Files
@ 0d5a89aea247
Branch filter:
Location: CSY/reowolf/src/runtime2/runtime.rs
0d5a89aea247
38.2 KiB
application/rls-services+xml
halfway shared-memory new consensus algorithm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | use std::sync::Arc;
use std::collections::{HashMap, HashSet, VecDeque};
use std::collections::hash_map::{Entry};
use crate::{Polarity, PortId};
use crate::common::Id;
use crate::protocol::*;
use crate::protocol::eval::*;
use super::registry::Registry;
use super::messages::*;
enum AddComponentError {
ModuleDoesNotExist,
ConnectorDoesNotExist,
InvalidArgumentType(usize), // value is index of (first) invalid argument
}
struct PortDesc {
id: u32,
peer_id: u32,
owning_connector_id: Option<u32>,
is_getter: bool, // otherwise one can only call `put`
}
struct ConnectorDesc {
id: u32,
in_sync: bool,
branches: Vec<BranchDesc>, // first one is always non-speculative one
branch_id_counter: u32,
spec_branches_active: VecDeque<u32>, // branches that can be run immediately
spec_branches_pending_receive: HashMap<PortId, Vec<u32>>, // from port_id to branch index
spec_branches_done: Vec<u32>,
last_checked_done: u32,
global_inbox: ConnectorInbox,
global_outbox: ConnectorOutbox,
}
impl ConnectorDesc {
/// Creates a new connector description. Implicit assumption is that there
/// is one (non-sync) branch that can be immediately executed.
fn new(id: u32, component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
let mut branches_active = VecDeque::new();
branches_active.push_back(0);
Self{
id,
in_sync: false,
branches: vec![BranchDesc::new_non_sync(component_state, owned_ports)],
branch_id_counter: 1,
spec_branches_active: branches_active,
spec_branches_pending_receive: HashMap::new(),
spec_branches_done: Vec::new(),
last_checked_done: 0,
global_inbox: ConnectorInbox::new(),
global_outbox: ConnectorOutbox::new(),
}
}
}
enum BranchState {
RunningNonSync, // regular running non-speculative branch
RunningSync, // regular running speculative branch
BranchPoint, // branch which ended up being a branching point
ReachedEndSync, // branch that successfully reached the end-sync point, is a possible local solution
Failed, // branch that became inconsistent
}
struct BranchPortDesc {
last_registered_identifier: Option<u32>, // if putter, then last sent branch ID, if getter, then last received branch ID
num_times_fired: u32, // number of puts/gets on this port
}
struct BranchDesc {
index: u32,
parent_index: Option<u32>,
identifier: u32,
code_state: ComponentState,
branch_state: BranchState,
owned_ports: Vec<u32>,
message_inbox: HashMap<(PortId, u32), ValueGroup>, // from (port id, 1-based recv index) to received value
port_mapping: HashMap<PortId, BranchPortDesc>,
}
impl BranchDesc {
/// Creates the first non-sync branch of a connector
fn new_non_sync(component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
Self{
index: 0,
parent_index: None,
identifier: 0,
code_state: component_state,
branch_state: BranchState::RunningNonSync,
owned_ports,
message_inbox: HashMap::new(),
port_mapping: HashMap::new(),
}
}
/// Creates a sync branch based on the supplied branch. This supplied branch
/// is the branching point for the new one, i.e. the parent in the branching
/// tree.
