Files
@ 14f5de1d394a
Branch filter:
Location: CSY/reowolf/src/runtime2/component/consensus.rs
14f5de1d394a
30.3 KiB
application/rls-services+xml
Fix bug with port transfer when transferred ports are blocked
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | use crate::protocol::eval::ValueGroup;
use crate::runtime2::scheduler::*;
use crate::runtime2::runtime::*;
use crate::runtime2::communication::*;
use super::component_context::*;
pub struct PortAnnotation {
self_comp_id: CompId,
self_port_id: PortId,
peer_comp_id: CompId, // only valid for getter ports
peer_port_id: PortId, // only valid for getter ports
peer_discovered: bool, // only valid for getter ports
mapping: Option<u32>,
kind: PortKind,
}
impl PortAnnotation {
fn new(comp_id: CompId, port_id: PortId, kind: PortKind) -> Self {
return Self{
self_comp_id: comp_id,
self_port_id: port_id,
peer_comp_id: CompId::new_invalid(),
peer_port_id: PortId::new_invalid(),
peer_discovered: false,
mapping: None,
kind,
}
}
}
#[derive(Debug, Eq, PartialEq)]
enum Mode {
NonSync,
SyncBusy,
SyncAwaitingSolution,
SelectBusy,
SelectWait,
}
struct SolutionCombiner {
solution: SyncPartialSolution,
matched_channels: usize,
}
impl SolutionCombiner {
fn new() -> Self {
return Self {
solution: SyncPartialSolution::default(),
matched_channels: 0,
}
}
#[inline]
fn has_contributions(&self) -> bool {
return !self.solution.channel_mapping.is_empty();
}
/// Returns a decision for the current round. If there is no decision (yet)
/// then `RoundDecision::None` is returned.
fn get_decision(&self) -> SyncRoundDecision {
if self.matched_channels == self.solution.channel_mapping.len() {
debug_assert_ne!(self.solution.decision, SyncRoundDecision::None);
return self.solution.decision;
}
return SyncRoundDecision::None; // even in case of failure: wait for everyone.
}
fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
debug_assert_ne!(partial.decision, SyncRoundDecision::Solution);
if partial.decision == SyncRoundDecision::Failure {
self.solution.decision = SyncRoundDecision::Failure;
}
for entry in partial.channel_mapping {
let channel_index = if entry.getter.is_some() && entry.putter.is_some() {
let channel_index = self.solution.channel_mapping.len();
self.solution.channel_mapping.push(entry);
channel_index
} else if let Some(putter) = entry.putter {
self.combine_with_putter_port(putter)
} else if let Some(getter) = entry.getter {
self.combine_with_getter_port(getter)
} else {
unreachable!(); // both putter and getter are None
};
let channel = &self.solution.channel_mapping[channel_index];
if let Some(consistent) = Self::channel_is_consistent(channel) {
if !consistent {
self.solution.decision = SyncRoundDecision::Failure;
}
self.matched_channels += 1;
}
}
self.update_solution();
}
/// Combines the currently stored global solution (if any) with the newly
/// provided local solution. Make sure to check the `has_decision` return
/// value afterwards.
fn combine_with_local_solution(&mut self, _comp_id: CompId, solution: SyncLocalSolution) {
debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
// Combine partial solution with the local solution entries
for entry in solution {
// Match the current entry up with its peer endpoint, or add a new
// entry.
let channel_index = match entry {
SyncLocalSolutionEntry::Putter(putter) => {
self.combine_with_putter_port(putter)
},
SyncLocalSolutionEntry::Getter(getter) => {
self.combine_with_getter_port(getter)
}
};
// Check if channel is now consistent
let channel = &self.solution.channel_mapping[channel_index];
if let Some(consistent) = Self::channel_is_consistent(channel) {
if !consistent {
self.solution.decision = SyncRoundDecision::Failure;
}
self.matched_channels += 1;
}
}
self.update_solution();
}
/// Takes whatever partial solution is present in the solution combiner and
/// returns it. The solution combiner's solution will end up being empty.
