Files @ 0d5a89aea247
Branch filter:

Location: CSY/reowolf/src/runtime2/runtime.rs

0d5a89aea247 38.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
halfway shared-memory new consensus algorithm
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
use std::sync::Arc;
use std::collections::{HashMap, HashSet, VecDeque};
use std::collections::hash_map::{Entry};

use crate::{Polarity, PortId};
use crate::common::Id;
use crate::protocol::*;
use crate::protocol::eval::*;

use super::registry::Registry;
use super::messages::*;

enum AddComponentError {
    ModuleDoesNotExist,
    ConnectorDoesNotExist,
    InvalidArgumentType(usize), // value is index of (first) invalid argument
}

struct PortDesc {
    id: u32,
    peer_id: u32,
    owning_connector_id: Option<u32>,
    is_getter: bool, // otherwise one can only call `put`
}

struct ConnectorDesc {
    id: u32,
    in_sync: bool,
    branches: Vec<BranchDesc>, // first one is always non-speculative one
    branch_id_counter: u32,
    spec_branches_active: VecDeque<u32>, // branches that can be run immediately
    spec_branches_pending_receive: HashMap<PortId, Vec<u32>>, // from port_id to branch index
    spec_branches_done: Vec<u32>,
    last_checked_done: u32,
    global_inbox: ConnectorInbox,
    global_outbox: ConnectorOutbox,
}

impl ConnectorDesc {
    /// Creates a new connector description. Implicit assumption is that there
    /// is one (non-sync) branch that can be immediately executed.
    fn new(id: u32, component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
        let mut branches_active = VecDeque::new();
        branches_active.push_back(0);

        Self{
            id,
            in_sync: false,
            branches: vec![BranchDesc::new_non_sync(component_state, owned_ports)],
            branch_id_counter: 1,
            spec_branches_active: branches_active,
            spec_branches_pending_receive: HashMap::new(),
            spec_branches_done: Vec::new(),
            last_checked_done: 0,
            global_inbox: ConnectorInbox::new(),
            global_outbox: ConnectorOutbox::new(),
        }
    }
}

enum BranchState {
    RunningNonSync, // regular running non-speculative branch
    RunningSync, // regular running speculative branch
    BranchPoint, // branch which ended up being a branching point
    ReachedEndSync, // branch that successfully reached the end-sync point, is a possible local solution
    Failed, // branch that became inconsistent
}

struct BranchPortDesc {
    last_registered_identifier: Option<u32>, // if putter, then last sent branch ID, if getter, then last received branch ID
    num_times_fired: u32, // number of puts/gets on this port
}

struct BranchDesc {
    index: u32,
    parent_index: Option<u32>,
    identifier: u32,
    code_state: ComponentState,
    branch_state: BranchState,
    owned_ports: Vec<u32>,
    message_inbox: HashMap<(PortId, u32), ValueGroup>, // from (port id, 1-based recv index) to received value
    port_mapping: HashMap<PortId, BranchPortDesc>,
}

impl BranchDesc {
    /// Creates the first non-sync branch of a connector
    fn new_non_sync(component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
        Self{
            index: 0,
            parent_index: None,
            identifier: 0,
            code_state: component_state,
            branch_state: BranchState::RunningNonSync,
            owned_ports,
            message_inbox: HashMap::new(),
            port_mapping: HashMap::new(),
        }
    }

    /// Creates a sync branch based on the supplied branch. This supplied branch
    /// is the branching point for the new one, i.e. the parent in the branching
    /// tree.
    fn new_sync_from(index: u32, identifier: u32, branch_state: &BranchDesc) -> Self {
        Self{
            index,
            parent_index: Some(branch_state.index),
            identifier,
            code_state: branch_state.code_state.clone(),
            branch_state: BranchState::RunningSync,
            owned_ports: branch_state.owned_ports.clone(),
            message_inbox: branch_state.message_inbox.clone(),
            port_mapping: branch_state.port_mapping.clone(),
        }
    }
}

// Separate from Runtime for borrowing reasons
struct Registry {
    ports: HashMap<u32, PortDesc>,
    port_counter: u32,
    connectors: HashMap<u32, ConnectorDesc>,
    connector_counter: u32,
}

impl Registry {
    fn new() -> Self {
        Self{
            ports: HashMap::new(),
            port_counter: 0,
            connectors: HashMap::new(),
            connector_counter: 0,
        }
    }