fn new_sync_from(index: u32, identifier: u32, branch_state: &BranchDesc) -> Self {
Self{
index,
parent_index: Some(branch_state.index),
identifier,
code_state: branch_state.code_state.clone(),
branch_state: BranchState::RunningSync,
owned_ports: branch_state.owned_ports.clone(),
message_inbox: branch_state.message_inbox.clone(),
port_mapping: branch_state.port_mapping.clone(),
}
}
}
// Separate from Runtime for borrowing reasons
struct Registry {
ports: HashMap<u32, PortDesc>,
port_counter: u32,
connectors: HashMap<u32, ConnectorDesc>,
connector_counter: u32,
}
impl Registry {
fn new() -> Self {
Self{
ports: HashMap::new(),
port_counter: 0,
connectors: HashMap::new(),
connector_counter: 0,
}
}
/// Returns (putter_port, getter_port)
pub fn add_channel(&mut self, owning_connector_id: Option<u32>) -> (u32, u32) {
let get_id = self.generate_port_id();
let put_id = self.generate_port_id();
self.ports.insert(get_id, PortDesc{
id: get_id,
peer_id: put_id,
owning_connector_id,
is_getter: true,
});
self.ports.insert(put_id, PortDesc{
id: put_id,
peer_id: get_id,
owning_connector_id,
is_getter: false,
});
return (put_id, get_id);
}
fn generate_port_id(&mut self) -> u32 {
let id = self.port_counter;
self.port_counter += 1;
return id;
}
}
#[derive(Clone, Copy, Eq, PartialEq)]
enum ProposedBranchConstraint {
SilentPort(u32), // port id
BranchNumber(u32), // branch id
}
// Local solution of the connector
struct ProposedConnectorSolution {
final_branch_id: u32,
all_branch_ids: Vec<u32>, // the final branch ID and, recursively, all parents
silent_ports: Vec<u32>, // port IDs of the connector itself
}
struct ProposedSolution {
connector_mapping: HashMap<u32, ProposedConnectorSolution>, // from connector ID to branch ID
connector_propositions: HashMap<u32, Vec<ProposedBranchConstraint>>, // from connector ID to encountered branch numbers
remaining_connectors: Vec<u32>, // connectors that still need to be visited
}
// TODO: @performance, use freelists+ids instead of HashMaps
struct Runtime {
protocol: Arc<ProtocolDescription>,
registry: Registry,
connectors_active: VecDeque<u32>,
}
impl Runtime {
pub fn new(pd: Arc<ProtocolDescription>) -> Self {
Self{
protocol: pd,
registry: Registry::new(),
connectors_active: VecDeque::new(),
}
}
/// Creates a new channel that is not owned by any connector and returns its
/// endpoints. The returned values are of the (putter port, getter port)
/// respectively.
pub fn add_channel(&mut self) -> (Value, Value) {
let (put_id, get_id) = self.registry.add_channel(None);
return (
port_value_from_id(None, put_id, true),
port_value_from_id(None, get_id, false)
);
}
pub fn add_component(&mut self, module: &str, procedure: &str, values: ValueGroup) -> Result<(), AddComponentError> {
use AddComponentError as ACE;
use crate::runtime::error::AddComponentError as OldACE;
// TODO: Remove the responsibility of adding a component from the PD
// Lookup module and the component
// TODO: Remove this error enum translation. Note that for now this
// function forces port-only arguments
let port_polarities = match self.protocol.component_polarities(module.as_bytes(), procedure.as_bytes()) {
Ok(polarities) => polarities,
Err(reason) => match reason {
OldACE::NonPortTypeParameters => return Err(ACE::InvalidArgumentType(0)),
OldACE::NoSuchModule => return Err(ACE::ModuleDoesNotExist),
OldACE::NoSuchComponent => return Err(ACE::ModuleDoesNotExist),
_ => unreachable!(),
}
};
// Make sure supplied values (and types) are correct
let mut ports = Vec::with_capacity(values.values.len());
for (value_idx, value) in values.values.iter().enumerate() {
let polarity = &port_polarities[value_idx];
match value {
Value::Input(port_id) => {
if *polarity != Polarity::Getter {
return Err(ACE::InvalidArgumentType(value_idx))
}
ports.push(*port_id);
},
Value::Output(port_id) => {
if *polarity != Polarity::Putter {
return Err(ACE::InvalidArgumentType(value_idx))
}
ports.push(*port_id);
},
_ => return Err(ACE::InvalidArgumentType(value_idx))
}
}
// Instantiate the component
let component_id = self.generate_connector_id();
let component_state = self.protocol.new_component(module.as_bytes(), procedure.as_bytes(), &ports);
let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
self.registry.connectors.insert(component_id, ConnectorDesc::new(component_id, component_state, ports));
self.connectors_active.push_back(component_id);
Ok(())
}
pub fn run(&mut self) {
// Go through all active connectors
while !self.connectors_active.is_empty() {
// Run a single connector
let next_id = self.connectors_active.pop_front().unwrap();
let run_again = self.run_connector(next_id);
if run_again {
self.connectors_active.push_back(next_id);
}
self.empty_connector_outbox(next_id);
self.check_connector_solution(next_id);
}
}
/// Runs a connector for as long as sensible, then returns `true` if the
/// connector should be run again in the future, and return `false` if the
/// connector has terminated. Note that a terminated connector still
/// requires cleanup.