/// This is used when a new leader is found and we need to pass along our
/// partial results.
fn take_partial_solution(&mut self) -> SyncPartialSolution {
let mut partial_solution = SyncPartialSolution::default();
std::mem::swap(&mut partial_solution, &mut self.solution);
self.clear();
return partial_solution;
}
fn clear(&mut self) {
self.solution.channel_mapping.clear();
self.solution.decision = SyncRoundDecision::None;
self.matched_channels = 0;
}
// --- Small utilities for combining solutions
fn combine_with_putter_port(&mut self, putter: SyncSolutionPutterPort) -> usize {
let channel_index = self.get_channel_index_for_putter(putter.self_comp_id, putter.self_port_id);
if let Some(channel_index) = channel_index {
let channel = &mut self.solution.channel_mapping[channel_index];
debug_assert!(channel.putter.is_none());
channel.putter = Some(putter);
return channel_index;
} else {
let channel_index = self.solution.channel_mapping.len();
self.solution.channel_mapping.push(SyncSolutionChannel{
putter: Some(putter),
getter: None,
});
return channel_index;
}
}
fn combine_with_getter_port(&mut self, getter: SyncSolutionGetterPort) -> usize {
let channel_index = self.get_channel_index_for_getter(getter.peer_comp_id, getter.peer_port_id);
if let Some(channel_index) = channel_index {
let channel = &mut self.solution.channel_mapping[channel_index];
debug_assert!(channel.getter.is_none());
channel.getter = Some(getter);
return channel_index;
} else {
let channel_index = self.solution.channel_mapping.len();
self.solution.channel_mapping.push(SyncSolutionChannel{
putter: None,
getter: Some(getter)
});
return channel_index;
}
}
/// Retrieve index of the channel containing a getter port that has received
/// from the specified putter port.
fn get_channel_index_for_putter(&self, putter_comp_id: CompId, putter_port_id: PortId) -> Option<usize> {
for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
if let Some(getter) = &channel.getter {
if getter.peer_comp_id == putter_comp_id && getter.peer_port_id == putter_port_id {
return Some(channel_index);
}
}
}
return None;
}
/// Retrieve index of the channel for a getter port. To find this channel
/// the **peer** component/port IDs of the getter port are used.
fn get_channel_index_for_getter(&self, peer_comp_id: CompId, peer_port_id: PortId) -> Option<usize> {
for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
if let Some(putter) = &channel.putter {
if putter.self_comp_id == peer_comp_id && putter.self_port_id == peer_port_id {
return Some(channel_index);
}
}
}
return None;
}
fn channel_is_consistent(channel: &SyncSolutionChannel) -> Option<bool> {
if channel.putter.is_none() || channel.getter.is_none() {
return None;
}
let putter = channel.putter.as_ref().unwrap();
let getter = channel.getter.as_ref().unwrap();
return Some(
!putter.failed &&
!getter.failed &&
putter.mapping == getter.mapping
);
}
/// Determines the global solution if all components have contributed their
/// local solutions.
fn update_solution(&mut self) {
if self.matched_channels == self.solution.channel_mapping.len() {
if self.solution.decision != SyncRoundDecision::Failure {
self.solution.decision = SyncRoundDecision::Solution;
}
}
}
}
/// Tracking consensus state
pub struct Consensus {
// General state of consensus manager
mapping_counter: u32,
mode: Mode,
// State associated with sync round
round_index: u32,
highest_id: CompId,
ports: Vec<PortAnnotation>,
// State associated with arriving at a solution and being a (temporary)
// leader in the consensus round
solution: SolutionCombiner,
}
impl Consensus {
pub(crate) fn new() -> Self {
return Self{
round_index: 0,
highest_id: CompId::new_invalid(),
ports: Vec::new(),
mapping_counter: 0,
mode: Mode::NonSync,
solution: SolutionCombiner::new(),
}
}
// -------------------------------------------------------------------------
// Managing sync state
// -------------------------------------------------------------------------
/// Notifies the consensus management that the PDL code has reached the
/// start of a sync block.
pub(crate) fn notify_sync_start(&mut self, comp_ctx: &CompCtx) {
debug_assert_eq!(self.mode, Mode::NonSync);
self.highest_id = comp_ctx.id;
self.mapping_counter = 0;
self.mode = Mode::SyncBusy;
// Make the internally stored port annotation array consistent with the
// ports that the component currently owns. They should match by index
// (i.e. annotation at index `i` corresponds to port `i` in `comp_ctx`).