    /// Returns (putter_port, getter_port)
    pub fn add_channel(&mut self, owning_connector_id: Option<u32>) -> (u32, u32) {
        let get_id = self.generate_port_id();
        let put_id = self.generate_port_id();

        self.ports.insert(get_id, PortDesc{
            id: get_id,
            peer_id: put_id,
            owning_connector_id,
            is_getter: true,
        });
        self.ports.insert(put_id, PortDesc{
            id: put_id,
            peer_id: get_id,
            owning_connector_id,
            is_getter: false,
        });

        return (put_id, get_id);
    }

    fn generate_port_id(&mut self) -> u32 {
        let id = self.port_counter;
        self.port_counter += 1;
        return id;
    }
}

#[derive(Clone, Copy, Eq, PartialEq)]
enum ProposedBranchConstraint {
    SilentPort(u32), // port id
    BranchNumber(u32), // branch id
}

// Local solution of the connector
struct ProposedConnectorSolution {
    final_branch_id: u32,
    all_branch_ids: Vec<u32>, // the final branch ID and, recursively, all parents
    silent_ports: Vec<u32>, // port IDs of the connector itself
}

struct ProposedSolution {
    connector_mapping: HashMap<u32, ProposedConnectorSolution>, // from connector ID to branch ID
    connector_propositions: HashMap<u32, Vec<ProposedBranchConstraint>>, // from connector ID to encountered branch numbers
    remaining_connectors: Vec<u32>, // connectors that still need to be visited
}

// TODO: @performance, use freelists+ids instead of HashMaps
struct Runtime {
    protocol: Arc<ProtocolDescription>,
    registry: Registry,
    connectors_active: VecDeque<u32>,
}

impl Runtime {
    pub fn new(pd: Arc<ProtocolDescription>) -> Self {
        Self{
            protocol: pd,
            registry: Registry::new(),
            connectors_active: VecDeque::new(),
        }
    }

    /// Creates a new channel that is not owned by any connector and returns its
    /// endpoints. The returned values are of the (putter port, getter port)
    /// respectively.
    pub fn add_channel(&mut self) -> (Value, Value) {
        let (put_id, get_id) = self.registry.add_channel(None);
        return (
            port_value_from_id(None, put_id, true),
            port_value_from_id(None, get_id, false)
        );
    }

    pub fn add_component(&mut self, module: &str, procedure: &str, values: ValueGroup) -> Result<(), AddComponentError> {
        use AddComponentError as ACE;
        use crate::runtime::error::AddComponentError as OldACE;

        // TODO: Remove the responsibility of adding a component from the PD

        // Lookup module and the component
        // TODO: Remove this error enum translation. Note that for now this
        //  function forces port-only arguments
        let port_polarities = match self.protocol.component_polarities(module.as_bytes(), procedure.as_bytes()) {
            Ok(polarities) => polarities,
            Err(reason) => match reason {
                OldACE::NonPortTypeParameters => return Err(ACE::InvalidArgumentType(0)),
                OldACE::NoSuchModule => return Err(ACE::ModuleDoesNotExist),
                OldACE::NoSuchComponent => return Err(ACE::ModuleDoesNotExist),
                _ => unreachable!(),
            }
        };

        // Make sure supplied values (and types) are correct
        let mut ports = Vec::with_capacity(values.values.len());
        
        for (value_idx, value) in values.values.iter().enumerate() {
            let polarity = &port_polarities[value_idx];

            match value {
                Value::Input(port_id) => {
                    if *polarity != Polarity::Getter {
                        return Err(ACE::InvalidArgumentType(value_idx))
                    }

                    ports.push(*port_id);
                },
                Value::Output(port_id) => {
                    if *polarity != Polarity::Putter {
                        return Err(ACE::InvalidArgumentType(value_idx))
                    }

                    ports.push(*port_id);
                },
                _ => return Err(ACE::InvalidArgumentType(value_idx))
            }
        }

        // Instantiate the component
        let component_id = self.generate_connector_id();
        let component_state = self.protocol.new_component(module.as_bytes(), procedure.as_bytes(), &ports);
        let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();

        self.registry.connectors.insert(component_id, ConnectorDesc::new(component_id, component_state, ports));
        self.connectors_active.push_back(component_id);

