Files
@ 1cc3bd69b119
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component.rs
1cc3bd69b119
64.4 KiB
application/rls-services+xml
Add stdlib mocking test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 | /*
* Default toolkit for creating components. Contains handlers for initiating and
* responding to various events.
*/
use std::fmt::{Display as FmtDisplay, Result as FmtResult, Formatter};
use crate::protocol::eval::{Prompt, EvalError, ValueGroup, Value, ValueId, PortId as EvalPortId};
use crate::protocol::*;
use crate::runtime2::*;
use crate::runtime2::communication::*;
use super::{CompCtx, CompPDL, CompId};
use super::component_context::*;
use super::component_random::*;
use super::component_internet::*;
use super::control_layer::*;
use super::consensus::*;
pub enum CompScheduling {
Immediate,
Requeue,
Sleep,
Exit,
}
/// Potential error emitted by a component
pub enum CompError {
/// Error originating from the code executor. Hence has an associated
/// source location.
Executor(EvalError),
/// Error originating from a component, but not necessarily associated with
/// a location in the source.
Component(String), // TODO: Maybe a different embedded value in the future?
/// Pure runtime error. Not necessarily originating from the component
/// itself. Should be treated as a very severe runtime-compromising error.
Runtime(RtError),
}
impl FmtDisplay for CompError {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
match self {
CompError::Executor(v) => v.fmt(f),
CompError::Component(v) => v.fmt(f),
CompError::Runtime(v) => v.fmt(f),
}
}
}
/// Generic representation of a component (as viewed by a scheduler).
pub(crate) trait Component {
/// Called upon the creation of the component. Note that the scheduler
/// context is officially running another component (the component that is
/// creating the new component).
fn on_creation(&mut self, comp_id: CompId, sched_ctx: &SchedulerCtx);
/// Called when a component crashes or wishes to exit. So is not called
/// right before destruction, other components may still hold a handle to
/// the component and send it messages!
fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx);
/// Called if the component is created by another component and the messages
/// are being transferred between the two.
fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);
/// Called if the component receives a new message. The component is
/// responsible for deciding where that messages goes.
fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);
/// Called if the component's routine should be executed. The return value
/// can be used to indicate when the routine should be run again.
fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling;
}
/// Representation of the generic operating mode of a component. Although not
/// every state may be used by every kind of (builtin) component, this allows
/// writing standard handlers for particular events in a component's lifetime.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum CompMode {
NonSync, // not in sync mode
Sync, // in sync mode, can interact with other components
SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
BlockedGet, // blocked because we need to receive a message on a particular port
BlockedPut, // component is blocked because the port is blocked
BlockedSelect, // waiting on message to complete the select statement
PutPortsBlockedTransferredPorts, // sending a message with ports, those sent ports are (partly) blocked
PutPortsBlockedAwaitingAcks, // sent out PPC message for blocking transferred ports, now awaiting Acks
PutPortsBlockedSendingPort, // sending a message with ports, message sent through a still-blocked port
NewComponentBlocked, // waiting until ports are in the appropriate state to create a new component
StartExit, // temporary state: if encountered then we start the shutdown process.
BusyExit, // temporary state: waiting for Acks for all the closed ports, potentially waiting for sync round to finish
Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
}
impl CompMode {
pub(crate) fn is_in_sync_block(&self) -> bool {
use CompMode::*;
match self {
Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect |
PutPortsBlockedTransferredPorts |
PutPortsBlockedAwaitingAcks |
PutPortsBlockedSendingPort => true,
NonSync | NewComponentBlocked | StartExit | BusyExit | Exit => false,
}
}
pub(crate) fn is_busy_exiting(&self) -> bool {
use CompMode::*;
match self {
NonSync | Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect |
PutPortsBlockedTransferredPorts |
PutPortsBlockedAwaitingAcks |
PutPortsBlockedSendingPort |
NewComponentBlocked => false,
StartExit | BusyExit => true,
Exit => false,
}
}
}
#[derive(Debug)]
pub(crate) enum ExitReason {
Termination, // regular termination of component
ErrorInSync,
ErrorNonSync,
}
impl ExitReason {
pub(crate) fn is_in_sync(&self) -> bool {
use ExitReason::*;
match self {
Termination | ErrorNonSync => false,
ErrorInSync => true,
}
}
pub(crate) fn is_error(&self) -> bool {
use ExitReason::*;
match self {
Termination => false,
ErrorInSync | ErrorNonSync => true,
}
}
}
/// Component execution state: the execution mode along with some descriptive
/// fields. Fields are public for ergonomic reasons, use member functions when
/// appropriate.
