Files @ 1e0c33498fac
Branch filter:

Location: CSY/reowolf/src/runtime2/component/component_pdl.rs

1e0c33498fac 38.6 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Test and fix pre-sync ClosePort case
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
use crate::random::Random;
use crate::protocol::*;
use crate::protocol::ast::ProcedureDefinitionId;
use crate::protocol::eval::{
    PortId as EvalPortId, Prompt,
    ValueGroup, Value,
    EvalContinuation, EvalResult, EvalError
};

use crate::runtime2::runtime::CompId;
use crate::runtime2::scheduler::SchedulerCtx;
use crate::runtime2::communication::*;

use super::component::{
    self,
    InboxMain, InboxBackup, GetResult,
    CompExecState, Component, CompScheduling, CompError, CompMode, ExitReason,
    port_id_from_eval, port_id_to_eval
};
use super::component_context::*;
use super::control_layer::*;
use super::consensus::Consensus;

pub enum ExecStmt {
    CreatedChannel((Value, Value)),
    PerformedPut,
    PerformedGet(ValueGroup),
    PerformedSelectWait(u32),
    None,
}

impl ExecStmt {
    fn take(&mut self) -> ExecStmt {
        let mut value = ExecStmt::None;
        std::mem::swap(self, &mut value);
        return value;
    }

    fn is_none(&self) -> bool {
        match self {
            ExecStmt::None => return true,
            _ => return false,
        }
    }
}

pub struct ExecCtx {
    stmt: ExecStmt,
}

impl RunContext for ExecCtx {
    fn performed_put(&mut self, _port: EvalPortId) -> bool {
        match self.stmt.take() {
            ExecStmt::None => return false,
            ExecStmt::PerformedPut => return true,
            _ => unreachable!(),
        }
    }

    fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
        match self.stmt.take() {
            ExecStmt::None => return None,
            ExecStmt::PerformedGet(value) => return Some(value),
            _ => unreachable!(),
        }
    }

    fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
        todo!("remove fires")
    }

    fn performed_fork(&mut self) -> Option<bool> {
        todo!("remove fork")
    }

    fn created_channel(&mut self) -> Option<(Value, Value)> {
        match self.stmt.take() {
            ExecStmt::None => return None,
            ExecStmt::CreatedChannel(ports) => return Some(ports),
            _ => unreachable!(),
        }
    }

    fn performed_select_wait(&mut self) -> Option<u32> {
        match self.stmt.take() {
            ExecStmt::None => return None,
            ExecStmt::PerformedSelectWait(selected_case) => Some(selected_case),
            _v => unreachable!(),
        }
    }
}

struct SelectCase {
    involved_ports: Vec<LocalPortHandle>,
}

// TODO: @Optimize, flatten cases into single array, have index-pointers to next case
struct SelectState {
    cases: Vec<SelectCase>,
    next_case: u32,
    num_cases: u32,
    random: Random,
    candidates_workspace: Vec<usize>,
}

enum SelectDecision {
    None,
    Case(u32), // contains case index, should be passed along to PDL code
}

impl SelectState {
    fn new() -> Self {
        return Self{
            cases: Vec::new(),
            next_case: 0,
            num_cases: 0,
            random: Random::new(),
            candidates_workspace: Vec::new(),
        }
    }

    fn handle_select_start(&mut self, num_cases: u32) {
        self.cases.clear();
        self.next_case = 0;
        self.num_cases = num_cases;
    }

    /// Register a port as belonging to a particular case. As for correctness of
    /// PDL code one cannot register the same port twice, this function might
    /// return an error
    fn register_select_case_port(&mut self, comp_ctx: &CompCtx, case_index: u32, _port_index: u32, port_id: PortId) -> Result<(), PortId> {
        // Retrieve case and port handle
        self.ensure_at_case(case_index);
        let cur_case = &mut self.cases[case_index as usize];
        let port_handle = comp_ctx.get_port_handle(port_id);
        debug_assert_eq!(cur_case.involved_ports.len(), _port_index as usize);