pub fn run_connector(&mut self, id: u32) -> bool {
let desc = self.registry.connectors.get_mut(&id).unwrap();
let mut run_context = Context{
connector_id: id,
branch_id: None,
pending_channel: None,
};
let mut call_again = false; // TODO: Come back to this, silly pattern
while call_again {
call_again = false; // bit of a silly pattern, maybe revise
if desc.in_sync {
// Running in synchronous mode, so run all branches until their
// blocking point
debug_assert!(!desc.spec_branches_active.is_empty());
let branch_index = desc.spec_branches_active.pop_front().unwrap();
let branch = &mut desc.branches[branch_index as usize];
let run_result = branch.code_state.run(&mut run_context, &self.protocol);
match run_result {
RunResult::BranchInconsistent => {
// Speculative branch became inconsistent. So we don't
// run it again
branch.branch_state = BranchState::Failed;
},
RunResult::BranchMissingPortState(port_id) => {
// Branch called `fires()` on a port that did not have a
// value assigned yet. So branch and keep running
debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
debug_assert!(branch.port_mapping.get(&port_id).is_none());
let copied_index = Self::duplicate_branch(desc, branch_index);
// Need to re-borrow to assign changed port state
let original_branch = &mut desc.branches[branch_index as usize];
original_branch.port_mapping.insert(port_id, BranchPortDesc{
last_registered_identifier: None,
num_times_fired: 0,
});
let copied_branch = &mut desc.branches[copied_index as usize];
copied_branch.port_mapping.insert(port_id, BranchPortDesc{
last_registered_identifier: None,
num_times_fired: 1,
});
// Run both again
desc.spec_branches_active.push_back(branch_index);
desc.spec_branches_active.push_back(copied_index);
},
RunResult::BranchMissingPortValue(port_id) => {
// Branch just performed a `get()` on a port that did
// not yet receive a value.
// First check if a port value is assigned to the
// current branch. If so, check if it is consistent.
debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
let mut insert_in_pending_receive = false;
match branch.port_mapping.entry(port_id) {
Entry::Vacant(entry) => {
// No entry yet, so force to firing
entry.insert(BranchPortDesc{
last_registered_identifier: None,
num_times_fired: 1,
});
branch.branch_state = BranchState::BranchPoint;
insert_in_pending_receive = true;
},
Entry::Occupied(entry) => {
// Have an entry, check if it is consistent
let entry = entry.get();
if entry.num_times_fired == 0 {
// Inconsistent
branch.branch_state = BranchState::Failed;
} else {
// Perfectly fine, add to queue
debug_assert!(entry.last_registered_identifier.is_none());
assert_eq!(entry.num_times_fired, 1, "temp: keeping fires() for now");
branch.branch_state = BranchState::BranchPoint;
insert_in_pending_receive = true;
}
}
}
if insert_in_pending_receive {
// Perform the insert
match desc.spec_branches_pending_receive.entry(port_id) {
Entry::Vacant(entry) => {
entry.insert(vec![branch_index]);
}
Entry::Occupied(mut entry) => {
let entry = entry.get_mut();
debug_assert!(!entry.contains(&branch_index));
entry.push(branch_index);
}
}
// But also check immediately if we don't have a
// previously received message. If so, we
// immediately branch and accept the message
if let Some(messages) = desc.global_inbox.find_matching_message(port_id.0.u32_suffix, None) {
for message in messages {
let new_branch_idx = Self::duplicate_branch(desc, branch_index);
let new_branch = &mut desc.branches[new_branch_idx as usize];
let new_port_desc = new_branch.port_mapping.get_mut(&port_id).unwrap();
new_port_desc.last_registered_identifier = Some(message.peer_cur_branch_id);
new_branch.message_inbox.insert((port_id, 1), message.message.clone());
desc.spec_branches_active.push_back(new_branch_idx);
}
}
}
},
RunResult::BranchAtSyncEnd => {
// Check the branch for any ports that were not used and
// insert them in the port mapping as not having fired.