pub(crate) struct CompExecState {
pub mode: CompMode,
pub mode_port: PortId, // valid if blocked on a port (put/get)
pub mode_value: ValueGroup, // valid if blocked on a put
pub mode_component: (ProcedureDefinitionId, TypeId),
pub exit_reason: ExitReason, // valid if in StartExit/BusyExit/Exit mode
}
impl CompExecState {
pub(crate) fn new() -> Self {
return Self{
mode: CompMode::NonSync,
mode_port: PortId::new_invalid(),
mode_value: ValueGroup::default(),
mode_component: (ProcedureDefinitionId::new_invalid(), TypeId::new_invalid()),
exit_reason: ExitReason::Termination,
}
}
pub(crate) fn set_as_start_exit(&mut self, reason: ExitReason) {
self.mode = CompMode::StartExit;
self.exit_reason = reason;
}
pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
self.mode = CompMode::BlockedGet;
self.mode_port = port;
debug_assert!(self.mode_value.values.is_empty());
}
pub(crate) fn set_as_create_component_blocked(
&mut self, proc_id: ProcedureDefinitionId, type_id: TypeId,
arguments: ValueGroup
) {
self.mode = CompMode::NewComponentBlocked;
self.mode_value = arguments;
self.mode_component = (proc_id, type_id);
}
pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedGet &&
self.mode_port == port;
}
pub(crate) fn set_as_blocked_put_without_ports(&mut self, port: PortId, value: ValueGroup) {
self.mode = CompMode::BlockedPut;
self.mode_port = port;
self.mode_value = value;
}
pub(crate) fn set_as_blocked_put_with_ports(&mut self, port: PortId, value: ValueGroup) {
self.mode = CompMode::PutPortsBlockedTransferredPorts;
self.mode_port = port;
self.mode_value = value;
}
pub(crate) fn is_blocked_on_put_without_ports(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedPut &&
self.mode_port == port;
}
pub(crate) fn is_blocked_on_create_component(&self) -> bool {
return self.mode == CompMode::NewComponentBlocked;
}
}
// TODO: Replace when implementing port sending. Should probably be incorporated
// into CompCtx (and rename CompCtx into CompComms)
pub(crate) type InboxMain = Vec<Option<DataMessage>>;
pub(crate) type InboxMainRef = [Option<DataMessage>];
pub(crate) type InboxBackup = Vec<DataMessage>;
/// Creates a new component based on its definition. Meaning that if it is a
/// user-defined component then we set up the PDL code state. Otherwise we
/// construct a custom component. This does NOT take care of port and message
/// management.
pub(crate) fn create_component(
protocol: &ProtocolDescription,
definition_id: ProcedureDefinitionId, type_id: TypeId,
arguments: ValueGroup, num_ports: usize
) -> Box<dyn Component> {
let definition = &protocol.heap[definition_id];
debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
if definition.source.is_builtin() {
// Builtin component
let component: Box<dyn Component> = match definition.source {
ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
_ => unreachable!(),
};
return component;
} else {
// User-defined component
let prompt = Prompt::new(
&protocol.types, &protocol.heap,
definition_id, type_id, arguments
);
let component = CompPDL::new(prompt, num_ports);
return Box::new(component);
}
}
// -----------------------------------------------------------------------------
// Generic component messaging utilities (for sending and receiving)
// -----------------------------------------------------------------------------
/// Default handling of sending a data message. In case the port is blocked then
/// the `ExecState` will become blocked as well. Note that
/// `default_handle_control_message` will ensure that the port becomes
/// unblocked if so instructed by the receiving component. The returned
/// scheduling value must be used.
#[must_use]
pub(crate) fn default_send_data_message(
exec_state: &mut CompExecState, transmitting_port_id: PortId,
port_instruction: PortInstruction, value: ValueGroup,
sched_ctx: &SchedulerCtx, consensus: &mut Consensus,
control: &mut ControlLayer, comp_ctx: &mut CompCtx
) -> Result<CompScheduling, (PortInstruction, String)> {
debug_assert_eq!(exec_state.mode, CompMode::Sync);
let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = port_instruction;
let port_info = comp_ctx.get_port(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
let mut ports = Vec::new();
find_ports_in_value_group(&value, &mut ports);
if port_info.state.is_closed() {
// Note: normally peer is eventually consistent, but if it has shut down
// then we can be sure it is consistent (I think?)
return Err((
port_info.last_instruction,
format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0)
))
} else if !ports.is_empty() {
start_send_message_with_ports(
transmitting_port_id, port_instruction, value, exec_state,
comp_ctx, sched_ctx, control
)?;
return Ok(CompScheduling::Sleep);
} else if port_info.state.is_blocked() {
// Port is blocked, so we cannot send
exec_state.set_as_blocked_put_without_ports(transmitting_port_id, value);
return Ok(CompScheduling::Sleep);
} else {
// Port is not blocked and no ports to transfer: send to the peer
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
return Ok(CompScheduling::Immediate);
}
}
pub(crate) enum IncomingData {
PlacedInSlot,
SlotFull(DataMessage),
}
/// Default handling of receiving a data message. In case there is no room for
/// the message it is returned from this function. Note that this function is
/// different from PDL code performing a `get` on a port; this is the case where
/// the message first arrives at the component.
// NOTE: This is supposed to be a somewhat temporary implementation. It would be
// nicest if the sending component can figure out it cannot send any more data.
#[must_use]
pub(crate) fn default_handle_incoming_data_message(
exec_state: &mut CompExecState, inbox_main: &mut InboxMain,
comp_ctx: &mut CompCtx, incoming_message: DataMessage,
sched_ctx: &SchedulerCtx, control: &mut ControlLayer
) -> IncomingData {
let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port);
let port_index = comp_ctx.get_port_index(port_handle);
comp_ctx.get_port_mut(port_handle).received_message_for_sync = true;
let port_value_slot = &mut inbox_main[port_index];
let target_port_id = incoming_message.data_header.target_port;
if port_value_slot.is_none() {
// We can put the value in the slot
*port_value_slot = Some(incoming_message);
// Check if we're blocked on receiving this message.
dbg_code!({
// Our port cannot have been blocked itself, because we're able to
// directly insert the message into its slot.
assert!(!comp_ctx.get_port(port_handle).state.is_blocked());
});
if exec_state.is_blocked_on_get(target_port_id) {
// Return to normal operation
exec_state.mode = CompMode::Sync;
exec_state.mode_port = PortId::new_invalid();
debug_assert!(exec_state.mode_value.values.is_empty());
}
return IncomingData::PlacedInSlot
} else {
// Slot is already full, so if the port was previously opened, it will
// now become closed
let port_info = comp_ctx.get_port_mut(port_handle);
if port_info.state.is_open() {
port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
let (peer_handle, message) =
control.initiate_port_blocking(comp_ctx, port_handle);
let peer = comp_ctx.get_peer(peer_handle);
peer.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return IncomingData::SlotFull(incoming_message)
}
}
pub(crate) enum GetResult {
Received(DataMessage),
NoMessage,
Error((PortInstruction, String)),
}
/// Default attempt at trying to receive from a port (i.e. through a `get`, or
/// the equivalent operation for a builtin component). `target_port` is the port
/// we're trying to receive from, and the `target_port_instruction` is the
/// instruction we're attempting on this port.
