Files @ 21280085d6b4
Branch filter:

Location: CSY/reowolf/src/protocol/parser/pass_typing.rs

21280085d6b4 184.8 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Max Henger
Merge branch 'fix-erroneous-comp-handle-debug-assert' into 'master'

fix: revert erroneous debug assert

See merge request nl-cwi-csy/reowolf!5
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
/// pass_typing
///
/// Performs type inference and type checking. Type inference is implemented by
/// applying constraints on (sub)trees of types. During this process the
/// resolver takes the `ParserType` structs (the representation of the types
/// written by the programmer), converts them to `InferenceType` structs (the
/// temporary data structure used during type inference) and attempts to arrive
/// at `ConcreteType` structs (the representation of a fully checked and
/// validated type).
///
/// The resolver will visit every statement and expression relevant to the
/// procedure and insert and determine its initial type based on context (e.g. a
/// return statement's expression must match the function's return type, an
/// if statement's test expression must evaluate to a boolean). When all are
/// visited we attempt to make progress in evaluating the types. Whenever a type
/// is progressed we queue the related expressions for further type progression.
/// Once no more expressions are in the queue the algorithm is finished. At this
/// point either all types are inferred (or can be trivially implicitly
/// determined), or we have incomplete types. In the latter case we return an
/// error.
///
/// TODO: Needs a thorough rewrite:
///  0. polymorph_progress is intentionally broken at the moment. Make it work
///     again and use a normal VecSomething.
///  1. The foundation for doing all of the work with predetermined indices
///     instead of with HashMaps is there, but it is not really used because of
///     time constraints. When time is available, rewrite the system such that
///     AST IDs are not needed, and only indices into arrays are used.
///  2. Remove the `msg` type?
///  3. Disallow certain types in certain operations (e.g. `Void`).

macro_rules! debug_log_enabled {
    () => { false };
}

macro_rules! debug_log {
    ($format:literal) => {
        enabled_debug_print!(false, "types", $format);
    };
    ($format:literal, $($args:expr),*) => {
        enabled_debug_print!(false, "types", $format, $($args),*);
    };
}

use std::collections::VecDeque;

use crate::collections::{ScopedBuffer, ScopedSection, DequeSet};
use crate::protocol::ast::*;
use crate::protocol::input_source::ParseError;
use crate::protocol::parser::ModuleCompilationPhase;
use crate::protocol::parser::type_table::*;
use crate::protocol::parser::token_parsing::*;
use super::visitor::{
    BUFFER_INIT_CAP_LARGE,
    BUFFER_INIT_CAP_SMALL,
    Ctx,
};

// -----------------------------------------------------------------------------
// Inference type
// -----------------------------------------------------------------------------

const VOID_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Void ];
const MESSAGE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Message, InferenceTypePart::UInt8 ];
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
const CHARACTER_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Character ];
const STRING_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::String, InferenceTypePart::Character ];
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
const SLICE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Slice, InferenceTypePart::Unknown ];
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];

/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
#[derive(Debug, Clone, Eq, PartialEq)]
pub(crate) enum InferenceTypePart {
    // When we infer types of AST elements that support polymorphic arguments,
    // then we might have the case that multiple embedded types depend on the
    // polymorphic type (e.g. func bla(T a, T[] b) -> T[][]). If we can infer
    // the type in one place (e.g. argument a), then we may propagate this
    // information to other types (e.g. argument b and the return type). For
    // this reason we place markers in the `InferenceType` instances such that
    // we know which part of the type was originally a polymorphic argument.
    Marker(u32),
    // Completely unknown type, needs to be inferred
    Unknown,
    // Partially known type, may be inferred to to be the appropriate related 
    // type.
    // IndexLike,      // index into array/slice
    NumberLike,     // any kind of integer/float
    IntegerLike,    // any kind of integer
    ArrayLike,      // array or slice. Note that this must have a subtype
    PortLike,       // input or output port
    // Special types that cannot be instantiated by the user
    Void, // For builtin functions that do not return anything
    // Concrete types without subtypes
    Bool,
    UInt8,
    UInt16,
    UInt32,
    UInt64,
    SInt8,
    SInt16,
    SInt32,
    SInt64,
    Character,
    String,
    // One subtype
    Message,
    Array,
    Slice,
    Input,
    Output,
    // Tuple with any number of subtypes (for practical reasons 1 element is impossible)
    Tuple(u32),
    // A user-defined type with any number of subtypes
    Instance(DefinitionId, u32)
}

impl InferenceTypePart {
    fn is_marker(&self) -> bool {
        match self {
            InferenceTypePart::Marker(_) => true,
            _ => false,
        }
    }