        // Make sure port wasn't added before, we disallow having the same port
        // in the same select guard twice.
        if cur_case.involved_ports.contains(&port_handle) {
            return Err(port_id);
        }

        cur_case.involved_ports.push(port_handle);
        return Ok(());
    }

    /// Notification that all ports have been registered and we should now wait
    /// until the appropriate messages have come in.
    fn handle_select_waiting_point(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
        if self.num_cases != self.next_case {
            // This happens when there are >=1 select cases written at the end
            // of the select block.
            self.ensure_at_case(self.num_cases - 1);
        }

        return self.has_decision(inbox, comp_ctx);
    }

    fn handle_updated_inbox(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
        return self.has_decision(inbox, comp_ctx);
    }

    /// Internal helper, pushes empty cases inbetween last case and provided new
    /// case index.
    fn ensure_at_case(&mut self, new_case_index: u32) {
        // Push an empty case for all intermediate cases that were not
        // registered with a port.
        debug_assert!(new_case_index >= self.next_case && new_case_index < self.num_cases);
        for _ in self.next_case..new_case_index + 1 {
            self.cases.push(SelectCase{ involved_ports: Vec::new() });
        }
        self.next_case = new_case_index + 1;
    }

    /// Checks if a decision can be reached
    fn has_decision(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
        self.candidates_workspace.clear();
        if self.cases.is_empty() {
            // If there are no cases then we can immediately reach a "bogus
            // decision".
            return SelectDecision::Case(0);
        }

        // Need to check for valid case
        'case_loop: for (case_index, case) in self.cases.iter().enumerate() {
            for port_handle in case.involved_ports.iter().copied() {
                let port_index = comp_ctx.get_port_index(port_handle);
                if inbox[port_index].is_none() {
                    // Condition not satisfied
                    continue 'case_loop;
                }
            }

            // If here then the case guard is satisfied
            self.candidates_workspace.push(case_index);
        }

        if self.candidates_workspace.is_empty() {
            return SelectDecision::None;
        } else {
            let candidate_index = self.random.get_u64() as usize % self.candidates_workspace.len();
            return SelectDecision::Case(self.candidates_workspace[candidate_index] as u32);
        }
    }
}

pub(crate) struct CompPDL {
    pub exec_state: CompExecState,
    select_state: SelectState,
    pub prompt: Prompt,
    pub control: ControlLayer,
    pub consensus: Consensus,
    pub sync_counter: u32,
    pub exec_ctx: ExecCtx,
    // TODO: Temporary field, simulates future plans of having one storage place
    //  reserved per port.
    // Should be same length as the number of ports. Corresponding indices imply
    // message is intended for that port.
    pub inbox_main: InboxMain,
    pub inbox_backup: Vec<DataMessage>,
}

impl Component for CompPDL {
    fn on_creation(&mut self, _id: CompId, _sched_ctx: &SchedulerCtx) {
        // Intentionally empty
    }

    fn on_shutdown(&mut self, _sched_ctx: &SchedulerCtx) {
        // Intentionally empty
    }

    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage) {
        let port_handle = comp_ctx.get_port_handle(message.data_header.target_port);
        let port_index = comp_ctx.get_port_index(port_handle);
        if self.inbox_main[port_index].is_none() {
            self.inbox_main[port_index] = Some(message);
        } else {
            self.inbox_backup.push(message);
        }
    }

