Files
@ 14f5de1d394a
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component_pdl.rs
14f5de1d394a
22.7 KiB
application/rls-services+xml
Fix bug with port transfer when transferred ports are blocked
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 | use crate::random::Random;
use crate::protocol::*;
use crate::protocol::ast::ProcedureDefinitionId;
use crate::protocol::eval::{
PortId as EvalPortId, Prompt,
ValueGroup, Value,
EvalContinuation, EvalResult, EvalError
};
use crate::runtime2::runtime::CompId;
use crate::runtime2::scheduler::SchedulerCtx;
use crate::runtime2::communication::*;
use super::component::{
self,
InboxMain, InboxBackup, GetResult,
CompExecState, Component, CompScheduling, CompError, CompMode, ExitReason,
port_id_from_eval, port_id_to_eval
};
use super::component_context::*;
use super::control_layer::*;
use super::consensus::Consensus;
pub enum ExecStmt {
CreatedChannel((Value, Value)),
PerformedPut,
PerformedGet(ValueGroup),
PerformedSelectWait(u32),
None,
}
impl ExecStmt {
fn take(&mut self) -> ExecStmt {
let mut value = ExecStmt::None;
std::mem::swap(self, &mut value);
return value;
}
fn is_none(&self) -> bool {
match self {
ExecStmt::None => return true,
_ => return false,
}
}
}
pub struct ExecCtx {
stmt: ExecStmt,
}
impl RunContext for ExecCtx {
fn performed_put(&mut self, _port: EvalPortId) -> bool {
match self.stmt.take() {
ExecStmt::None => return false,
ExecStmt::PerformedPut => return true,
_ => unreachable!(),
}
}
fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::PerformedGet(value) => return Some(value),
_ => unreachable!(),
}
}
fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
todo!("remove fires")
}
fn performed_fork(&mut self) -> Option<bool> {
todo!("remove fork")
}
fn created_channel(&mut self) -> Option<(Value, Value)> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::CreatedChannel(ports) => return Some(ports),
_ => unreachable!(),
}
}
fn performed_select_wait(&mut self) -> Option<u32> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::PerformedSelectWait(selected_case) => Some(selected_case),
_v => unreachable!(),
}
}
}
struct SelectCase {
involved_ports: Vec<LocalPortHandle>,
}
// TODO: @Optimize, flatten cases into single array, have index-pointers to next case
struct SelectState {
cases: Vec<SelectCase>,
next_case: u32,
num_cases: u32,
random: Random,
candidates_workspace: Vec<usize>,
}
enum SelectDecision {
None,
Case(u32), // contains case index, should be passed along to PDL code
}
impl SelectState {
fn new() -> Self {
return Self{
cases: Vec::new(),
next_case: 0,
num_cases: 0,
random: Random::new(),
candidates_workspace: Vec::new(),
}
}
fn handle_select_start(&mut self, num_cases: u32) {
self.cases.clear();
self.next_case = 0;
self.num_cases = num_cases;
}
/// Register a port as belonging to a particular case. As for correctness of
/// PDL code one cannot register the same port twice, this function might
/// return an error
fn register_select_case_port(&mut self, comp_ctx: &CompCtx, case_index: u32, _port_index: u32, port_id: PortId) -> Result<(), PortId> {
// Retrieve case and port handle
self.ensure_at_case(case_index);
let cur_case = &mut self.cases[case_index as usize];
let port_handle = comp_ctx.get_port_handle(port_id);
debug_assert_eq!(cur_case.involved_ports.len(), _port_index as usize);
// Make sure port wasn't added before, we disallow having the same port
// in the same select guard twice.
if cur_case.involved_ports.contains(&port_handle) {
return Err(port_id);
}
cur_case.involved_ports.push(port_handle);
return Ok(());
}
/// Notification that all ports have been registered and we should now wait
/// until the appropriate messages have come in.
fn handle_select_waiting_point(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
if self.num_cases != self.next_case {
// This happens when there are >=1 select cases written at the end
// of the select block.
self.ensure_at_case(self.num_cases - 1);
}
return self.has_decision(inbox, comp_ctx);
}
fn handle_updated_inbox(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
return self.has_decision(inbox, comp_ctx);
}
/// Internal helper, pushes empty cases inbetween last case and provided new
/// case index.