let mut needs_setting_ports = false;
if comp_ctx.num_ports() != self.ports.len() {
needs_setting_ports = true;
} else {
for (idx, port) in comp_ctx.iter_ports().enumerate() {
let comp_port_id = port.self_id;
let cons_port_id = self.ports[idx].self_port_id;
if comp_port_id != cons_port_id {
needs_setting_ports = true;
break;
}
}
}
if needs_setting_ports {
// Reset all ports
self.ports.clear();
self.ports.reserve(comp_ctx.num_ports());
for port in comp_ctx.iter_ports() {
self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id, port.kind));
}
} else {
// Make sure that we consider all peers as undiscovered again
for annotation in self.ports.iter_mut() {
annotation.peer_discovered = false;
}
}
}
/// Notifies the consensus management that the PDL code has reached the end
/// of a sync block. A local solution will be submitted, after which we wait
/// until the participants in the round (hopefully) reach a conclusion.
pub(crate) fn notify_sync_end_success(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
debug_assert_eq!(self.mode, Mode::SyncBusy);
self.mode = Mode::SyncAwaitingSolution;
let local_solution = self.generate_local_solution(comp_ctx, false);
let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution, false);
return decision;
}
/// Notifies the consensus management that the component has encountered a
/// critical error during the synchronous round. Hence we should report that
/// we've failed and wait until all the participants have been notified of
/// the error.
pub(crate) fn notify_sync_end_failure(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
debug_assert_eq!(self.mode, Mode::SyncBusy);
self.mode = Mode::SyncAwaitingSolution;
let local_solution = self.generate_local_solution(comp_ctx, true);
let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution, true);
return decision;
}
/// Notifies that a decision has been reached. Note that the caller should
/// still take the appropriate actions based on the decision it is supplying
/// to the consensus layer.
pub(crate) fn notify_sync_decision(&mut self, _decision: SyncRoundDecision) {
// Reset everything for the next round
debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
self.mode = Mode::NonSync;
self.round_index = self.round_index.wrapping_add(1);
for port in self.ports.iter_mut() {
port.mapping = None;
}
self.solution.clear();
}
// -------------------------------------------------------------------------
// Handling inbound and outbound messages
// -------------------------------------------------------------------------
/// Prepares a set of values to be sent of a channel.
pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
debug_assert!(self.ports.iter().any(|v| v.self_port_id == port_info.self_id));
let data_header = self.create_data_header_and_update_mapping(port_info);
let sync_header = self.create_sync_header(comp_ctx);
return DataMessage{
data_header, sync_header, content,
ports: Vec::new()
};
}
/// Handles the arrival of a new data message (needs to be called for every
/// new data message, even though it might not end up being received). This
/// is used to determine peers of `get`ter ports.
// TODO: The use of this function is rather ugly. Find a more robust
// scheme about owners of `get`ter ports not knowing about their peers.
pub(crate) fn handle_incoming_data_message(&mut self, comp_ctx: &CompCtx, message: &DataMessage) {
let target_handle = comp_ctx.get_port_handle(message.data_header.target_port);
let target_index = comp_ctx.get_port_index(target_handle);
let annotation = &mut self.ports[target_index];
debug_assert!(
!annotation.peer_discovered || (
annotation.peer_comp_id == message.sync_header.sending_id &&
annotation.peer_port_id == message.data_header.source_port
)
);
annotation.peer_comp_id = message.sync_header.sending_id;
annotation.peer_port_id = message.data_header.source_port;
annotation.peer_discovered = true;
}
/// Checks if the data message can be received (due to port annotations), if
/// it can then `true` is returned and the caller is responsible for handing
/// the message of to the PDL code. Otherwise the message cannot be
/// received.
pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
debug_assert_eq!(self.mode, Mode::SyncBusy);
debug_assert!(self.ports.iter().any(|v| v.self_port_id == message.data_header.target_port));
// Make sure the expected mapping matches the currently stored mapping
for (peer_port_kind, expected_annotation) in &message.data_header.expected_mapping {
// Determine our annotation, in order to do so we need to find the
// port matching the peer ports
let mut self_annotation = None;
let mut self_annotation_found = false;
match peer_port_kind {
PortAnnotationKind::Putter(peer_port) => {
for self_port in &self.ports {
if self_port.kind == PortKind::Getter &&
self_port.peer_discovered &&
self_port.peer_comp_id == peer_port.self_comp_id &&
self_port.peer_port_id == peer_port.self_port_id
{
self_annotation = self_port.mapping;
self_annotation_found = true;
break;
}
}
},
PortAnnotationKind::Getter(peer_port) => {
if peer_port.peer_comp_id == comp_ctx.id {
// Peer indicates that we talked to it
let self_port_handle = comp_ctx.get_port_handle(peer_port.peer_port_id);
let self_port_index = comp_ctx.get_port_index(self_port_handle);
self_annotation = self.ports[self_port_index].mapping;
self_annotation_found = true;
}
}
}
if !self_annotation_found {
continue
}
if self_annotation != *expected_annotation {
return false;
}
}
// Expected mapping matches current mapping, so we will receive the message
self.set_annotation(message.sync_header.sending_id, &message.data_header);
// Handle the sync header embedded within the data message
self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
return true;
}
/// Receives the sync message and updates the consensus state appropriately.
pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> SyncRoundDecision {
// Whatever happens: handle the sync header (possibly changing the
// currently registered leader)
self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
match message.content {
SyncMessageContent::NotificationOfLeader => {
return SyncRoundDecision::None;
},
SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution, false);
},
SyncMessageContent::PartialSolution(partial_solution) => {
return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
},
SyncMessageContent::GlobalSolution => {
debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
return SyncRoundDecision::Solution;
},
SyncMessageContent::GlobalFailure => {
debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
return SyncRoundDecision::Failure;
}
}
}
fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
if header.highest_id.0 > self.highest_id.0 {
// Sender knows of someone with a higher ID. So store highest ID,
// notify all peers, and forward local solutions
self.highest_id = header.highest_id;
for peer in comp_ctx.iter_peers() {
if peer.id == header.sending_id {
continue; // do not send to sender: it has the higher ID
}
// also: only send if we received a message in this round
let mut performed_communication = false; // TODO: Revise, temporary fix
for port in self.ports.iter() {
if port.peer_comp_id == peer.id && port.mapping.is_some() {
performed_communication = true;
break;
}
}
if !performed_communication {
continue;
}
let message = SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: SyncMessageContent::NotificationOfLeader,
};
peer.handle.send_message_logged(sched_ctx, Message::Sync(message), true);
}
self.forward_partial_solution(sched_ctx, comp_ctx);
} else if header.highest_id.0 < self.highest_id.0 {
// Sender has a lower ID, so notify it of our higher one
let message = SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: SyncMessageContent::NotificationOfLeader,
};
let peer_handle = comp_ctx.get_peer_handle(header.sending_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Sync(message), true);
} // else: exactly equal
}
fn set_annotation(&mut self, source_comp_id: CompId, data_header: &MessageDataHeader) {
for annotation in self.ports.iter_mut() {
if annotation.self_port_id == data_header.target_port {
// Message should have already passed the `handle_new_data_message` function, so we
// should have already annotated the peer of the port.
debug_assert!(
annotation.peer_discovered &&
annotation.peer_comp_id == source_comp_id &&
annotation.peer_port_id == data_header.source_port
);
annotation.mapping = Some(data_header.new_mapping);
}
}
}
// -------------------------------------------------------------------------
// Leader-related methods
// -------------------------------------------------------------------------
fn forward_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
debug_assert_ne!(self.highest_id, comp_ctx.id); // not leader
// Make sure that we have something to send
if !self.solution.has_contributions() {
return;
}
// Swap the container with the partial solution and then send it along
let partial_solution = self.solution.take_partial_solution();
self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: SyncMessageContent::PartialSolution(partial_solution),
}));
}
fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution, fail_if_empty: bool) -> SyncRoundDecision {
if self.highest_id == comp_ctx.id {
// We are the leader
self.solution.combine_with_local_solution(solution_sender_id, solution);
let mut round_decision = self.solution.get_decision();
if round_decision != SyncRoundDecision::None {
if fail_if_empty && self.solution.matched_channels == 0 {
// TODO: Not sure about this, bit of a hack. Situation is that a component
// cannot interact with other components, but it is in a sync round, and has
// failed that sync round.