pub(crate) fn default_attempt_get(
exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx,
comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus
) -> GetResult {
let port_handle = comp_ctx.get_port_handle(target_port);
let port_index = comp_ctx.get_port_index(port_handle);
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = target_port_instruction;
if port_info.state.is_closed() {
let peer_id = port_info.peer_comp_id;
return GetResult::Error((
target_port_instruction,
format!("Cannot get from this port, as the peer component (id:{}) closed the port", peer_id.0)
));
}
if let Some(message) = &inbox_main[port_index] {
if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
// We're allowed to receive this message
let mut message = inbox_main[port_index].take().unwrap();
debug_assert_eq!(target_port, message.data_header.target_port);
// Note: we can still run into an unrecoverable error when actually
// receiving this message
match default_handle_received_data_message(
target_port, target_port_instruction,
&mut message, inbox_main, inbox_backup,
comp_ctx, sched_ctx, control, consensus
) {
Ok(()) => return GetResult::Received(message),
Err(location_and_message) => return GetResult::Error(location_and_message)
}
} else {
// We're not allowed to receive this message. This means that the
// receiver is attempting to receive something out of order with
// respect to the sender.
return GetResult::Error((target_port_instruction, String::from(
"Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s"
)));
}
} else {
// We don't have a message waiting for us and the port is not blocked.
// So enter the BlockedGet state
exec_state.set_as_blocked_get(target_port);
return GetResult::NoMessage;
}
}
/// Default handling that has been received through a `get`. Will check if any
/// more messages are waiting, and if the corresponding port was blocked because
/// of full buffers (hence, will use the control layer to make sure the peer
/// will become unblocked).
pub(crate) fn default_handle_received_data_message(
targeted_port: PortId, _port_instruction: PortInstruction, message: &mut DataMessage,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup,
comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer,
consensus: &mut Consensus
) -> Result<(), (PortInstruction, String)> {
let port_handle = comp_ctx.get_port_handle(targeted_port);
let port_index = comp_ctx.get_port_index(port_handle);
debug_assert!(inbox_main[port_index].is_none()); // because we've just received from it
// If we received any ports, add them to the port tracking and inbox struct.
// Then notify the peers that they can continue sending to this port, but
// now at a new address.
for received_port in &mut message.ports {
// Transfer messages to main/backup inbox
let _new_inbox_index = inbox_main.len();
if !received_port.messages.is_empty() {
inbox_main.push(Some(received_port.messages.remove(0)));
inbox_backup.extend(received_port.messages.drain(..));
} else {
inbox_main.push(None);
}
// Create a new port locally
let mut new_port_state = received_port.state;
new_port_state.set(PortStateFlag::Received);
let new_port_handle = comp_ctx.add_port(
received_port.peer_comp, received_port.peer_port,
received_port.kind, new_port_state
);
debug_assert_eq!(_new_inbox_index, comp_ctx.get_port_index(new_port_handle));
comp_ctx.change_port_peer(sched_ctx, new_port_handle, Some(received_port.peer_comp));
let new_port = comp_ctx.get_port(new_port_handle);
// Add the port tho the consensus
consensus.notify_received_port(_new_inbox_index, new_port_handle, comp_ctx);
// Replace all references to the port in the received message
for message_location in received_port.locations.iter().copied() {
let value = message.content.get_value_mut(message_location);
match value {
Value::Input(_) => {
debug_assert_eq!(new_port.kind, PortKind::Getter);
*value = Value::Input(port_id_to_eval(new_port.self_id));
},
Value::Output(_) => {
debug_assert_eq!(new_port.kind, PortKind::Putter);
*value = Value::Output(port_id_to_eval(new_port.self_id));
},
_ => unreachable!(),
}
}
// Let the peer know that the port can now be used
let peer_handle = comp_ctx.get_peer_handle(new_port.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
id: ControlId::new_invalid(),
sender_comp_id: comp_ctx.id,
target_port_id: Some(new_port.peer_port_id),
content: ControlMessageContent::PortPeerChangedUnblock(new_port.self_id, comp_ctx.id)
}), true);
}
// Modify last-known location where port instruction was retrieved
let port_info = comp_ctx.get_port(port_handle);
debug_assert_ne!(port_info.last_instruction, PortInstruction::None); // set by caller
debug_assert!(port_info.state.is_open()); // checked by caller
// Check if there are any more messages in the backup buffer
for message_index in 0..inbox_backup.len() {
let message = &inbox_backup[message_index];
if message.data_header.target_port == targeted_port {
// One more message, place it in the slot
let message = inbox_backup.remove(message_index);
debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we're removing another message from the backup
inbox_main[port_index] = Some(message);
return Ok(());
}
}
// Did not have any more messages, so if we were blocked, then we need to
// unblock the port now (and inform the peer of this unblocking)
if port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers) {
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return Ok(());
}
/// Handles control messages in the default way. Note that this function may
/// take a lot of actions in the name of the caller: pending messages may be
/// sent, ports may become blocked/unblocked, etc. So the execution
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
/// state may all change.
pub(crate) fn default_handle_control_message(
exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) -> Result<(), (PortInstruction, String)> {
match message.content {
ControlMessageContent::Ack => {
default_handle_ack(exec_state, control, message.id, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup)?;
},
ControlMessageContent::BlockPort => {
// One of our messages was accepted, but the port should be
// blocked.