    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, mut message: Message) {
        // sched_ctx.log(&format!("handling message: {:?}", message));
        if let Some(new_target) = self.control.should_reroute(&mut message) {
            let mut target = sched_ctx.runtime.get_component_public(new_target); // TODO: @NoDirectHandle
            target.send_message(&sched_ctx.runtime, message, false); // not waking up: we schedule once we've received all PortPeerChanged Acks
            let _should_remove = target.decrement_users();
            debug_assert!(_should_remove.is_none());
            return;
        }

        match message {
            Message::Data(message) => {
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
            },
            Message::Control(message) => {
                if let Err(location_and_message) = component::default_handle_control_message(
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
                    message, sched_ctx, comp_ctx
                ) {
                    self.handle_generic_component_error(sched_ctx, location_and_message);
                }
            },
            Message::Sync(message) => {
                self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
            },
            Message::Poll => {
                unreachable!(); // because we never register at the polling thread
            }
        }
    }

    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling {
        use EvalContinuation as EC;

        sched_ctx.log(&format!("Running component (mode: {:?})", self.exec_state.mode));

        // Depending on the mode don't do anything at all, take some special
        // actions, or fall through and run the PDL code.
        match self.exec_state.mode {
            CompMode::NonSync | CompMode::Sync => {
                // continue and run PDL code
            },
            CompMode::SyncEnd | CompMode::BlockedGet | CompMode::BlockedPut | CompMode::BlockedSelect => {
                return CompScheduling::Sleep;
            }
            CompMode::StartExit => return component::default_handle_start_exit(
                &mut self.exec_state, &mut self.control, sched_ctx, comp_ctx, &mut self.consensus
            ),
            CompMode::BusyExit => return component::default_handle_busy_exit(
                &mut self.exec_state, &self.control, sched_ctx
            ),
            CompMode::Exit => return component::default_handle_exit(&self.exec_state),
        }

        let run_result = self.execute_prompt(&sched_ctx);
        if let Err(error) = run_result {
            self.handle_component_error(sched_ctx, CompError::Executor(error));
            return CompScheduling::Immediate;
        }

        let run_result = run_result.unwrap();

        match run_result {
            EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
            EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
            // Results that can be returned in sync mode
            EC::SyncBlockEnd => {
                component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
                return CompScheduling::Immediate;
            },
            EC::BlockGet(expr_id, port_id) => {
                debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
                debug_assert!(self.exec_ctx.stmt.is_none());

                let port_id = port_id_from_eval(port_id);
                match component::default_attempt_get(
                    &mut self.exec_state, port_id, PortInstruction::SourceLocation(expr_id),
                    &mut self.inbox_main, &mut self.inbox_backup, sched_ctx, comp_ctx,
                    &mut self.control, &mut self.consensus
                ) {
                    GetResult::Received(message) => {
                        self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
                        return CompScheduling::Immediate;
                    },
                    GetResult::NoMessage => {
                        return CompScheduling::Sleep;
                    },
                    GetResult::Error(location_and_message) => {
                        self.handle_generic_component_error(sched_ctx, location_and_message);
                        return CompScheduling::Immediate;
                    }
                }
            },
            EC::Put(expr_id, port_id, value) => {
                debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
                sched_ctx.log(&format!("Putting value {:?}", value));

                // Send the message
                let target_port_id = port_id_from_eval(port_id);
                let send_result = component::default_send_data_message(
                    &mut self.exec_state, target_port_id,
                    PortInstruction::SourceLocation(expr_id), value,
                    sched_ctx, &mut self.consensus, comp_ctx
                );
                if let Err(location_and_message) = send_result {
                    self.handle_generic_component_error(sched_ctx, location_and_message);
                    return CompScheduling::Immediate;
                } else {
                    // When `run` is called again (potentially after becoming
                    // unblocked) we need to instruct the executor that we performed
                    // the `put`
                    let scheduling = send_result.unwrap();
                    self.exec_ctx.stmt = ExecStmt::PerformedPut;
                    return scheduling;
                }
            },
            EC::SelectStart(num_cases, _num_ports) => {
                debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
                self.select_state.handle_select_start(num_cases);
                return CompScheduling::Requeue;
            },
            EC::SelectRegisterPort(expr_id, case_index, port_index, port_id) => {
                debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
                let port_id = port_id_from_eval(port_id);
                let port_handle = comp_ctx.get_port_handle(port_id);