        Ok(())
    }

    pub fn run(&mut self) {
        // Go through all active connectors
        while !self.connectors_active.is_empty() {
            // Run a single connector
            let next_id = self.connectors_active.pop_front().unwrap();
            let run_again = self.run_connector(next_id);

            if run_again {
                self.connectors_active.push_back(next_id);
            }

            self.empty_connector_outbox(next_id);
            self.check_connector_solution(next_id);
        }
    }

    /// Runs a connector for as long as sensible, then returns `true` if the
    /// connector should be run again in the future, and return `false` if the
    /// connector has terminated. Note that a terminated connector still 
    /// requires cleanup.
    pub fn run_connector(&mut self, id: u32) -> bool {
        let desc = self.registry.connectors.get_mut(&id).unwrap();
        let mut run_context = Context{
            connector_id: id,
            branch_id: None,
            pending_channel: None,
        };

        let mut call_again = false; // TODO: Come back to this, silly pattern

        while call_again {
            call_again = false; // bit of a silly pattern, maybe revise

            if desc.in_sync {
                // Running in synchronous mode, so run all branches until their
                // blocking point
                debug_assert!(!desc.spec_branches_active.is_empty());
                let branch_index = desc.spec_branches_active.pop_front().unwrap();

                let branch = &mut desc.branches[branch_index as usize];
                let run_result = branch.code_state.run(&mut run_context, &self.protocol);

                match run_result {
                    RunResult::BranchInconsistent => {
                        // Speculative branch became inconsistent. So we don't
                        // run it again
                        branch.branch_state = BranchState::Failed;
                    },
                    RunResult::BranchMissingPortState(port_id) => {
                        // Branch called `fires()` on a port that did not have a
                        // value assigned yet. So branch and keep running
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                        debug_assert!(branch.port_mapping.get(&port_id).is_none());

                        let copied_index = Self::duplicate_branch(desc, branch_index);

                        // Need to re-borrow to assign changed port state
                        let original_branch = &mut desc.branches[branch_index as usize];
                        original_branch.port_mapping.insert(port_id, BranchPortDesc{
                            last_registered_identifier: None,
                            num_times_fired: 0,
                        });

                        let copied_branch = &mut desc.branches[copied_index as usize];
                        copied_branch.port_mapping.insert(port_id, BranchPortDesc{
                            last_registered_identifier: None,
                            num_times_fired: 1,
                        });

                        // Run both again
                        desc.spec_branches_active.push_back(branch_index);
                        desc.spec_branches_active.push_back(copied_index);
                    },
                    RunResult::BranchMissingPortValue(port_id) => {
                        // Branch just performed a `get()` on a port that did
                        // not yet receive a value.

                        // First check if a port value is assigned to the
                        // current branch. If so, check if it is consistent.
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                        let mut insert_in_pending_receive = false;

                        match branch.port_mapping.entry(port_id) {
                            Entry::Vacant(entry) => {
                                // No entry yet, so force to firing
                                entry.insert(BranchPortDesc{
                                    last_registered_identifier: None,
                                    num_times_fired: 1,
                                });
                                branch.branch_state = BranchState::BranchPoint;
                                insert_in_pending_receive = true;
                            },
                            Entry::Occupied(entry) => {
                                // Have an entry, check if it is consistent
                                let entry = entry.get();
                                if entry.num_times_fired == 0 {
                                    // Inconsistent
                                    branch.branch_state = BranchState::Failed;
                                } else {
                                    // Perfectly fine, add to queue
                                    debug_assert!(entry.last_registered_identifier.is_none());
                                    assert_eq!(entry.num_times_fired, 1, "temp: keeping fires() for now");
                                    branch.branch_state = BranchState::BranchPoint;
                                    insert_in_pending_receive = true;
                                }
                            }
                        }

                        if insert_in_pending_receive {
                            // Perform the insert
                            match desc.spec_branches_pending_receive.entry(port_id) {
                                Entry::Vacant(entry) => {
                                    entry.insert(vec![branch_index]);
                                }
                                Entry::Occupied(mut entry) => {
                                    let entry = entry.get_mut();
                                    debug_assert!(!entry.contains(&branch_index));
                                    entry.push(branch_index);
                                }
                            }

                            // But also check immediately if we don't have a
                            // previously received message. If so, we
                            // immediately branch and accept the message
                            if let Some(messages) = desc.global_inbox.find_matching_message(port_id.0.u32_suffix, None) {
                                for message in messages {
                                    let new_branch_idx = Self::duplicate_branch(desc, branch_index);
                                    let new_branch = &mut desc.branches[new_branch_idx as usize];
                                    let new_port_desc = new_branch.port_mapping.get_mut(&port_id).unwrap();
                                    new_port_desc.last_registered_identifier = Some(message.peer_cur_branch_id);
                                    new_branch.message_inbox.insert((port_id, 1), message.message.clone());