for port_index in branch.owned_ports {
let port_id = PortId(Id{ connector_id: desc.id, u32_suffix: port_index });
if let Entry::Vacant(entry) = branch.port_mapping.entry(port_id) {
entry.insert(BranchPortDesc {
last_registered_identifier: None,
num_times_fired: 0
});
}
}
// Mark the branch as being done
branch.branch_state = BranchState::ReachedEndSync;
desc.spec_branches_done.push(branch_index);
},
RunResult::BranchPut(port_id, value_group) => {
debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
debug_assert_eq!(value_group.values.len(), 1); // can only send one value
// Branch just performed a `put()`. Check if we have
// assigned the port value and if so, if it is
// consistent.
let mut can_put = true;
match branch.port_mapping.entry(port_id) {
Entry::Vacant(entry) => {
// No entry yet
entry.insert(BranchPortDesc{
last_registered_identifier: Some(branch.identifier),
num_times_fired: 1,
});
},
Entry::Occupied(mut entry) => {
// Pre-existing entry
let entry = entry.get_mut();
if entry.num_times_fired == 0 {
// This is 'fine' in the sense that we have
// a normal inconsistency in the branch.
branch.branch_state = BranchState::Failed;
can_put = false;
} else if entry.last_registered_identifier.is_none() {
// A put() that follows a fires()
entry.last_registered_identifier = Some(branch.identifier);
} else {
// This should be fine in the future. But
// for now we throw an error as it doesn't
// mesh well with the 'fires()' concept.
todo!("throw an error of some sort, then fail all related")
}
}
}
if can_put {
// Actually put the message in the outbox
let port_desc = self.registry.ports.get(&port_id.0.u32_suffix).unwrap();
let peer_id = port_desc.peer_id;
let peer_desc = self.registry.ports.get(&peer_id).unwrap();
debug_assert!(peer_desc.owning_connector_id.is_some());
let peer_id = PortId(Id{
connector_id: peer_desc.owning_connector_id.unwrap(),
u32_suffix: peer_id
});
// For now this is the one and only time we're going
// to send a message. So for now we can't send a
// branch ID.