let port_to_block = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_block);
let port_info = comp_ctx.get_port_mut(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
},
ControlMessageContent::ClosePort(content) => {
// Request to close the port. We immediately comply and remove
// the component handle as well
let port_to_close = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_close);
// We're closing the port, so we will always update the peer of the
// port (in case of error messages)
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.peer_comp_id = message.sender_comp_id;
port_info.close_at_sync_end = true; // might be redundant (we might set it closed now)
let peer_comp_id = port_info.peer_comp_id;
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
// One exception to sending an `Ack` is if we just closed the
// port ourselves, meaning that the `ClosePort` messages got
// sent to one another.
if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
// The two components (sender and this component) are closing
// the channel at the same time. So we don't care about the
// content of the `ClosePort` message.
default_handle_ack(exec_state, control, control_id, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup)?;
} else {
// Respond to the message
let port_info = comp_ctx.get_port(port_handle);
let last_instruction = port_info.last_instruction;
let port_has_had_message = port_info.received_message_for_sync;
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
comp_ctx.change_port_peer(sched_ctx, port_handle, None);
// Handle any possible error conditions (which boil down to: the
// port has been used, but the peer has died). If not in sync
// mode then we close the port immediately.
// Note that `port_was_used` does not mean that any messages
// were actually received. It might also mean that e.g. the
// component attempted a `get`, but there were no messages, so
// now it is in the `BlockedGet` state.
let port_was_used = last_instruction != PortInstruction::None;
if exec_state.mode.is_in_sync_block() {
let closed_during_sync_round = content.closed_in_sync_round && port_was_used;
let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message && port_was_used;
if closed_during_sync_round || closed_before_sync_round {
return Err((
last_instruction,
format!("Peer component (id:{}) shut down, so communication cannot (have) succeed(ed)", peer_comp_id.0)
));
}
} else {
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.state.set(PortStateFlag::Closed);
}
}
},
ControlMessageContent::UnblockPort => {
// We were previously blocked (or already closed)
let port_to_unblock = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_unblock);
let port_info = comp_ctx.get_port_mut(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers));
port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
default_handle_recently_unblocked_port(
exec_state, control, consensus, port_handle, sched_ctx,
comp_ctx, inbox_main, inbox_backup
)?;
},
ControlMessageContent::PortPeerChangedBlock => {
// The peer of our port has just changed. So we are asked to
// temporarily block the port (while our original recipient is
// potentially rerouting some of the in-flight messages) and
// Ack. Then we wait for the `unblock` call.
let port_to_change = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_change);
let port_info = comp_ctx.get_port_mut(port_handle);
let peer_comp_id = port_info.peer_comp_id;
port_info.state.set(PortStateFlag::BlockedDueToPeerChange);
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
},
ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
let port_to_change = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_change);
let port_info = comp_ctx.get_port(port_handle);
debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToPeerChange));
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.peer_port_id = new_port_id;
port_info.state.clear(PortStateFlag::BlockedDueToPeerChange);
comp_ctx.change_port_peer(sched_ctx, port_handle, Some(new_comp_id));
default_handle_recently_unblocked_port(
exec_state, control, consensus, port_handle, sched_ctx,
comp_ctx, inbox_main, inbox_backup
)?;
}
}
return Ok(());
}
/// Handles a component entering the synchronous block. Will ensure that the
/// `Consensus` and the `ComponentCtx` are initialized properly.
pub(crate) fn default_handle_sync_start(
exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) {
sched_ctx.info("Component starting sync mode");
// If any messages are present for this sync round, set the appropriate flag
// and notify the consensus handler of the present messages
consensus.notify_sync_start(comp_ctx);
for (port_index, message) in inbox_main.iter().enumerate() {
if let Some(message) = message {
consensus.handle_incoming_data_message(comp_ctx, message);
let port_info = comp_ctx.get_port_by_index_mut(port_index);
port_info.received_message_for_sync = true;
}
}
// Modify execution state
debug_assert_eq!(exec_state.mode, CompMode::NonSync);
exec_state.mode = CompMode::Sync;
}
/// Handles a component that has reached the end of the sync block. This does
/// not necessarily mean that the component will go into the `NonSync` mode, as
/// it might have to wait for the leader to finish the round for everyone (see
/// `default_handle_sync_decision`)
pub(crate) fn default_handle_sync_end(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
consensus: &mut Consensus
) {
sched_ctx.info("Component ending sync mode (but possibly waiting for a solution)");
debug_assert_eq!(exec_state.mode, CompMode::Sync);
let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx);
exec_state.mode = CompMode::SyncEnd;
default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
}
/// Handles a component initiating the exiting procedure, and closing all of its
/// ports. Should only be called once per component (which is ensured by
/// checking and modifying the mode in the execution state).
#[must_use]
pub(crate) fn default_handle_start_exit(
exec_state: &mut CompExecState, control: &mut ControlLayer,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::StartExit);
for port_index in 0..comp_ctx.num_ports() {
let port_info = comp_ctx.get_port_by_index_mut(port_index);
if port_info.state.is_blocked() {
return CompScheduling::Sleep;
}
}
sched_ctx.info(&format!("Component starting exit (reason: {:?})", exec_state.exit_reason));
exec_state.mode = CompMode::BusyExit;
let exit_inside_sync = exec_state.exit_reason.is_in_sync();
// If exiting while inside sync mode, report to the leader of the current
// round that we've failed.
if exit_inside_sync {
let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx);
default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
}
// Iterating over ports by index to work around borrowing rules
for port_index in 0..comp_ctx.num_ports() {
let port = comp_ctx.get_port_by_index_mut(port_index);
println!("DEBUG: Considering port:\n{:?}", port);
if port.state.is_closed() || port.state.is_set(PortStateFlag::Transmitted) || port.close_at_sync_end {
// Already closed, or in the process of being closed
continue;
}
// Mark as closed
let port_id = port.self_id;
port.state.set(PortStateFlag::Closed);
// Notify peer of closing
let port_handle = comp_ctx.get_port_handle(port_id);
let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
let peer_info = comp_ctx.get_peer(peer);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return CompScheduling::Immediate; // to check if we can shut down immediately
}
/// Handles a component waiting until all peers are notified that it is quitting
/// (i.e. after calling `default_handle_start_exit`).