                                    desc.spec_branches_active.push_back(new_branch_idx);
                                }
                            }
                        }
                    },
                    RunResult::BranchAtSyncEnd => {
                        // Check the branch for any ports that were not used and
                        // insert them in the port mapping as not having fired.
                        for port_index in branch.owned_ports {
                            let port_id = PortId(Id{ connector_id: desc.id, u32_suffix: port_index });
                            if let Entry::Vacant(entry) = branch.port_mapping.entry(port_id) {
                                entry.insert(BranchPortDesc {
                                    last_registered_identifier: None,
                                    num_times_fired: 0
                                });
                            }
                        }

                        // Mark the branch as being done
                        branch.branch_state = BranchState::ReachedEndSync;
                        desc.spec_branches_done.push(branch_index);
                    },
                    RunResult::BranchPut(port_id, value_group) => {
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                        debug_assert_eq!(value_group.values.len(), 1); // can only send one value

                        // Branch just performed a `put()`. Check if we have
                        // assigned the port value and if so, if it is
                        // consistent.
                        let mut can_put = true;
                        match branch.port_mapping.entry(port_id) {
                            Entry::Vacant(entry) => {
                                // No entry yet
                                entry.insert(BranchPortDesc{
                                    last_registered_identifier: Some(branch.identifier),
                                    num_times_fired: 1,
                                });
                            },
                            Entry::Occupied(mut entry) => {
                                // Pre-existing entry
                                let entry = entry.get_mut();
                                if entry.num_times_fired == 0 {
                                    // This is 'fine' in the sense that we have
                                    // a normal inconsistency in the branch.
                                    branch.branch_state = BranchState::Failed;
                                    can_put = false;
                                } else if entry.last_registered_identifier.is_none() {
                                    // A put() that follows a fires()
                                    entry.last_registered_identifier = Some(branch.identifier);
                                } else {
                                    // This should be fine in the future. But
                                    // for now we throw an error as it doesn't
                                    // mesh well with the 'fires()' concept.
                                    todo!("throw an error of some sort, then fail all related")
                                }
                            }
                        }

                        if can_put {
                            // Actually put the message in the outbox
                            let port_desc = self.registry.ports.get(&port_id.0.u32_suffix).unwrap();
                            let peer_id = port_desc.peer_id;
                            let peer_desc = self.registry.ports.get(&peer_id).unwrap();
                            debug_assert!(peer_desc.owning_connector_id.is_some());

                            let peer_id = PortId(Id{
                                connector_id: peer_desc.owning_connector_id.unwrap(),
                                u32_suffix: peer_id
                            });

                            // For now this is the one and only time we're going
                            // to send a message. So for now we can't send a
                            // branch ID.
                            desc.global_outbox.insert((port_id, 1), BufferedMessage{
                                sending_port: port_id,
                                receiving_port: peer_id,
                                peer_prev_branch_id: None,
                                peer_cur_branch_id: 0,
                                message: value_group,
                            });

                            // Finally, because we were able to put the message,
                            // we can run the branch again
                            desc.spec_branches_active.push_back(branch_index);
                            call_again = true;
                        }
                    },
                    _ => unreachable!("got result '{:?}' from running component in sync mode", run_result),
                }
            } else {
                // Running in non-synchronous mode
                let branch = &mut desc.branches[0];
                let run_result = branch.code_state.run(&mut run_context, &self.protocol);

                match run_result {
                    RunResult::ComponentTerminated => return false,
                    RunResult::ComponentAtSyncStart => {
                        // Prepare for sync execution
                        Self::prepare_branch_for_sync(desc);
                        call_again = true;
                    },
                    RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
                        // Generate a new connector with its own state
                        let new_component_id = self.generate_connector_id();
                        let new_component_state = ComponentState {
                            prompt: Prompt::new(&self.protocol.types, &self.protocol.heap, definition_id, monomorph_idx, arguments)
                        };