fn ensure_at_case(&mut self, new_case_index: u32) {
// Push an empty case for all intermediate cases that were not
// registered with a port.
debug_assert!(new_case_index >= self.next_case && new_case_index < self.num_cases);
for _ in self.next_case..new_case_index + 1 {
self.cases.push(SelectCase{ involved_ports: Vec::new() });
}
self.next_case = new_case_index + 1;
}
/// Checks if a decision can be reached
fn has_decision(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
self.candidates_workspace.clear();
if self.cases.is_empty() {
// If there are no cases then we can immediately reach a "bogus
// decision".
return SelectDecision::Case(0);
}
// Need to check for valid case
'case_loop: for (case_index, case) in self.cases.iter().enumerate() {
for port_handle in case.involved_ports.iter().copied() {
let port_index = comp_ctx.get_port_index(port_handle);
if inbox[port_index].is_none() {
// Condition not satisfied
continue 'case_loop;
}
}
// If here then the case guard is satisfied
self.candidates_workspace.push(case_index);
}
if self.candidates_workspace.is_empty() {
return SelectDecision::None;
} else {
let candidate_index = self.random.get_u64() as usize % self.candidates_workspace.len();
return SelectDecision::Case(self.candidates_workspace[candidate_index] as u32);
}
}
}
pub(crate) struct CompPDL {
pub exec_state: CompExecState,
select_state: SelectState,
pub prompt: Prompt,
pub control: ControlLayer,
pub consensus: Consensus,
pub sync_counter: u32,
pub exec_ctx: ExecCtx,
// TODO: Temporary field, simulates future plans of having one storage place
// reserved per port.
// Should be same length as the number of ports. Corresponding indices imply
// message is intended for that port.
pub inbox_main: InboxMain,
pub inbox_backup: InboxBackup,
}
impl Component for CompPDL {
fn on_creation(&mut self, _id: CompId, _sched_ctx: &SchedulerCtx) {
// Intentionally empty
}
fn on_shutdown(&mut self, _sched_ctx: &SchedulerCtx) {
// Intentionally empty
}
fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage) {
let port_handle = comp_ctx.get_port_handle(message.data_header.target_port);
let port_index = comp_ctx.get_port_index(port_handle);
if self.inbox_main[port_index].is_none() {
self.inbox_main[port_index] = Some(message);
} else {
self.inbox_backup.push(message);
}
}
fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, mut message: Message) {
sched_ctx.debug(&format!("handling message: {:?}", message));
if let Some(new_target) = self.control.should_reroute(&mut message) {
let mut target = sched_ctx.runtime.get_component_public(new_target); // TODO: @NoDirectHandle
sched_ctx.debug(&format!("rerouting to: {:?}", new_target));
target.send_message_logged(sched_ctx, message, false); // not waking up: we schedule once we've received all PortPeerChanged Acks
let _should_remove = target.decrement_users();
debug_assert!(_should_remove.is_none());
return;
}
sched_ctx.debug("handling message myself");
match message {
Message::Data(message) => {
self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
},
Message::Control(message) => {
if let Err(location_and_message) = component::default_handle_control_message(
&mut self.exec_state, &mut self.control, &mut self.consensus,
message, sched_ctx, comp_ctx, &mut self.inbox_main, &mut self.inbox_backup
) {
self.handle_generic_component_error(sched_ctx, location_and_message);
}
},
Message::Sync(message) => {
self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
},
Message::Poll => {
unreachable!(); // because we never register at the polling thread
}
}
}
fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling {
use EvalContinuation as EC;
sched_ctx.info(&format!("Running component (mode: {:?})", self.exec_state.mode));
// Depending on the mode don't do anything at all, take some special
// actions, or fall through and run the PDL code.