desc.global_outbox.insert((port_id, 1), BufferedMessage{
sending_port: port_id,
receiving_port: peer_id,
peer_prev_branch_id: None,
peer_cur_branch_id: 0,
message: value_group,
});
// Finally, because we were able to put the message,
// we can run the branch again
desc.spec_branches_active.push_back(branch_index);
call_again = true;
}
},
_ => unreachable!("got result '{:?}' from running component in sync mode", run_result),
}
} else {
// Running in non-synchronous mode
let branch = &mut desc.branches[0];
let run_result = branch.code_state.run(&mut run_context, &self.protocol);
match run_result {
RunResult::ComponentTerminated => return false,
RunResult::ComponentAtSyncStart => {
// Prepare for sync execution
Self::prepare_branch_for_sync(desc);
call_again = true;
},
RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
// Generate a new connector with its own state
let new_component_id = self.generate_connector_id();
let new_component_state = ComponentState {
prompt: Prompt::new(&self.protocol.types, &self.protocol.heap, definition_id, monomorph_idx, arguments)
};
// Transfer the ownership of any ports to the new connector
let mut ports = Vec::with_capacity(arguments.values.len());
find_ports_in_value_group(&arguments, &mut ports);
for port_id in &ports {
let port = self.registry.ports.get_mut(&port_id.0.u32_suffix).unwrap();
debug_assert_eq!(port.owning_connector_id.unwrap(), run_context.connector_id);
port.owning_connector_id = Some(new_component_id)
}
// Finally push the new connector into the registry
let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
self.registry.connectors.insert(new_component_id, ConnectorDesc::new(new_component_id, new_component_state, ports));
self.connectors_active.push_back(new_component_id);
},
RunResult::NewChannel => {
// Prepare channel
debug_assert!(run_context.pending_channel.is_none());
let (put_id, get_id) = self.registry.add_channel(Some(run_context.connector_id));
run_context.pending_channel = Some((
port_value_from_id(Some(run_context.connector_id), put_id, true),
port_value_from_id(Some(run_context.connector_id), get_id, false)
));
// Call again so it is retrieved from the context
call_again = true;
},
_ => unreachable!("got result '{:?}' from running component in non-sync mode", run_result),
}
}
}
return true;
}
/// Puts all the messages that are currently in the outbox of a particular
/// connector into the inbox of the receivers. If possible then branches
/// will be created that receive those messages.
fn empty_connector_outbox(&mut self, connector_index: u32) {
let connector = self.registry.connectors.get_mut(&connector_index).unwrap();
while let Some(message_to_send) = connector.global_outbox.take_next_message_to_send() {
// Lookup the target connector
let port_desc = self.registry.ports.get(&target_port.0.u32_suffix).unwrap();
debug_assert_eq!(port_desc.owning_connector_id.unwrap(), target_port.0.connector_id);
let target_connector_id = port_desc.owning_connector_id.unwrap();
let target_connector = self.registry.connectors.get_mut(&target_connector_id).unwrap();
// In any case, always put the message in the global inbox
target_connector.global_inbox.insert_message(message_to_send.clone());
// Check if there are any branches that are waiting on
// receives
if let Some(branch_indices) = target_connector.spec_branches_pending_receive.get(&target_port) {
// Check each of the branches for a port mapping that
// matches the one on the message header
for branch_index in branch_indices {
let branch = &mut target_connector.branches[*branch_index as usize];
debug_assert_eq!(branch.branch_state, BranchState::BranchPoint);
let mut can_branch = false;
if let Some(port_desc) = branch.port_mapping.get(&message_to_send.receiving_port) {
if port_desc.last_registered_identifier == message_to_send.peer_prev_branch_id && port_desc.num_times_fired == 1 {
can_branch = true;
}
}
if can_branch {
// Put the message inside a clone of the currently
// waiting branch
let new_branch_idx = Self::duplicate_branch(target_connector, *branch_index);
let new_branch = &mut target_connector.branches[new_branch_idx as usize];
let new_port_desc = &mut new_branch.port_mapping.get_mut(&message_to_send.receiving_port).unwrap();
new_port_desc.last_registered_identifier = Some(message_to_send.peer_cur_branch_id);
new_branch.message_inbox.insert((message_to_send.receiving_port, 1), message_to_send.message.clone());
// And queue the branch for further execution
target_connector.spec_branches_active.push(new_branch_idx);
if !self.connectors_active.contains(&target_connector.id) {
self.connectors_active.push_back(target_connector.id);
}
}
}
}
}
}
/// Checks a connector for the submitted solutions. After all neighbouring
/// connectors have been checked all of their "last checked solution" index
/// will be incremented.