                // Note: we register the "last_instruction" here already. This
                // way if we get a `ClosePort` message, the condition to fail
                // the synchronous round is satisfied.
                let port_info = comp_ctx.get_port_mut(port_handle);
                port_info.last_instruction = PortInstruction::SourceLocation(expr_id);
                let port_is_closed = port_info.state == PortState::Closed;

                // Register port as part of select guard
                if let Err(_err) = self.select_state.register_select_case_port(comp_ctx, case_index, port_index, port_id) {
                    // Failure occurs if a port is used twice in the same guard
                    let protocol = &sched_ctx.runtime.protocol;
                    self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
                        &self.prompt, &protocol.modules, &protocol.heap, expr_id,
                        String::from("Cannot have the one port appear in the same guard twice")
                    )));
                } else if port_is_closed {
                    // Port is closed
                    let peer_id = comp_ctx.get_port(port_handle).peer_comp_id;
                    let protocol = &sched_ctx.runtime.protocol;
                    self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
                        &self.prompt, &protocol.modules, &protocol.heap, expr_id,
                        format!("Cannot register port, as the peer component (id:{}) has shut down", peer_id.0)
                    )));
                }

                return CompScheduling::Immediate;
            },
            EC::SelectWait => {
                debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
                let select_decision = self.select_state.handle_select_waiting_point(&self.inbox_main, comp_ctx);
                if let SelectDecision::Case(case_index) = select_decision {
                    // Reached a conclusion, so we can continue immediately
                    self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
                    self.exec_state.mode = CompMode::Sync;
                    return CompScheduling::Immediate;
                } else {
                    // No decision yet
                    self.exec_state.mode = CompMode::BlockedSelect;
                    return CompScheduling::Sleep;
                }
            },
            // Results that can be returned outside of sync mode
            EC::ComponentTerminated => {
                self.exec_state.set_as_start_exit(ExitReason::Termination);
                return CompScheduling::Immediate;
            },
            EC::SyncBlockStart => {
                component::default_handle_sync_start(
                    &mut self.exec_state, &mut self.inbox_main, sched_ctx, comp_ctx, &mut self.consensus
                );
                return CompScheduling::Immediate;
            },
            EC::NewComponent(definition_id, type_id, arguments) => {
                debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
                self.create_component_and_transfer_ports(
                    sched_ctx, comp_ctx,
                    definition_id, type_id, arguments
                );
                return CompScheduling::Requeue;
            },
            EC::NewChannel => {
                debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
                debug_assert!(self.exec_ctx.stmt.is_none());
                let channel = comp_ctx.create_channel();
                self.exec_ctx.stmt = ExecStmt::CreatedChannel((
                    Value::Output(port_id_to_eval(channel.putter_id)),
                    Value::Input(port_id_to_eval(channel.getter_id))
                ));
                self.inbox_main.push(None);
                self.inbox_main.push(None);
                return CompScheduling::Immediate;
            }
        }
    }
}

impl CompPDL {
    pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
        let mut inbox_main = Vec::new();
        inbox_main.reserve(num_ports);
        for _ in 0..num_ports {
            inbox_main.push(None);
        }

        return Self{
            exec_state: CompExecState::new(),
            select_state: SelectState::new(),
            prompt: initial_state,
            control: ControlLayer::default(),
            consensus: Consensus::new(),
            sync_counter: 0,
            exec_ctx: ExecCtx{
                stmt: ExecStmt::None,
            },
            inbox_main,
            inbox_backup: Vec::new(),
        }
    }