#[must_use]
pub(crate) fn default_handle_busy_exit(
exec_state: &mut CompExecState, control: &ControlLayer,
sched_ctx: &SchedulerCtx
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
if control.has_acks_remaining() {
sched_ctx.info("Component busy exiting, still has `Ack`s remaining");
return CompScheduling::Sleep;
} else {
sched_ctx.info("Component busy exiting, now shutting down");
exec_state.mode = CompMode::Exit;
return CompScheduling::Exit;
}
}
/// Handles a potential synchronous round decision. If there was a decision then
/// the `Some(success)` value indicates whether the round succeeded or not.
/// Might also end up changing the `ExecState`.
///
/// Might be called in two cases:
/// 1. The component is in regular execution mode, at the end of a sync round,
/// and is waiting for a solution to the round.
/// 2. The component has encountered an error during a sync round and is
/// exiting, hence is waiting for a "Failure" message from the leader.
pub(crate) fn default_handle_sync_decision(
sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx,
decision: SyncRoundDecision, consensus: &mut Consensus
) -> Option<bool> {
let success = match decision {
SyncRoundDecision::None => return None,
SyncRoundDecision::Solution => true,
SyncRoundDecision::Failure => false,
};
debug_assert!(
exec_state.mode == CompMode::SyncEnd || (
exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error()
) || (
exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure
)
);
sched_ctx.info(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode));
consensus.notify_sync_decision(decision);
if success {
// We cannot get a success message if the component has encountered an
// error.
for port_index in 0..comp_ctx.num_ports() {
let port_info = comp_ctx.get_port_by_index_mut(port_index);
if port_info.close_at_sync_end {
port_info.state.set(PortStateFlag::Closed);
}
port_info.state.clear(PortStateFlag::Received);
}
debug_assert_eq!(exec_state.mode, CompMode::SyncEnd);
exec_state.mode = CompMode::NonSync;
return Some(true);
} else {
// We may get failure both in all possible cases. But we should only
// modify the execution state if we're not already in exit mode
if !exec_state.mode.is_busy_exiting() {
sched_ctx.error("failed synchronous round, initiating exit");
exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
}
return Some(false);
}
}
pub(crate) fn default_start_create_component(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
control: &mut ControlLayer, inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup,
definition_id: ProcedureDefinitionId, type_id: TypeId, arguments: ValueGroup
) {
debug_assert_eq!(exec_state.mode, CompMode::NonSync);
let mut transferred_ports = Vec::new();
find_ports_in_value_group(&arguments, &mut transferred_ports);
// Set execution state as waiting until we can create the component. If we
// can do so right away, then we will.
exec_state.set_as_create_component_blocked(definition_id, type_id, arguments);
if ports_not_blocked(comp_ctx, &transferred_ports) {
perform_create_component(exec_state, sched_ctx, comp_ctx, control, inbox_main, inbox_backup);
}
}
/// Actually creates a component (and assumes that the caller made sure that
/// none of the ports are involved in a blocking operation).
pub(crate) fn perform_create_component(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, instantiator_ctx: &mut CompCtx,
control: &mut ControlLayer, inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) {
// Small internal utilities
struct PortPair {
instantiator_id: PortId,
instantiator_handle: LocalPortHandle,
created_id: PortId,
created_handle: LocalPortHandle,
is_open: bool,
}
// Retrieve ports from the arguments
debug_assert_eq!(exec_state.mode, CompMode::NewComponentBlocked);
let (procedure_id, procedure_type_id) = exec_state.mode_component;
let mut arguments = exec_state.mode_value.take();
let mut ports = Vec::new();
find_ports_in_value_group(&arguments, &mut ports);
debug_assert!(ports_not_blocked(instantiator_ctx, &ports));
// Reserve a location for the new component
let reservation = sched_ctx.runtime.start_create_component();
let mut created_ctx = CompCtx::new(&reservation);
let mut port_pairs = Vec::with_capacity(ports.len());
// Go over all the ports that will be transferred. Since the ports will get
// a new ID in the new component, we will take care of that here.
for (port_location, instantiator_port_id) in &ports {
// Retrieve port information from instantiator
let instantiator_port_id = *instantiator_port_id;
let instantiator_port_handle = instantiator_ctx.get_port_handle(instantiator_port_id);
let instantiator_port = instantiator_ctx.get_port(instantiator_port_handle);
// Create port at created component
let created_port_handle = created_ctx.add_port(
instantiator_port.peer_comp_id, instantiator_port.peer_port_id,
instantiator_port.kind, instantiator_port.state
);
let created_port = created_ctx.get_port(created_port_handle);
let created_port_id = created_port.self_id;
// Modify port ID in the arguments to the new component and store them
// for later access
let is_open = instantiator_port.state.is_open();
port_pairs.push(PortPair{
instantiator_id: instantiator_port_id,
instantiator_handle: instantiator_port_handle,
created_id: created_port_id,
created_handle: created_port_handle,
is_open,
});
for location in port_location.iter().copied() {
let value = arguments.get_value_mut(location);
match value {
Value::Input(id) => *id = port_id_to_eval(created_port_id),
Value::Output(id) => *id = port_id_to_eval(created_port_id),
_ => unreachable!(),
}
}
}
// For each of the ports in the newly created component we set the peer to
// the correct value. We will not yet change the peer on the instantiator's
// ports (as we haven't yet stored the new component in the runtime's
// component storage)
let mut created_component_has_remote_peers = false;
for pair in port_pairs.iter() {
let instantiator_port_info = instantiator_ctx.get_port(pair.instantiator_handle);
let created_port_info = created_ctx.get_port_mut(pair.created_handle);
if created_port_info.peer_comp_id == instantiator_ctx.id {
// The peer of the created component's port seems to be the
// instantiator.