fn check_connector_new_solutions(&mut self, connector_index: u32) {
// Take connector and start processing its solutions
let connector = self.registry.connectors.get_mut(&connector_index).unwrap();
let mut considered_connectors = HashSet::new();
let mut valid_solutions = Vec::new();
while connector.last_checked_done != connector.spec_branches_done.len() as u32 {
// We have a new solution to consider
let start_branch_index = connector.spec_branches_done[connector.last_checked_done as usize];
connector.last_checked_done += 1;
let branch = &connector.branches[start_branch_index as usize];
debug_assert_eq!(branch.branch_state, BranchState::ReachedEndSync);
// Clear storage for potential solutions
considered_connectors.clear();
// Start seeking solution among other connectors within the same
// synchronous region
considered_connectors.insert(connector.id);
for port in branch.port_
}
}
fn check_connector_solution(&self, first_connector_index: u32, first_branch_index: u32) {
// Take the connector and branch of interest
let first_connector = self.registry.connectors.get(&first_connector_index).unwrap();
let first_branch = &first_connector.branches[first_branch_index as usize];
debug_assert_eq!(first_branch.branch_state, BranchState::ReachedEndSync);
// Setup the first solution
let mut first_solution = ProposedSolution{
connector_mapping: HashMap::new(),
connector_propositions: HashMap::new(),
remaining_connectors: Vec::new(),
};
first_solution.connector_mapping.insert(first_connector.id, first_branch.identifier);
for (port_id, port_mapping) in first_branch.port_mapping.iter() {
let port_desc = self.registry.ports.get(&port_id.0.u32_suffix).unwrap();
let peer_port_id = port_desc.peer_id;
let peer_port_desc = self.registry.ports.get(&peer_port_id).unwrap();
let peer_connector_id = peer_port_desc.owning_connector_id.unwrap();
let constraint = match port_mapping.last_registered_identifier {
Some(branch_id) => ProposedBranchConstraint::BranchNumber(branch_id),
None => ProposedBranchConstraint::SilentPort(peer_port_id),
};
match first_solution.connector_propositions.entry(peer_connector_id) {
Entry::Vacant(entry) => {
// Not yet encountered
entry.insert(vec![constraint]);
first_solution.remaining_connectors.push(peer_connector_id);
},
Entry::Occupied(mut entry) => {
// Already encountered
let entry = entry.get_mut();
if !entry.contains(&constraint) {
entry.push(constraint);
}
}
}
}
// Setup storage for all possible solutions
let mut all_solutions = Vec::new();
all_solutions.push(first_solution);
while !all_solutions.is_empty() {
let mut cur_solution = all_solutions.pop().unwrap();
}
}
fn merge_solution_with_connector(&self, cur_solution: &mut ProposedSolution, all_solutions: &mut Vec<ProposedSolution>, target_connector: u32) {
debug_assert!(!cur_solution.connector_mapping.contains_key(&target_connector)); // not yet visited
debug_assert!(cur_solution.connector_propositions.contains_key(&target_connector)); // but we encountered a reference to it
let branch_propositions = cur_solution.connector_propositions.get(&target_connector).unwrap();
let cur_connector = self.registry.connectors.get(&target_connector).unwrap();
// Make sure all propositions are unique
for i in 0..branch_propositions.len() {
let proposition_i = branch_propositions[i];
for j in 0..i {
let proposition_j = branch_propositions[j];
debug_assert_ne!(proposition_i, proposition_j);
}
}
// Check connector for compatible branches
let mut considered_branches = Vec::with_capacity(cur_connector.spec_branches_done.len());
let mut encountered_propositions = Vec::new();
'finished_branch_loop: for branch_idx in cur_connector.spec_branches_done {
// Reset the propositions matching variables
encountered_propositions.clear();
encountered_propositions.resize(branch_propositions.len(), false);
// First check the silent port propositions
let cur_branch = &cur_connector.branches[branch_idx as usize];
for (proposition_idx, proposition) in branch_propositions.iter().enumerate() {
match proposition {
ProposedBranchConstraint::SilentPort(port_id) => {
let old_school_port_id = PortId(Id{ connector_id: cur_connector.id, u32_suffix: *port_id });
let port_mapping = cur_branch.port_mapping.get(&old_school_port_id).unwrap();
if port_mapping.num_times_fired != 0 {
// Port did fire, so the current branch is not
// compatible
continue 'finished_branch_loop;
}
// Otherwise, the port was silent indeed
encountered_propositions[proposition_idx] = true;
},
ProposedBranchConstraint::BranchNumber(_) => {},
}
}
// Then check the branch number propositions
let mut parent_branch_idx = branch_idx;
loop {
let branch = &cur_connector.branches[parent_branch_idx as usize];
for proposition_idx in 0..branch_propositions.len() {
let proposition = branch_propositions[proposition_idx];
match proposition {
ProposedBranchConstraint::SilentPort(_) => {},
ProposedBranchConstraint::BranchNumber(branch_number) => {
if branch_number == branch.identifier {
encountered_propositions[proposition_idx] = true;
}
}
}
}
if branch.parent_index.is_none() {
// No more parents
break;
}
parent_branch_idx = branch.parent_index.unwrap();
}
if !encountered_propositions.iter().all(|v| *v) {
// Not all of the constraints were matched
continue 'finished_branch_loop
}
// All of the constraints on the branch did indeed match.