    // -------------------------------------------------------------------------
    // Running component and handling changes in global component state
    // -------------------------------------------------------------------------

    fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
        let mut step_result = EvalContinuation::Stepping;
        while let EvalContinuation::Stepping = step_result {
            step_result = self.prompt.step(
                &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
                &sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
            )?;
        }

        return Ok(step_result)
    }

    fn handle_sync_start(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
        sched_ctx.log("Component starting sync mode");
        self.consensus.notify_sync_start(comp_ctx);
        for message in self.inbox_main.iter() {
            if let Some(message) = message {
                self.consensus.handle_incoming_data_message(comp_ctx, message);
            }
        }
        debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
        self.exec_state.mode = CompMode::Sync;
    }

    fn handle_component_exit(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
        sched_ctx.log(&format!("Component exiting (reason: {:?}", self.exec_state.exit_reason));
        debug_assert_eq!(self.exec_state.mode, CompMode::StartExit);
        self.exec_state.mode = CompMode::BusyExit;
        let exit_inside_sync = self.exec_state.exit_reason.is_in_sync();

        // Doing this by index, then retrieving the handle is a bit rediculous,
        // but Rust is being Rust with its borrowing rules.
        for port_index in 0..comp_ctx.num_ports() {
            let port = comp_ctx.get_port_by_index_mut(port_index);
            if port.state == PortState::Closed {
                // Already closed, or in the process of being closed
                continue;
            }

            // Mark as closed
            let port_id = port.self_id;
            port.state = PortState::Closed;

            // Notify peer of closing
            let port_handle = comp_ctx.get_port_handle(port_id);
            let (peer, message) = self.control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
            let peer_info = comp_ctx.get_peer(peer);
            peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
        }
    }

    // -------------------------------------------------------------------------
    // Handling messages
    // -------------------------------------------------------------------------

    /// Handles a message that came in through the public inbox. This function
    /// will handle putting it in the correct place, and potentially blocking
    /// the port in case too many messages are being received.
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
        use component::IncomingData;

        // Whatever we do, glean information from headers in message
        if self.exec_state.mode.is_in_sync_block() {
            self.consensus.handle_incoming_data_message(comp_ctx, &message);
        }

        match component::default_handle_incoming_data_message(
            &mut self.exec_state, &mut self.inbox_main, comp_ctx, message,
            sched_ctx, &mut self.control
        ) {
            IncomingData::PlacedInSlot => {
                if self.exec_state.mode == CompMode::BlockedSelect {
                    let select_decision = self.select_state.handle_updated_inbox(&self.inbox_main, comp_ctx);
                    if let SelectDecision::Case(case_index) = select_decision {
                        self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
                        self.exec_state.mode = CompMode::Sync;
                    }
                }
            },
            IncomingData::SlotFull(message) => {
                self.inbox_backup.push(message);
            }
        }
    }

    fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
        let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
        component::default_handle_sync_decision(sched_ctx, &mut self.exec_state, comp_ctx, decision, &mut self.consensus);
    }

    /// Handles an error coming from the generic `component::handle_xxx`
    /// functions. Hence accepts argument as a tuple.
    fn handle_generic_component_error(&mut self, sched_ctx: &SchedulerCtx, location_and_message: (PortInstruction, String)) {
        // Retrieve location and message, display in terminal
        let (location, message) = location_and_message;
        let error = match location {
            PortInstruction::None => CompError::Component(message),
            PortInstruction::NoSource => unreachable!(), // for debugging: all in-sync errors are associated with a source location
            PortInstruction::SourceLocation(expression_id) => {
                let protocol = &sched_ctx.runtime.protocol;
                CompError::Executor(EvalError::new_error_at_expr(
                    &self.prompt, &protocol.modules, &protocol.heap,
                    expression_id, message
                ))
            }
        };

        self.handle_component_error(sched_ctx, error);
    }

    fn handle_component_error(&mut self, sched_ctx: &SchedulerCtx, error: CompError) {
        sched_ctx.error(&format!("{}", error));