                        // Transfer the ownership of any ports to the new connector
                        let mut ports = Vec::with_capacity(arguments.values.len());
                        find_ports_in_value_group(&arguments, &mut ports);
                        for port_id in &ports {
                            let port = self.registry.ports.get_mut(&port_id.0.u32_suffix).unwrap();
                            debug_assert_eq!(port.owning_connector_id.unwrap(), run_context.connector_id);
                            port.owning_connector_id = Some(new_component_id)
                        }

                        // Finally push the new connector into the registry
                        let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
                        self.registry.connectors.insert(new_component_id, ConnectorDesc::new(new_component_id, new_component_state, ports));
                        self.connectors_active.push_back(new_component_id);
                    },
                    RunResult::NewChannel => {
                        // Prepare channel
                        debug_assert!(run_context.pending_channel.is_none());
                        let (put_id, get_id) = self.registry.add_channel(Some(run_context.connector_id));
                        run_context.pending_channel = Some((
                            port_value_from_id(Some(run_context.connector_id), put_id, true),
                            port_value_from_id(Some(run_context.connector_id), get_id, false)
                        ));

                        // Call again so it is retrieved from the context
                        call_again = true;
                    },
                    _ => unreachable!("got result '{:?}' from running component in non-sync mode", run_result),
                }
            }
        }

        return true;
    }

    /// Puts all the messages that are currently in the outbox of a particular
    /// connector into the inbox of the receivers. If possible then branches
    /// will be created that receive those messages.
    fn empty_connector_outbox(&mut self, connector_index: u32) {
        let connector = self.registry.connectors.get_mut(&connector_index).unwrap();
        while let Some(message_to_send) = connector.global_outbox.take_next_message_to_send() {
            // Lookup the target connector
            let port_desc = self.registry.ports.get(&target_port.0.u32_suffix).unwrap();
            debug_assert_eq!(port_desc.owning_connector_id.unwrap(), target_port.0.connector_id);
            let target_connector_id = port_desc.owning_connector_id.unwrap();
            let target_connector = self.registry.connectors.get_mut(&target_connector_id).unwrap();

            // In any case, always put the message in the global inbox
            target_connector.global_inbox.insert_message(message_to_send.clone());

            // Check if there are any branches that are waiting on
            // receives
            if let Some(branch_indices) = target_connector.spec_branches_pending_receive.get(&target_port) {
                // Check each of the branches for a port mapping that
                // matches the one on the message header
                for branch_index in branch_indices {
                    let branch = &mut target_connector.branches[*branch_index as usize];
                    debug_assert_eq!(branch.branch_state, BranchState::BranchPoint);

                    let mut can_branch = false;

                    if let Some(port_desc) = branch.port_mapping.get(&message_to_send.receiving_port) {
                        if port_desc.last_registered_identifier == message_to_send.peer_prev_branch_id && port_desc.num_times_fired == 1 {
                            can_branch = true;
                        }
                    }

                    if can_branch {
                        // Put the message inside a clone of the currently
                        // waiting branch
                        let new_branch_idx = Self::duplicate_branch(target_connector, *branch_index);
                        let new_branch = &mut target_connector.branches[new_branch_idx as usize];
                        let new_port_desc = &mut new_branch.port_mapping.get_mut(&message_to_send.receiving_port).unwrap();
                        new_port_desc.last_registered_identifier = Some(message_to_send.peer_cur_branch_id);
                        new_branch.message_inbox.insert((message_to_send.receiving_port, 1), message_to_send.message.clone());

                        // And queue the branch for further execution
                        target_connector.spec_branches_active.push(new_branch_idx);
                        if !self.connectors_active.contains(&target_connector.id) {
                            self.connectors_active.push_back(target_connector.id);
                        }
                    }
                }
            }
        }
    }

    /// Checks a connector for the submitted solutions. After all neighbouring
    /// connectors have been checked all of their "last checked solution" index
    /// will be incremented.
    fn check_connector_new_solutions(&mut self, connector_index: u32) {
        // Take connector and start processing its solutions
        let connector = self.registry.connectors.get_mut(&connector_index).unwrap();
        let mut considered_connectors = HashSet::new();
        let mut valid_solutions = Vec::new();

        while connector.last_checked_done != connector.spec_branches_done.len() as u32 {
            // We have a new solution to consider
            let start_branch_index = connector.spec_branches_done[connector.last_checked_done as usize];
            connector.last_checked_done += 1;

            let branch = &connector.branches[start_branch_index as usize];
            debug_assert_eq!(branch.branch_state, BranchState::ReachedEndSync);