match self.exec_state.mode {
CompMode::NonSync | CompMode::Sync => {
// continue and run PDL code
},
CompMode::SyncEnd | CompMode::BlockedGet |
CompMode::BlockedPut | CompMode::BlockedSelect | CompMode::PutPortsBlockedTransferredPorts |
CompMode::PutPortsBlockedAwaitingAcks | CompMode::PutPortsBlockedSendingPort |
CompMode::NewComponentBlocked => {
return CompScheduling::Sleep;
}
CompMode::StartExit => return component::default_handle_start_exit(
&mut self.exec_state, &mut self.control, sched_ctx, comp_ctx, &mut self.consensus
),
CompMode::BusyExit => return component::default_handle_busy_exit(
&mut self.exec_state, &self.control, sched_ctx
),
CompMode::Exit => return component::default_handle_exit(&self.exec_state),
}
let run_result = self.execute_prompt(&sched_ctx);
if let Err(error) = run_result {
self.handle_component_error(sched_ctx, CompError::Executor(error));
return CompScheduling::Immediate;
}
let run_result = run_result.unwrap();
match run_result {
EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
// Results that can be returned in sync mode
EC::SyncBlockEnd => {
component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
return CompScheduling::Immediate;
},
EC::BlockGet(expr_id, port_id) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
debug_assert!(self.exec_ctx.stmt.is_none());
let port_id = port_id_from_eval(port_id);
match component::default_attempt_get(
&mut self.exec_state, port_id, PortInstruction::SourceLocation(expr_id),
&mut self.inbox_main, &mut self.inbox_backup, sched_ctx, comp_ctx,
&mut self.control, &mut self.consensus
) {
GetResult::Received(message) => {
self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
return CompScheduling::Immediate;
},
GetResult::NoMessage => {
return CompScheduling::Sleep;
},
GetResult::Error(location_and_message) => {
self.handle_generic_component_error(sched_ctx, location_and_message);
return CompScheduling::Immediate;
}
}
},
EC::Put(expr_id, port_id, value) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
sched_ctx.info(&format!("Putting value {:?}", value));
// Send the message
let target_port_id = port_id_from_eval(port_id);
let send_result = component::default_send_data_message(
&mut self.exec_state, target_port_id,
PortInstruction::SourceLocation(expr_id), value,
sched_ctx, &mut self.consensus, &mut self.control, comp_ctx
);
if let Err(location_and_message) = send_result {
self.handle_generic_component_error(sched_ctx, location_and_message);
return CompScheduling::Immediate;
} else {
// When `run` is called again (potentially after becoming
// unblocked) we need to instruct the executor that we performed
// the `put`
let scheduling = send_result.unwrap();
self.exec_ctx.stmt = ExecStmt::PerformedPut;
return scheduling;
}
},
EC::SelectStart(num_cases, _num_ports) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
self.select_state.handle_select_start(num_cases);
return CompScheduling::Requeue;
},
EC::SelectRegisterPort(expr_id, case_index, port_index, port_id) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
let port_id = port_id_from_eval(port_id);
let port_handle = comp_ctx.get_port_handle(port_id);
// Note: we register the "last_instruction" here already. This
// way if we get a `ClosePort` message, the condition to fail
// the synchronous round is satisfied.
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = PortInstruction::SourceLocation(expr_id);
let port_is_closed = port_info.state.is_closed();
// Register port as part of select guard
if let Err(_err) = self.select_state.register_select_case_port(comp_ctx, case_index, port_index, port_id) {
// Failure occurs if a port is used twice in the same guard
let protocol = &sched_ctx.runtime.protocol;
self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap, expr_id,
String::from("Cannot have the one port appear in the same guard twice")
)));
} else if port_is_closed {
// Port is closed
let peer_id = comp_ctx.get_port(port_handle).peer_comp_id;
let protocol = &sched_ctx.runtime.protocol;
self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap, expr_id,
format!("Cannot register port, as the peer component (id:{}) has shut down", peer_id.0)
)));
}
return CompScheduling::Immediate;
},
EC::SelectWait => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
let select_decision = self.select_state.handle_select_waiting_point(&self.inbox_main, comp_ctx);
if let SelectDecision::Case(case_index) = select_decision {
// Reached a conclusion, so we can continue immediately
self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
self.exec_state.mode = CompMode::Sync;
return CompScheduling::Immediate;
} else {
// No decision yet