        // Set state to handle subsequent error
        let exit_reason = if self.exec_state.mode.is_in_sync_block() {
            ExitReason::ErrorInSync
        } else {
            ExitReason::ErrorNonSync
        };

        self.exec_state.set_as_start_exit(exit_reason);
    }

    // -------------------------------------------------------------------------
    // Handling ports
    // -------------------------------------------------------------------------

    /// Creates a new component and transfers ports. Because of the stepwise
    /// process in which memory is allocated, ports are transferred, messages
    /// are exchanged, component lifecycle methods are called, etc. This
    /// function facilitates a lot of implicit assumptions (e.g. when the
    /// `Component::on_creation` method is called, the component is already
    /// registered at the runtime).
    fn create_component_and_transfer_ports(
        &mut self,
        sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx,
        definition_id: ProcedureDefinitionId, type_id: TypeId, mut arguments: ValueGroup
    ) {
        struct PortPair{
            creator_handle: LocalPortHandle,
            creator_id: PortId,
            created_handle: LocalPortHandle,
            created_id: PortId,
        }
        let mut opened_port_id_pairs = Vec::new();
        let mut closed_port_id_pairs = Vec::new();

        let reservation = sched_ctx.runtime.start_create_pdl_component();
        let mut created_ctx = CompCtx::new(&reservation);

        let other_proc = &sched_ctx.runtime.protocol.heap[definition_id];
        let self_proc = &sched_ctx.runtime.protocol.heap[self.prompt.frames[0].definition];

        // dbg_code!({
        //     sched_ctx.log(&format!(
        //         "DEBUG: Comp '{}' (ID {:?}) is creating comp '{}' (ID {:?})",
        //         self_proc.identifier.value.as_str(), creator_ctx.id,
        //         other_proc.identifier.value.as_str(), reservation.id()
        //     ));
        // });

        // Take all the ports ID that are in the `args` (and currently belong to
        // the creator component) and translate them into new IDs that are
        // associated with the component we're about to create
        let mut arg_iter = ValueGroupPortIter::new(&mut arguments);
        while let Some(port_reference) = arg_iter.next() {
            // Create port entry for new component
            let creator_port_id = port_reference.id;
            let creator_port_handle = creator_ctx.get_port_handle(creator_port_id);
            let creator_port = creator_ctx.get_port(creator_port_handle);
            let created_port_handle = created_ctx.add_port(
                creator_port.peer_comp_id, creator_port.peer_port_id,
                creator_port.kind, creator_port.state
            );
            let created_port = created_ctx.get_port(created_port_handle);
            let created_port_id = created_port.self_id;

            let port_id_pair = PortPair {
                creator_handle: creator_port_handle,
                creator_id: creator_port_id,
                created_handle: created_port_handle,
                created_id: created_port_id,
            };

            if creator_port.state == PortState::Closed {
                closed_port_id_pairs.push(port_id_pair)
            } else {
                opened_port_id_pairs.push(port_id_pair);
            }

            // Modify value in arguments (bit dirty, but double vec in ValueGroup causes lifetime issues)
            let arg_value = if let Some(heap_pos) = port_reference.heap_pos {
                &mut arg_iter.group.regions[heap_pos][port_reference.index]
            } else {
                &mut arg_iter.group.values[port_reference.index]
            };
            match arg_value {
                Value::Input(id) => *id = port_id_to_eval(created_port_id),
                Value::Output(id) => *id = port_id_to_eval(created_port_id),
                _ => unreachable!(),
            }
        }