}
}
fn generate_connector_id(&mut self) -> u32 {
let id = self.registry.connector_counter;
self.registry.connector_counter += 1;
return id;
}
// -------------------------------------------------------------------------
// Helpers for branch management
// -------------------------------------------------------------------------
/// Prepares a speculative branch for further execution from the connector's
/// non-speculative base branch.
fn prepare_branch_for_sync(desc: &mut ConnectorDesc) {
// Ensure only one branch is active, the non-sync branch
debug_assert!(!desc.in_sync);
debug_assert_eq!(desc.branches.len(), 1);
debug_assert!(desc.spec_branches_active.is_empty());
let new_branch_index = 1;
let new_branch_identifier = desc.branch_id_counter;
desc.branch_id_counter += 1;
// Push first speculative branch as active branch
let new_branch = BranchDesc::new_sync_from(new_branch_index, new_branch_identifier, &desc.branches[0]);
desc.branches.push(new_branch);
desc.spec_branches_active.push_back(new_id);
desc.in_sync = true;
}
/// Duplicates a particular (speculative) branch and returns its index.
fn duplicate_branch(desc: &mut ConnectorDesc, original_branch_idx: u32) -> u32 {
let original_branch = &desc.branches[original_branch_idx as usize];
debug_assert!(desc.in_sync);
let copied_index = desc.branches.len() as u32;
let copied_id = desc.branch_id_counter;
desc.branch_id_counter += 1;
let copied_branch = BranchDesc::new_sync_from(copied_index, copied_id, original_branch);
desc.branches.push(copied_branch);
return copied_index;
}
}
/// Context accessible by the code while being executed by the runtime. When the
/// code is being executed by the runtime it sometimes needs to interact with
/// the runtime. This is achieved by the "code throwing an error code", after
/// which the runtime modifies the appropriate variables and continues executing
/// the code again.
struct Context<'a> {
// Properties of currently running connector/branch
connector_id: u32,
branch_id: Option<u32>,
// Resources ready to be retrieved by running code
pending_channel: Option<(Value, Value)>, // (put, get) ports
}
impl<'a> crate::protocol::RunContext for Context<'a> {
fn did_put(&self, port: PortId) -> bool {
todo!()
}
fn get(&self, port: PortId) -> Option<Value> {
todo!()
}
fn fires(&self, port: PortId) -> Option<Value> {
todo!()
}
fn get_channel(&mut self) -> Option<(Value, Value)> {
self.pending_channel.take()
}
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
for prev_port in ports {
if prev_port == port_id {
// Already added
return;
}
}
ports.push(*port_id);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
fn port_value_from_id(connector_id: Option<u32>, port_id: u32, is_output: bool) -> Value {
let connector_id = connector_id.unwrap_or(u32::MAX); // TODO: @hack, review entire PortId/ConnectorId/Id system
if is_output {
return Value::Output(PortId(Id{
connector_id,
u32_suffix: port_id
}));
} else {
return Value::Input(PortId(Id{
connector_id,
u32_suffix: port_id,
}));
}
}
|