame
self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
for _ in 0..num_args {
let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
self.store.stack.push(argument);
}
// Determine the monomorph index of the function we're calling
let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
// Push the new frame and reserve its stack size
let new_frame = Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx);
let new_stack_size = new_frame.max_stack_size;
self.frames.push(new_frame);
self.store.cur_stack_boundary = new_stack_boundary;
self.store.reserve_stack(new_stack_size);
// To simplify the logic a little bit we will now
// return and ask our caller to call us again
return Ok(EvalContinuation::Stepping);
},
}
},
Expression::Variable(expr) => {
let variable = &heap[expr.declaration.unwrap()];
let ref_value = if expr.used_as_binding_target {
Value::Binding(variable.unique_id_in_scope as StackPos)
} else {
Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
};
cur_frame.expr_values.push_back(ref_value);
}
}
}
}
}
debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
if debug_enabled!() {
debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
debug_log!(" [{:03}] {:?}", _stack_idx, _stack_val);
}
debug_log!("Stack (size = {}):", self.store.stack.len());
for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
debug_log!(" [{:03}] {:?}", _stack_idx, _stack_val);
}
debug_log!("Heap:");
for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
debug_log!(" [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
}
}
// No (more) expressions to evaluate. So evaluate statement (that may
// depend on the result on the last evaluated expression(s))
let stmt = &heap[cur_frame.position];
let return_value = match stmt {
Statement::Block(stmt) => {
debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::EndBlock(stmt) => {
let block = &heap[stmt.start_block];
self.store.clear_stack(block.first_unique_id_in_scope as usize);
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::Local(stmt) => {
match stmt {
LocalStatement::Memory(stmt) => {
let variable = &heap[stmt.variable];
self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
LocalStatement::Channel(stmt) => {
// Need to create a new channel by requesting it from
// the runtime.
match ctx.get_channel() {
None => {
// No channel is pending. So request one
Ok(EvalContinuation::NewChannel)
},
Some((put_port, get_port)) => {
self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), put_port);
self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), get_port);
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
}
}
}
}
},
Statement::Labeled(stmt) => {
cur_frame.position = stmt.body;
Ok(EvalContinuation::Stepping)
},
Statement::If(stmt) => {
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
let test_value = cur_frame.expr_values.pop_back().unwrap();
let test_value = self.store.maybe_read_ref(&test_value).as_bool();
if test_value {
cur_frame.position = stmt.true_body.upcast();
} else if let Some(false_body) = stmt.false_body {
cur_frame.position = false_body.upcast();
} else {
// Not true, and no false body
cur_frame.position = stmt.end_if.upcast();
}
Ok(EvalContinuation::Stepping)
},
Statement::EndIf(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::While(stmt) => {
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
let test_value = cur_frame.expr_values.pop_back().unwrap();
let test_value = self.store.maybe_read_ref(&test_value).as_bool();
if test_value {
cur_frame.position = stmt.body.upcast();
} else {
cur_frame.position = stmt.end_while.upcast();
}
Ok(EvalContinuation::Stepping)
},
Statement::EndWhile(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
Statement::Break(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::Continue(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::Synchronous(stmt) => {
cur_frame.position = stmt.body.upcast();
Ok(EvalContinuation::SyncBlockStart)
},
Statement::EndSynchronous(stmt) => {
cur_frame.position = stmt.next;
Ok(EvalContinuation::SyncBlockEnd)
},
Statement::Return(_stmt) => {
debug_assert!(heap[cur_frame.definition].is_function());
debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
// The preceding frame has executed a call, so is expecting the
// return expression on its expression value stack. Note that
// we may be returning a reference to something on our stack,
// so we need to read that value and clone it.
let return_value = cur_frame.expr_values.pop_back().unwrap();
let return_value = match return_value {
Value::Ref(value_id) => self.store.read_copy(value_id),
_ => return_value,
};
// Pre-emptively pop our stack frame
self.frames.pop();
// Clean up our section of the stack
self.store.clear_stack(0);
self.store.stack.truncate(self.store.cur_stack_boundary + 1);
let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
// TODO: Temporary hack for testing, remove at some point
if self.frames.is_empty() {
debug_assert!(prev_stack_idx == -1);
debug_assert!(self.store.stack.len() == 0);
self.store.stack.push(return_value);
return Ok(EvalContinuation::Terminal);
}
debug_assert!(prev_stack_idx >= 0);
// Return to original state of stack frame
self.store.cur_stack_boundary = prev_stack_idx as usize;
let cur_frame = self.frames.last_mut().unwrap();
cur_frame.expr_values.push_back(return_value);
// We just returned to the previous frame, which might be in
// the middle of evaluating expressions for a particular
// statement. So we don't want to enter the code below.
return Ok(EvalContinuation::Stepping);
},
Statement::Goto(stmt) => {
cur_frame.position = stmt.target.unwrap().upcast();
Ok(EvalContinuation::Stepping)
},
Statement::New(stmt) => {
let call_expr = &heap[stmt.expression];
debug_assert!(heap[call_expr.definition].is_component());
debug_assert_eq!(
cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
"mismatch in expr stack size and number of arguments for new statement"
);
let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
let expr_data = &mono_data.expr_data[call_expr.unique_id_in_definition as usize];
// Note that due to expression value evaluation they exist in
// reverse order on the stack.
// TODO: Revise this code, keep it as is to be compatible with current runtime
let mut args = Vec::new();
while let Some(value) = cur_frame.expr_values.pop_front() {
args.push(value);
}
// Construct argument group, thereby copying heap regions
let argument_group = ValueGroup::from_store(&self.store, &args);
// Clear any heap regions
for arg in &args {
self.store.drop_value(arg.get_heap_pos());
}
cur_frame.position = stmt.next;
Ok(EvalContinuation::NewComponent(call_expr.definition, expr_data.field_or_monomorph_idx, argument_group))
},
Statement::Expression(stmt) => {
// The expression has just been completely evaluated. Some
// values might have remained on the expression value stack.
// cur_frame.expr_values.clear(); PROPER CLEARING
cur_frame.position = stmt.next;
Ok(EvalContinuation::Stepping)
},
};
assert!(
cur_frame.expr_values.is_empty(),
"This is a debugging assertion that will fail if you perform expressions without \
assigning to anything. This should be completely valid, and this assertion should be \
replaced by something that clears the expression values if needed, but I'll keep this \
in for now for debugging purposes."
);
// If the next statement requires evaluating expressions then we push
// these onto the expression stack. This way we will evaluate this
// stack in the next loop, then evaluate the statement using the result
// from the expression evaluation.
if !cur_frame.position.is_invalid() {
let stmt = &heap[cur_frame.position];
match stmt {
Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
Statement::Return(stmt) => {
debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
},
Statement::New(stmt) => {
// Note that we will end up not evaluating the call itself.
// Rather we will evaluate its expressions and then
// instantiate the component upon reaching the "new" stmt.
let call_expr = &heap[stmt.expression];
cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
},
Statement::Expression(stmt) => {
cur_frame.prepare_single_expression(heap, stmt.expression);
}
_ => {},
}
}
return_value
}
}
|