        // For each transferred port pair set their peer components to the
        // correct values. This will only change the values for the ports of
        // the new component.
        let mut created_component_has_remote_peers = false;

        for pair in opened_port_id_pairs.iter() {
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
            let created_port_info = created_ctx.get_port_mut(pair.created_handle);

            if created_port_info.peer_comp_id == creator_ctx.id {
                // Port peer is owned by the creator as well
                let created_peer_port_index = opened_port_id_pairs
                    .iter()
                    .position(|v| v.creator_id == creator_port_info.peer_port_id);
                match created_peer_port_index {
                    Some(created_peer_port_index) => {
                        // Peer port moved to the new component as well. So
                        // adjust IDs appropriately.
                        let peer_pair = &opened_port_id_pairs[created_peer_port_index];
                        created_port_info.peer_port_id = peer_pair.created_id;
                        created_port_info.peer_comp_id = reservation.id();
                        todo!("either add 'self peer', or remove that idea from Ctx altogether")
                    },
                    None => {
                        // Peer port remains with creator component.
                        created_port_info.peer_comp_id = creator_ctx.id;
                        created_ctx.add_peer(pair.created_handle, sched_ctx, creator_ctx.id, None);
                    }
                }
            } else {
                // Peer is a different component. We'll deal with sending the
                // appropriate messages later
                let peer_handle = creator_ctx.get_peer_handle(created_port_info.peer_comp_id);
                let peer_info = creator_ctx.get_peer(peer_handle);
                created_ctx.add_peer(pair.created_handle, sched_ctx, peer_info.id, Some(&peer_info.handle));
                created_component_has_remote_peers = true;
            }
        }

        // We'll now actually turn our reservation for a new component into an
        // actual component. Note that we initialize it as "not sleeping" as
        // its initial scheduling might be performed based on `Ack`s in response
        // to message exchanges between remote peers.
        let total_num_ports = opened_port_id_pairs.len() + closed_port_id_pairs.len();
        let component = component::create_component(&sched_ctx.runtime.protocol, definition_id, type_id, arguments, total_num_ports);
        let (created_key, component) = sched_ctx.runtime.finish_create_pdl_component(
            reservation, component, created_ctx, false,
        );
        component.component.on_creation(created_key.downgrade(), sched_ctx);

        // Now modify the creator's ports: remove every transferred port and
        // potentially remove the peer component.
        for pair in opened_port_id_pairs.iter() {
            // Remove peer if appropriate
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
            let creator_port_index = creator_ctx.get_port_index(pair.creator_handle);
            let creator_peer_comp_id = creator_port_info.peer_comp_id;
            creator_ctx.remove_peer(sched_ctx, pair.creator_handle, creator_peer_comp_id, false);
            creator_ctx.remove_port(pair.creator_handle);

            // Transfer any messages
            if let Some(mut message) = self.inbox_main.remove(creator_port_index) {
                message.data_header.target_port = pair.created_id;
                component.component.adopt_message(&mut component.ctx, message)
            }

            let mut message_index = 0;
            while message_index < self.inbox_backup.len() {
                let message = &self.inbox_backup[message_index];
                if message.data_header.target_port == pair.creator_id {
                    // transfer message
                    let mut message = self.inbox_backup.remove(message_index);
                    message.data_header.target_port = pair.created_id;
                    component.component.adopt_message(&mut component.ctx, message);
                } else {
                    message_index += 1;
                }
            }

            // Handle potential channel between creator and created component
            let created_port_info = component.ctx.get_port(pair.created_handle);

            if created_port_info.peer_comp_id == creator_ctx.id {
                let peer_port_handle = creator_ctx.get_port_handle(created_port_info.peer_port_id);
                let peer_port_info = creator_ctx.get_port_mut(peer_port_handle);
                peer_port_info.peer_comp_id = component.ctx.id;
                peer_port_info.peer_port_id = created_port_info.self_id;
                creator_ctx.add_peer(peer_port_handle, sched_ctx, component.ctx.id, None);
            }
        }

        // Do the same for the closed ports
        for pair in closed_port_id_pairs.iter() {
            let port_index = creator_ctx.get_port_index(pair.creator_handle);
            creator_ctx.remove_port(pair.creator_handle);
            let _removed_message = self.inbox_main.remove(port_index);