round_decision = SyncRoundDecision::Failure;
}
self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
}
return round_decision;
} else {
// Forward the solution
let message = SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: SyncMessageContent::LocalSolution(solution_sender_id, solution),
};
self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
return SyncRoundDecision::None;
}
}
fn handle_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, solution: SyncPartialSolution) -> SyncRoundDecision {
if self.highest_id == comp_ctx.id {
// We are the leader, combine existing and new solution
self.solution.combine_with_partial_solution(solution);
let round_decision = self.solution.get_decision();
if round_decision != SyncRoundDecision::None {
self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
}
return round_decision;
} else {
// Forward the partial solution
let message = SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: SyncMessageContent::PartialSolution(solution),
};
self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
return SyncRoundDecision::None;
}
}
fn broadcast_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, decision: SyncRoundDecision) {
debug_assert_eq!(self.highest_id, comp_ctx.id);
let is_success = match decision {
SyncRoundDecision::None => unreachable!(),
SyncRoundDecision::Solution => true,
SyncRoundDecision::Failure => false,
};
let mut peers = Vec::with_capacity(self.solution.solution.channel_mapping.len()); // TODO: @Performance
for channel in self.solution.solution.channel_mapping.iter() {
let getter = channel.getter.as_ref().unwrap();
if getter.self_comp_id != comp_ctx.id && !peers.contains(&getter.self_comp_id) {
peers.push(getter.self_comp_id);
}
if getter.peer_comp_id != comp_ctx.id && !peers.contains(&getter.peer_comp_id) {
peers.push(getter.peer_comp_id);
}
}
for peer in peers {
let mut handle = sched_ctx.runtime.get_component_public(peer);
let message = Message::Sync(SyncMessage{
sync_header: self.create_sync_header(comp_ctx),
content: if is_success { SyncMessageContent::GlobalSolution } else { SyncMessageContent::GlobalFailure },
});
handle.send_message_logged(sched_ctx, message, true);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
}
}
fn send_to_leader(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: Message) {
debug_assert_ne!(self.highest_id, comp_ctx.id); // we're not the leader, // TODO: @NoDirectHandle
let mut leader_info = sched_ctx.runtime.get_component_public(self.highest_id);
leader_info.send_message_logged(sched_ctx, message, true);
let should_remove = leader_info.decrement_users();
if let Some(key) = should_remove {
sched_ctx.runtime.destroy_component(key);
}
}
// -------------------------------------------------------------------------
// Small utilities
// -------------------------------------------------------------------------
fn generate_local_solution(&self, comp_ctx: &CompCtx, failed: bool) -> SyncLocalSolution {
let mut local_solution = Vec::with_capacity(self.ports.len());
for port in &self.ports {
if let Some(mapping) = port.mapping {
let port_handle = comp_ctx.get_port_handle(port.self_port_id);
let port_info = comp_ctx.get_port(port_handle);
let new_entry = match port_info.kind {
PortKind::Putter => SyncLocalSolutionEntry::Putter(SyncSolutionPutterPort{
self_comp_id: comp_ctx.id,
self_port_id: port_info.self_id,
mapping,
failed
}),
PortKind::Getter => SyncLocalSolutionEntry::Getter(SyncSolutionGetterPort{
self_comp_id: comp_ctx.id,
self_port_id: port_info.self_id,
peer_comp_id: port.peer_comp_id,
peer_port_id: port.peer_port_id,
mapping,
failed
})
};
local_solution.push(new_entry);
}
}
return local_solution;
}
fn create_data_header_and_update_mapping(&mut self, port_info: &Port) -> MessageDataHeader {
let mut expected_mapping = Vec::with_capacity(self.ports.len());
let mut port_index = usize::MAX;
for (index, port) in self.ports.iter().enumerate() {
if port.self_port_id == port_info.self_id {
port_index = index; // remember for later updating
}
// Add all of the
let annotation_kind = match port.kind {
PortKind::Putter => {
PortAnnotationKind::Putter(PortAnnotationPutter{
self_comp_id: port.self_comp_id,
self_port_id: port.self_port_id
})
},
PortKind::Getter => {
if !port.peer_discovered {
continue;
}
PortAnnotationKind::Getter(PortAnnotationGetter{
self_comp_id: port.self_comp_id,
self_port_id: port.self_port_id,
peer_comp_id: port.peer_comp_id,
peer_port_id: port.peer_port_id,
})
}
};
expected_mapping.push((annotation_kind, port.mapping));
}
let new_mapping = self.take_mapping();
self.ports[port_index].mapping = Some(new_mapping);
debug_assert_eq!(port_info.kind, PortKind::Putter);
return MessageDataHeader{
expected_mapping,
new_mapping,
source_port: port_info.self_id,
target_port: port_info.peer_port_id,
};
}
#[inline]
fn create_sync_header(&self, comp_ctx: &CompCtx) -> MessageSyncHeader {
return MessageSyncHeader{
sync_round: self.round_index,
sending_id: comp_ctx.id,
highest_id: self.highest_id,
};
}
#[inline]
fn take_mapping(&mut self) -> u32 {
let mapping = self.mapping_counter;
self.mapping_counter = self.mapping_counter.wrapping_add(1);
return mapping;
}
}
|