            // Clear storage for potential solutions
            considered_connectors.clear();

            // Start seeking solution among other connectors within the same
            // synchronous region
            considered_connectors.insert(connector.id);
            for port in branch.port_
        }
    }

    fn check_connector_solution(&self, first_connector_index: u32, first_branch_index: u32) {
        // Take the connector and branch of interest
        let first_connector = self.registry.connectors.get(&first_connector_index).unwrap();
        let first_branch = &first_connector.branches[first_branch_index as usize];
        debug_assert_eq!(first_branch.branch_state, BranchState::ReachedEndSync);

        // Setup the first solution
        let mut first_solution = ProposedSolution{
            connector_mapping: HashMap::new(),
            connector_propositions: HashMap::new(),
            remaining_connectors: Vec::new(),
        };
        first_solution.connector_mapping.insert(first_connector.id, first_branch.identifier);
        for (port_id, port_mapping) in first_branch.port_mapping.iter() {
            let port_desc = self.registry.ports.get(&port_id.0.u32_suffix).unwrap();
            let peer_port_id = port_desc.peer_id;
            let peer_port_desc = self.registry.ports.get(&peer_port_id).unwrap();
            let peer_connector_id = peer_port_desc.owning_connector_id.unwrap();

            let constraint = match port_mapping.last_registered_identifier {
                Some(branch_id) => ProposedBranchConstraint::BranchNumber(branch_id),
                None => ProposedBranchConstraint::SilentPort(peer_port_id),
            };

            match first_solution.connector_propositions.entry(peer_connector_id) {
                Entry::Vacant(entry) => {
                    // Not yet encountered
                    entry.insert(vec![constraint]);
                    first_solution.remaining_connectors.push(peer_connector_id);
                },
                Entry::Occupied(mut entry) => {
                    // Already encountered
                    let entry = entry.get_mut();
                    if !entry.contains(&constraint) {
                        entry.push(constraint);
                    }
                }
            }
        }

        // Setup storage for all possible solutions
        let mut all_solutions = Vec::new();
        all_solutions.push(first_solution);

        while !all_solutions.is_empty() {
            let mut cur_solution = all_solutions.pop().unwrap();

        }
    }

    fn merge_solution_with_connector(&self, cur_solution: &mut ProposedSolution, all_solutions: &mut Vec<ProposedSolution>, target_connector: u32) {
        debug_assert!(!cur_solution.connector_mapping.contains_key(&target_connector)); // not yet visited
        debug_assert!(cur_solution.connector_propositions.contains_key(&target_connector)); // but we encountered a reference to it

        let branch_propositions = cur_solution.connector_propositions.get(&target_connector).unwrap();
        let cur_connector = self.registry.connectors.get(&target_connector).unwrap();

        // Make sure all propositions are unique
        for i in 0..branch_propositions.len() {
            let proposition_i = branch_propositions[i];
            for j in 0..i {
                let proposition_j = branch_propositions[j];
                debug_assert_ne!(proposition_i, proposition_j);
            }
        }

        // Check connector for compatible branches
        let mut considered_branches = Vec::with_capacity(cur_connector.spec_branches_done.len());
        let mut encountered_propositions = Vec::new();

        'finished_branch_loop: for branch_idx in cur_connector.spec_branches_done {
            // Reset the propositions matching variables
            encountered_propositions.clear();
            encountered_propositions.resize(branch_propositions.len(), false);

            // First check the silent port propositions
            let cur_branch = &cur_connector.branches[branch_idx as usize];
            for (proposition_idx, proposition) in branch_propositions.iter().enumerate() {
                match proposition {
                    ProposedBranchConstraint::SilentPort(port_id) => {
                        let old_school_port_id = PortId(Id{ connector_id: cur_connector.id, u32_suffix: *port_id });
                        let port_mapping = cur_branch.port_mapping.get(&old_school_port_id).unwrap();
                        if port_mapping.num_times_fired != 0 {
                            // Port did fire, so the current branch is not
                            // compatible
                            continue 'finished_branch_loop;
                        }

                        // Otherwise, the port was silent indeed
                        encountered_propositions[proposition_idx] = true;
                    },
                    ProposedBranchConstraint::BranchNumber(_) => {},
                }
            }