let created_port_peer_index = port_pairs.iter()
.position(|v| v.instantiator_id == instantiator_port_info.peer_port_id);
match created_port_peer_index {
Some(created_port_peer_index) => {
// However, the peer port is also moved to the new
// component, so the complete channel is owned by the new
// component.
let peer_pair = &port_pairs[created_port_peer_index];
created_port_info.peer_port_id = peer_pair.created_id;
created_port_info.peer_comp_id = reservation.id();
},
None => {
// Peer port remains with instantiator. However, we cannot
// set the peer on the instantiator yet, because the new
// component has not yet been stored in the runtime's
// component storage. So we do this later
created_port_info.peer_comp_id = instantiator_ctx.id;
if pair.is_open {
created_ctx.change_port_peer(sched_ctx, pair.created_handle, Some(instantiator_ctx.id));
}
}
}
} else {
// Peer is a different component
if pair.is_open {
// And the port is still open, so we need to notify the peer
let peer_handle = instantiator_ctx.get_peer_handle(created_port_info.peer_comp_id);
let peer_info = instantiator_ctx.get_peer(peer_handle);
created_ctx.change_port_peer(sched_ctx, pair.created_handle, Some(peer_info.id));
created_component_has_remote_peers = true;
}
}
}
// Now we store the new component into the runtime's component storage using
// the reservation.
let component = create_component(
&sched_ctx.runtime.protocol, procedure_id, procedure_type_id,
arguments, port_pairs.len()
);
let (created_key, created_runtime_component) = sched_ctx.runtime.finish_create_component(
reservation, component, created_ctx, false
);
let created_ctx = &mut created_runtime_component.ctx;
let created_component = &mut created_runtime_component.component;
created_component.on_creation(created_key.downgrade(), sched_ctx);
// We now pass along the messages that the instantiator component still has
// that belong to the new component. At the same time we'll take care of
// setting the correct peer of the instantiator component
for pair in port_pairs.iter() {
// Transferring the messages and removing the port from the
// instantiator component
let instantiator_port_index = instantiator_ctx.get_port_index(pair.instantiator_handle);
instantiator_ctx.change_port_peer(sched_ctx, pair.instantiator_handle, None);
instantiator_ctx.remove_port(pair.instantiator_handle);
if let Some(mut message) = inbox_main[instantiator_port_index].take() {
message.data_header.target_port = pair.created_id;
created_component.adopt_message(created_ctx, message);
}
let mut message_index = 0;
while message_index < inbox_backup.len() {
let message = &inbox_backup[message_index];
if message.data_header.target_port == pair.instantiator_id {
// Transfer the message
let mut message = inbox_backup.remove(message_index);
message.data_header.target_port = pair.created_id;
created_component.adopt_message(created_ctx, message);
} else {
// Message does not belong to the port pair that we're
// transferring to the new component.
message_index += 1;
}
}
// Here we take care of the case where the instantiator previously owned
// both ends of the channel, but has transferred one port to the new
// component (hence creating a channel between the instantiator
// component and the new component).
let created_port_info = created_ctx.get_port(pair.created_handle);
if pair.is_open && created_port_info.peer_comp_id == instantiator_ctx.id {
// Note: the port we're receiving here belongs to the instantiator
// and is NOT in the "port_pairs" array.
let instantiator_port_handle = instantiator_ctx.get_port_handle(created_port_info.peer_port_id);
let instantiator_port_info = instantiator_ctx.get_port_mut(instantiator_port_handle);
instantiator_port_info.peer_port_id = created_port_info.self_id;
instantiator_ctx.change_port_peer(sched_ctx, instantiator_port_handle, Some(created_ctx.id));
}
}
// Finally: if we did move ports around whose peers are different
// components, then we'll initiate the appropriate protocol to notify them.
if created_component_has_remote_peers {
let schedule_entry_id = control.add_schedule_entry(created_ctx.id);
for pair in &port_pairs {
let port_info = created_ctx.get_port(pair.created_handle);
if pair.is_open && port_info.peer_comp_id != instantiator_ctx.id && port_info.peer_comp_id != created_ctx.id {
// Peer component is not the instantiator, and it is not the
// new component itself
let message = control.add_reroute_entry(
instantiator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
pair.instantiator_id, pair.created_id, created_ctx.id,
schedule_entry_id
);
let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = created_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, message, true);
}
}
} else {
// We can schedule the component immediately, we do not have to wait
// for any peers: there are none.
sched_ctx.runtime.enqueue_work(created_key);
}
exec_state.mode = CompMode::NonSync;
exec_state.mode_component = (ProcedureDefinitionId::new_invalid(), TypeId::new_invalid());
}
pub(crate) fn ports_not_blocked(comp_ctx: &CompCtx, ports: &EncounteredPorts) -> bool {
for (_port_locations, port_id) in ports {
let port_handle = comp_ctx.get_port_handle(*port_id);
let port_info = comp_ctx.get_port(port_handle);
if port_info.state.is_blocked_due_to_port_change() {
return false;
}
}
return true;
}
/// Performs the default action of printing the provided error, and then putting
/// the component in the state where it will shut down. Only to be used for
/// builtin components: their error message construction is simpler (and more
/// common) as they don't have any source code.
pub(crate) fn default_handle_error_for_builtin(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx,
location_and_message: (PortInstruction, String)
) {
let (_location, message) = location_and_message;
sched_ctx.error(&message);
let exit_reason = if exec_state.mode.is_in_sync_block() {
ExitReason::ErrorInSync
} else {
ExitReason::ErrorNonSync
};
exec_state.set_as_start_exit(exit_reason);
}
#[inline]
pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling {
debug_assert_eq!(_exec_state.mode, CompMode::Exit);
return CompScheduling::Exit;
}
// -----------------------------------------------------------------------------
// Internal messaging/state utilities
// -----------------------------------------------------------------------------
/// Sends a message without any transmitted ports. Does not check if sending
/// is actually valid.