self.exec_state.mode = CompMode::BlockedSelect;
return CompScheduling::Sleep;
}
},
// Results that can be returned outside of sync mode
EC::ComponentTerminated => {
self.exec_state.set_as_start_exit(ExitReason::Termination);
return CompScheduling::Immediate;
},
EC::SyncBlockStart => {
component::default_handle_sync_start(
&mut self.exec_state, &mut self.inbox_main, sched_ctx, comp_ctx, &mut self.consensus
);
return CompScheduling::Immediate;
},
EC::NewComponent(definition_id, type_id, arguments) => {
debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
component::default_start_create_component(
&mut self.exec_state, sched_ctx, comp_ctx, &mut self.control,
&mut self.inbox_main, &mut self.inbox_backup,
definition_id, type_id, arguments
);
return CompScheduling::Requeue;
},
EC::NewChannel => {
debug_assert!(self.exec_ctx.stmt.is_none());
let channel = comp_ctx.create_channel();
self.exec_ctx.stmt = ExecStmt::CreatedChannel((
Value::Output(port_id_to_eval(channel.putter_id)),
Value::Input(port_id_to_eval(channel.getter_id))
));
self.inbox_main.push(None);
self.inbox_main.push(None);
return CompScheduling::Immediate;
}
}
}
}
impl CompPDL {
pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
let mut inbox_main = Vec::new();
inbox_main.reserve(num_ports);
for _ in 0..num_ports {
inbox_main.push(None);
}
return Self{
exec_state: CompExecState::new(),
select_state: SelectState::new(),
prompt: initial_state,
control: ControlLayer::default(),
consensus: Consensus::new(),
sync_counter: 0,
exec_ctx: ExecCtx{
stmt: ExecStmt::None,
},
inbox_main,
inbox_backup: Vec::new(),
}
}
// -------------------------------------------------------------------------
// Running component and handling changes in global component state
// -------------------------------------------------------------------------
fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
let mut step_result = EvalContinuation::Stepping;
while let EvalContinuation::Stepping = step_result {
step_result = self.prompt.step(
&sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
&sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
)?;
}
return Ok(step_result)
}
// -------------------------------------------------------------------------
// Handling messages
// -------------------------------------------------------------------------
/// Handles a message that came in through the public inbox. This function
/// will handle putting it in the correct place, and potentially blocking
/// the port in case too many messages are being received.
fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
use component::IncomingData;
// Whatever we do, glean information from headers in message
if self.exec_state.mode.is_in_sync_block() {
self.consensus.handle_incoming_data_message(comp_ctx, &message);
}
match component::default_handle_incoming_data_message(
&mut self.exec_state, &mut self.inbox_main, comp_ctx, message,
sched_ctx, &mut self.control
) {
IncomingData::PlacedInSlot => {
if self.exec_state.mode == CompMode::BlockedSelect {
let select_decision = self.select_state.handle_updated_inbox(&self.inbox_main, comp_ctx);
if let SelectDecision::Case(case_index) = select_decision {
self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
self.exec_state.mode = CompMode::Sync;
}
}
},
IncomingData::SlotFull(message) => {
self.inbox_backup.push(message);
}
}
}
fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
component::default_handle_sync_decision(sched_ctx, &mut self.exec_state, comp_ctx, decision, &mut self.consensus);
}
/// Handles an error coming from the generic `component::handle_xxx`
/// functions. Hence accepts argument as a tuple.
fn handle_generic_component_error(&mut self, sched_ctx: &SchedulerCtx, location_and_message: (PortInstruction, String)) {
// Retrieve location and message, display in terminal
let (location, message) = location_and_message;
let error = match location {
PortInstruction::None => CompError::Component(message),
PortInstruction::NoSource => unreachable!(), // for debugging: all in-sync errors are associated with a source location
PortInstruction::SourceLocation(expression_id) => {
let protocol = &sched_ctx.runtime.protocol;
CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap,
expression_id, message
))
}
};
self.handle_component_error(sched_ctx, error);
}
fn handle_component_error(&mut self, sched_ctx: &SchedulerCtx, error: CompError) {
sched_ctx.error(&format!("{}", error));
// Set state to handle subsequent error
let exit_reason = if self.exec_state.mode.is_in_sync_block() {
ExitReason::ErrorInSync
} else {
ExitReason::ErrorNonSync
};
self.exec_state.set_as_start_exit(exit_reason);
}
}
|