            // Then check the branch number propositions
            let mut parent_branch_idx = branch_idx;
            loop {
                let branch = &cur_connector.branches[parent_branch_idx as usize];
                for proposition_idx in 0..branch_propositions.len() {
                    let proposition = branch_propositions[proposition_idx];
                    match proposition {
                        ProposedBranchConstraint::SilentPort(_) => {},
                        ProposedBranchConstraint::BranchNumber(branch_number) => {
                            if branch_number == branch.identifier {
                                encountered_propositions[proposition_idx] = true;
                            }
                        }
                    }
                }

                if branch.parent_index.is_none() {
                    // No more parents
                    break;
                }

                parent_branch_idx = branch.parent_index.unwrap();
            }

            if !encountered_propositions.iter().all(|v| *v) {
                // Not all of the constraints were matched
                continue 'finished_branch_loop
            }

            // All of the constraints on the branch did indeed match.
        }
    }

    fn generate_connector_id(&mut self) -> u32 {
        let id = self.registry.connector_counter;
        self.registry.connector_counter += 1;
        return id;
    }

    // -------------------------------------------------------------------------
    // Helpers for branch management
    // -------------------------------------------------------------------------

    /// Prepares a speculative branch for further execution from the connector's
    /// non-speculative base branch.
    fn prepare_branch_for_sync(desc: &mut ConnectorDesc) {
        // Ensure only one branch is active, the non-sync branch
        debug_assert!(!desc.in_sync);
        debug_assert_eq!(desc.branches.len(), 1);
        debug_assert!(desc.spec_branches_active.is_empty());
        let new_branch_index = 1;
        let new_branch_identifier = desc.branch_id_counter;
        desc.branch_id_counter += 1;

        // Push first speculative branch as active branch
        let new_branch = BranchDesc::new_sync_from(new_branch_index, new_branch_identifier, &desc.branches[0]);
        desc.branches.push(new_branch);
        desc.spec_branches_active.push_back(new_id);
        desc.in_sync = true;
    }

    /// Duplicates a particular (speculative) branch and returns its index.
    fn duplicate_branch(desc: &mut ConnectorDesc, original_branch_idx: u32) -> u32 {
        let original_branch = &desc.branches[original_branch_idx as usize];
        debug_assert!(desc.in_sync);

        let copied_index = desc.branches.len() as u32;
        let copied_id = desc.branch_id_counter;
        desc.branch_id_counter += 1;

        let copied_branch = BranchDesc::new_sync_from(copied_index, copied_id, original_branch);
        desc.branches.push(copied_branch);

        return copied_index;
    }
}

/// Context accessible by the code while being executed by the runtime. When the
/// code is being executed by the runtime it sometimes needs to interact with 
/// the runtime. This is achieved by the "code throwing an error code", after 
/// which the runtime modifies the appropriate variables and continues executing
/// the code again. 
struct Context<'a> {
    // Properties of currently running connector/branch
    connector_id: u32,
    branch_id: Option<u32>,
    // Resources ready to be retrieved by running code
    pending_channel: Option<(Value, Value)>, // (put, get) ports
}

impl<'a> crate::protocol::RunContext for Context<'a> {
    fn did_put(&self, port: PortId) -> bool {
        todo!()
    }

    fn get(&self, port: PortId) -> Option<Value> {
        todo!()
    }

    fn fires(&self, port: PortId) -> Option<Value> {
        todo!()
    }

    fn get_channel(&mut self) -> Option<(Value, Value)> {
        self.pending_channel.take()
    }
}

/// Recursively goes through the value group, attempting to find ports. 
/// Duplicates will only be added once.
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
    // Helper to check a value for a port and recurse if needed.
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                for prev_port in ports {
                    if prev_port == port_id {
                        // Already added
                        return;
                    }
                }
                
                ports.push(*port_id);
            },
            Value::Array(heap_pos) | 
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for embedded_value in heap_region {
                    find_port_in_value(group, embedded_value, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }
    
    // Clear the ports, then scan all the available values
    ports.clear();
    for value in &value_group.values {
        find_port_in_value(value_group, value, ports);
    }
}

fn port_value_from_id(connector_id: Option<u32>, port_id: u32, is_output: bool) -> Value {
    let connector_id = connector_id.unwrap_or(u32::MAX); // TODO: @hack, review entire PortId/ConnectorId/Id system
    if is_output {
        return Value::Output(PortId(Id{
            connector_id,
            u32_suffix: port_id
        }));
    } else {
        return Value::Input(PortId(Id{
            connector_id,
            u32_suffix: port_id,
        }));
    }
}