fn send_message_without_ports(
sending_port_handle: LocalPortHandle, value: ValueGroup,
comp_ctx: &CompCtx, sched_ctx: &SchedulerCtx, consensus: &mut Consensus,
) {
let port_info = comp_ctx.get_port(sending_port_handle);
debug_assert!(port_info.state.can_send());
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
}
/// Prepares sending a message that contains ports. Only once a particular
/// protocol has completed (where we notify all the peers that the ports will
/// be transferred) will we actually send the message to the recipient.
fn start_send_message_with_ports(
sending_port_id: PortId, sending_port_instruction: PortInstruction, value: ValueGroup,
exec_state: &mut CompExecState, comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx,
control: &mut ControlLayer
) -> Result<(), (PortInstruction, String)> {
debug_assert_eq!(exec_state.mode, CompMode::Sync); // busy in sync, trying to send
// Retrieve ports we're going to transfer
let sending_port_handle = comp_ctx.get_port_handle(sending_port_id);
let sending_port_info = comp_ctx.get_port_mut(sending_port_handle);
sending_port_info.last_instruction = sending_port_instruction;
let mut transmit_ports = Vec::new();
find_ports_in_value_group(&value, &mut transmit_ports);
debug_assert!(!transmit_ports.is_empty()); // required from caller
// Enter the state where we'll wait until all transferred ports are not
// blocked.
exec_state.set_as_blocked_put_with_ports(sending_port_id, value);
if ports_not_blocked(comp_ctx, &transmit_ports) {
// Ports are not blocked, so we can send them right away.
perform_send_message_with_ports_notify_peers(
exec_state, comp_ctx, sched_ctx, control, transmit_ports
)?;
} // else: wait until they become unblocked
return Ok(())
}
fn perform_send_message_with_ports_notify_peers(
exec_state: &mut CompExecState, comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx,
control: &mut ControlLayer, transmit_ports: EncounteredPorts
) -> Result<(), (PortInstruction, String)> {
// Check we're in the correct state in debug mode
debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedTransferredPorts);
debug_assert!(ports_not_blocked(comp_ctx, &transmit_ports));
// Set up the final Ack that triggers us to send our final message
let unblock_put_control_id = control.add_unblock_put_with_ports_entry();
for (_, port_id) in &transmit_ports {
let transmit_port_handle = comp_ctx.get_port_handle(*port_id);
let transmit_port_info = comp_ctx.get_port_mut(transmit_port_handle);
let peer_comp_id = transmit_port_info.peer_comp_id;
let peer_port_id = transmit_port_info.peer_port_id;
// Note: we checked earlier that we are currently in sync mode. Now we
// will check if we've already used the port we're about to transmit.
if !transmit_port_info.last_instruction.is_none() {
let sending_port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
let sending_port_instruction = comp_ctx.get_port(sending_port_handle).last_instruction;
return Err((
sending_port_instruction,
String::from("Cannot transmit one of the ports in this message, as it is used in this sync round")
));
}
if transmit_port_info.state.is_set(PortStateFlag::Transmitted) {
let sending_port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
let sending_port_instruction = comp_ctx.get_port(sending_port_handle).last_instruction;
return Err((
sending_port_instruction,
String::from("Cannot transmit one of the ports in this message, as that port is already transmitted")
));
}
// Set the flag for transmission
transmit_port_info.state.set(PortStateFlag::Transmitted);
// Block the peer of the port
let message = control.create_port_transfer_message(unblock_put_control_id, comp_ctx.id, peer_port_id);
println!("DEBUG: Port transfer message\nControl ID: {:?}\nMessage: {:?}", unblock_put_control_id, message);
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, message, true);
}
// We've set up the protocol, once all the PPC's are blocked we are supposed
// to transfer the message to the recipient. So store it temporarily
exec_state.mode = CompMode::PutPortsBlockedAwaitingAcks;
return Ok(());
}
/// Performs the transmission of a data message that contains ports. These were
/// all stored in the component's execution state by the
/// `prepare_send_message_with_ports` function. Port must be ready to send!
fn perform_send_message_with_ports_to_receiver(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) -> Result<(), (PortInstruction, String)> {
debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedSendingPort);
// Find all ports again
let mut transmit_ports = Vec::new();
find_ports_in_value_group(&exec_state.mode_value, &mut transmit_ports);
// Retrieve the port over which we're going to send the message
let port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
let port_info = comp_ctx.get_port(port_handle);
if !port_info.state.is_open() {
return Err((
port_info.last_instruction,
String::from("cannot send over this port, as it is closed")
));
}
debug_assert!(!port_info.state.is_blocked_due_to_port_change()); // caller should have checked this
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
// Change state back to its default
exec_state.mode = CompMode::Sync;
let message_value = exec_state.mode_value.take();
exec_state.mode_port = PortId::new_invalid();
// Annotate the data message
let mut annotated_message = consensus.annotate_data_message(comp_ctx, port_info, message_value);
// And further enhance the message by adding data about the ports that are
// being transferred
for (port_locations, transmit_port_id) in transmit_ports {
let transmit_port_handle = comp_ctx.get_port_handle(transmit_port_id);
let transmit_port_info = comp_ctx.get_port(transmit_port_handle);
let transmit_messages = take_port_messages(comp_ctx, transmit_port_id, inbox_main, inbox_backup);
let mut transmit_port_state = transmit_port_info.state;
debug_assert!(transmit_port_state.is_set(PortStateFlag::Transmitted));
transmit_port_state.clear(PortStateFlag::Transmitted);
annotated_message.ports.push(TransmittedPort{
locations: port_locations,
messages: transmit_messages,
peer_comp: transmit_port_info.peer_comp_id,
peer_port: transmit_port_info.peer_port_id,
kind: transmit_port_info.kind,
state: transmit_port_state
});
comp_ctx.change_port_peer(sched_ctx, transmit_port_handle, None);
}
// And finally, send the message to the peer
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
return Ok(());
}
/// Handles an `Ack` for the control layer.