            // In debug mode: since we've closed the port we shouldn't have any
            // messages for that port.
            debug_assert!(_removed_message.is_none());
            debug_assert!(!self.inbox_backup.iter().any(|v| v.data_header.target_port == pair.creator_id));
        }

        // By now all ports and messages have been transferred. If there are any
        // peers that need to be notified about this new component, then we
        // initiate the protocol that will notify everyone here.
        if created_component_has_remote_peers {
            let created_ctx = &component.ctx;
            let schedule_entry_id = self.control.add_schedule_entry(created_ctx.id);
            for pair in opened_port_id_pairs.iter() {
                let port_info = created_ctx.get_port(pair.created_handle);
                if port_info.peer_comp_id != creator_ctx.id && port_info.peer_comp_id != created_ctx.id {
                    let message = self.control.add_reroute_entry(
                        creator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
                        pair.creator_id, pair.created_id, created_ctx.id,
                        schedule_entry_id
                    );
                    let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
                    let peer_info = created_ctx.get_peer(peer_handle);
                    peer_info.handle.send_message(&sched_ctx.runtime, message, true);
                }
            }
        } else {
            // Peer can be scheduled immediately
            sched_ctx.runtime.enqueue_work(created_key);
        }
    }
}

/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
    // Helper to check a value for a port and recurse if needed.
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                let cur_port = PortId(port_id.id);
                for prev_port in ports.iter() {
                    if *prev_port == cur_port {
                        // Already added
                        return;
                    }
                }

                ports.push(cur_port);
            },
            Value::Array(heap_pos) |
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for embedded_value in heap_region {
                    find_port_in_value(group, embedded_value, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }

    // Clear the ports, then scan all the available values
    ports.clear();
    for value in &value_group.values {
        find_port_in_value(value_group, value, ports);
    }
}

struct ValueGroupPortIter<'a> {
    group: &'a mut ValueGroup,
    heap_stack: Vec<(usize, usize)>,
    index: usize,
}

impl<'a> ValueGroupPortIter<'a> {
    fn new(group: &'a mut ValueGroup) -> Self {
        return Self{ group, heap_stack: Vec::new(), index: 0 }
    }
}

struct ValueGroupPortRef {
    id: PortId,
    heap_pos: Option<usize>, // otherwise: on stack
    index: usize,
}

impl<'a> Iterator for ValueGroupPortIter<'a> {
    type Item = ValueGroupPortRef;

    fn next(&mut self) -> Option<Self::Item> {
        // Enter loop that keeps iterating until a port is found
        loop {
            if let Some(pos) = self.heap_stack.last() {
                let (heap_pos, region_index) = *pos;
                if region_index >= self.group.regions[heap_pos].len() {
                    self.heap_stack.pop();
                    continue;
                }

                let value = &self.group.regions[heap_pos][region_index];
                self.heap_stack.last_mut().unwrap().1 += 1;

                match value {
                    Value::Input(id) | Value::Output(id) => {
                        let id = PortId(id.id);
                        return Some(ValueGroupPortRef{
                            id,
                            heap_pos: Some(heap_pos),
                            index: region_index,
                        });
                    },
                    _ => {},
                }

                if let Some(heap_pos) = value.get_heap_pos() {
                    self.heap_stack.push((heap_pos as usize, 0));
                }
            } else {
                if self.index >= self.group.values.len() {
                    return None;
                }

                let value = &mut self.group.values[self.index];
                self.index += 1;

                match value {
                    Value::Input(id) | Value::Output(id) => {
                        let id = PortId(id.id);
                        return Some(ValueGroupPortRef{
                            id,
                            heap_pos: None,
                            index: self.index - 1
                        });
                    },
                    _ => {},
                }

                // Not a port, check if we need to enter a heap region
                if let Some(heap_pos) = value.get_heap_pos() {
                    self.heap_stack.push((heap_pos as usize, 0));
                } // else: just consider the next value
            }
        }
    }
}