fn default_handle_ack(
exec_state: &mut CompExecState, control: &mut ControlLayer, control_id: ControlId,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) -> Result<(), (PortInstruction, String)>{
// Since an `Ack` may cause another one, handle them in a loop
let mut to_ack = control_id;
loop {
let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx);
match action {
AckAction::SendMessage(target_comp, message) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(target_comp);
handle.send_message_logged(sched_ctx, Message::Control(message), true);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::ScheduleComponent(to_schedule) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(to_schedule);
// Note that the component is intentionally not
// sleeping, so we just wake it up
debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
let key = unsafe { to_schedule.upgrade() };
sched_ctx.runtime.enqueue_work(key);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::UnblockPutWithPorts => {
// Send the message (containing ports) stored in the component
// execution state to the recipient
println!("DEBUG: Unblocking put with ports");
debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedAwaitingAcks);
exec_state.mode = CompMode::PutPortsBlockedSendingPort;
let port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
// Little bit of a hack, we didn't really unblock the sending
// port, but this will mesh nicely with waiting for the sending
// port to become unblocked.
default_handle_recently_unblocked_port(
exec_state, control, consensus, port_handle, sched_ctx,
comp_ctx, inbox_main, inbox_backup
)?;
},
AckAction::None => {}
}
match new_to_ack {
Some(new_to_ack) => to_ack = new_to_ack,
None => break,
}
}
return Ok(());
}
/// Little helper for sending the most common kind of `Ack`
fn default_send_ack(
causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle,
sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx
) {
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
id: causer_of_ack_id,
sender_comp_id: comp_ctx.id,
target_port_id: None,
content: ControlMessageContent::Ack
}), true);
}
/// Handles the unblocking of a putter port. In case there is a pending message
/// on that port then it will be sent. There are two reasons for calling this
/// function: either a port was blocked (i.e. the Blocked state flag was
/// cleared), or the component is ready to send a message containing ports
/// (stored in the execution state). In this latter case we might still have
/// a blocked port.
fn default_handle_recently_unblocked_port(
exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) -> Result<(), (PortInstruction, String)> {
let port_info = comp_ctx.get_port_mut(port_handle);
let port_id = port_info.self_id;
if port_info.state.is_blocked() {
// Port is still blocked. We wait until the next control message where
// we unblock the port.
return Ok(());
}
if exec_state.is_blocked_on_put_without_ports(port_id) {
// Annotate the message that we're going to send
let port_info = comp_ctx.get_port(port_handle); // for immutable access
debug_assert_eq!(port_info.kind, PortKind::Putter);
let to_send = exec_state.mode_value.take();
let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send);
// Retrieve peer to send the message
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(to_send), true);
// Return to the regular execution mode
exec_state.mode = CompMode::Sync;
exec_state.mode_port = PortId::new_invalid();
} else if exec_state.mode == CompMode::PutPortsBlockedTransferredPorts {
// We are waiting until all of the transferred ports become unblocked,
// check so here.
let mut transfer_ports = Vec::new();
find_ports_in_value_group(&exec_state.mode_value, &mut transfer_ports);
if ports_not_blocked(comp_ctx, &transfer_ports) {
perform_send_message_with_ports_notify_peers(
exec_state, comp_ctx, sched_ctx, control, transfer_ports
)?;
}
} else if exec_state.mode == CompMode::PutPortsBlockedSendingPort && exec_state.mode_port == port_id {
// We checked above that the port became unblocked, so we can send the
// message
perform_send_message_with_ports_to_receiver(
exec_state, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup
)?;
} else if exec_state.is_blocked_on_create_component() {
let mut ports = Vec::new();
find_ports_in_value_group(&exec_state.mode_value, &mut ports);
if ports_not_blocked(comp_ctx, &ports) {
perform_create_component(
exec_state, sched_ctx, comp_ctx, control, inbox_main, inbox_backup
);
}
}
return Ok(());
}
#[inline]
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
return PortId(port_id.id);
}
#[inline]
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
return EvalPortId{ id: port_id.0 };
}
// TODO: Optimize double vec
type EncounteredPorts = Vec<(Vec<ValueId>, PortId)>;
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut EncounteredPorts) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, value_location: ValueId, ports: &mut EncounteredPorts) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortId(port_id.id);
for prev_port in ports.iter_mut() {
if prev_port.1 == cur_port {
// Already added
prev_port.0.push(value_location);
return;
}
}
ports.push((vec![value_location], cur_port));
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for (value_index, embedded_value) in heap_region.iter().enumerate() {
let value_location = ValueId::Heap(*heap_pos, value_index as u32);
find_port_in_value(group, embedded_value, value_location, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for (value_index, value) in value_group.values.iter().enumerate() {
find_port_in_value(value_group, value, ValueId::Stack(value_index as u32), ports);
}
}
/// Goes through the inbox of a component and takes out all the messages that
/// are targeted at a specific port
pub(crate) fn take_port_messages(
comp_ctx: &CompCtx, port_id: PortId,
inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
) -> Vec<DataMessage> {
let mut messages = Vec::new();
let port_handle = comp_ctx.get_port_handle(port_id);
let port_index = comp_ctx.get_port_index(port_handle);
if let Some(message) = inbox_main[port_index].take() {
messages.push(message);
}
let mut message_index = 0;
while message_index < inbox_backup.len() {
let message = &inbox_backup[message_index];
if message.data_header.target_port == port_id {
let message = inbox_backup.remove(message_index);
messages.push(message);
} else {
message_index += 1;
}
}
return messages;
}
|