    /// Checks if the type is concrete, markers are interpreted as concrete
    /// types.
    fn is_concrete(&self) -> bool {
        use InferenceTypePart as ITP;
        match self {
            ITP::Unknown | ITP::NumberLike |
            ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => false,
            _ => true
        }
    }

    fn is_concrete_number(&self) -> bool {
        use InferenceTypePart as ITP;
        match self {
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
            _ => false,
        }
    }

    fn is_concrete_integer(&self) -> bool {
        use InferenceTypePart as ITP;
        match self {
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
            _ => false,
        }
    }

    fn is_concrete_arraylike(&self) -> bool {
        use InferenceTypePart as ITP;
        match self {
            ITP::Array | ITP::Slice | ITP::String | ITP::Message => true,
            _ => false,
        }
    }

    fn is_concrete_port(&self) -> bool {
        use InferenceTypePart as ITP;
        match self {
            ITP::Input | ITP::Output => true,
            _ => false,
        }
    }

    /// Checks if a part is less specific than the argument. Only checks for 
    /// single-part inference (i.e. not the replacement of an `Unknown` variant 
    /// with the argument)
    fn may_be_inferred_from(&self, arg: &InferenceTypePart) -> bool {
        use InferenceTypePart as ITP;

        (*self == ITP::IntegerLike && arg.is_concrete_integer()) ||
        (*self == ITP::NumberLike && (arg.is_concrete_number() || *arg == ITP::IntegerLike)) ||
        (*self == ITP::ArrayLike && arg.is_concrete_arraylike()) ||
        (*self == ITP::PortLike && arg.is_concrete_port())
    }

    /// Checks if a part is more specific

    /// Returns the change in "iteration depth" when traversing this particular
    /// part. The iteration depth is used to traverse the tree in a linear 
    /// fashion. It is basically `number_of_subtypes - 1`
    fn depth_change(&self) -> i32 {
        use InferenceTypePart as ITP;
        match &self {
            ITP::Unknown | ITP::NumberLike | ITP::IntegerLike |
            ITP::Void | ITP::Bool |
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 |
            ITP::Character => {
                -1
            },
            ITP::Marker(_) |
            ITP::ArrayLike | ITP::Message | ITP::Array | ITP::Slice |
            ITP::PortLike | ITP::Input | ITP::Output | ITP::String => {
                // One subtype, so do not modify depth
                0
            },
            ITP::Tuple(num) | ITP::Instance(_, num) => {
                (*num as i32) - 1
            }
        }
    }
}

#[derive(Debug, Clone)]
struct InferenceType {
    has_marker: bool,
    is_done: bool,
    parts: Vec<InferenceTypePart>,
}

impl InferenceType {
    /// Generates a new InferenceType. The two boolean flags will be checked in
    /// debug mode.
    fn new(has_marker: bool, is_done: bool, parts: Vec<InferenceTypePart>) -> Self {
        dbg_code!({
            debug_assert!(!parts.is_empty());
            let parts_body_marker = parts.iter().any(|v| v.is_marker());
            debug_assert_eq!(has_marker, parts_body_marker);
            let parts_done = parts.iter().all(|v| v.is_concrete());
            debug_assert_eq!(is_done, parts_done, "{:?}", parts);
        });
        Self{ has_marker, is_done, parts }
    }

    /// Replaces a type subtree with the provided subtree. The caller must make
    /// sure the the replacement is a well formed type subtree.
    fn replace_subtree(&mut self, start_idx: usize, with: &[InferenceTypePart]) {
        let end_idx = Self::find_subtree_end_idx(&self.parts, start_idx);
        debug_assert_eq!(with.len(), Self::find_subtree_end_idx(with, 0));
        self.parts.splice(start_idx..end_idx, with.iter().cloned());
        self.recompute_is_done();
    }

    // TODO: @performance, might all be done inline in the type inference methods
    fn recompute_is_done(&mut self) {
        self.is_done = self.parts.iter().all(|v| v.is_concrete());
    }

    /// Seeks a body marker starting at the specified position. If a marker is
    /// found then its value and the index of the type subtree that follows it
    /// is returned.
    fn find_marker(&self, mut start_idx: usize) -> Option<(u32, usize)> {
        while start_idx < self.parts.len() {
            if let InferenceTypePart::Marker(marker) = &self.parts[start_idx] {
                return Some((*marker, start_idx + 1))
            }

            start_idx += 1;
        }

        None
    }

    /// Returns an iterator over all body markers and the partial type tree that
    /// follows those markers. If it is a problem that `InferenceType` is 
    /// borrowed by the iterator, then use `find_body_marker`.
    fn marker_iter(&self) -> InferenceTypeMarkerIter {
        InferenceTypeMarkerIter::new(&self.parts)
    }

    /// Given that the `parts` are a depth-first serialized tree of types, this
    /// function finds the subtree anchored at a specific node. The returned 
    /// index is exclusive.
    fn find_subtree_end_idx(parts: &[InferenceTypePart], start_idx: usize) -> usize {
        let mut depth = 1;
        let mut idx = start_idx;

        while idx < parts.len() {
            depth += parts[idx].depth_change();
            if depth == 0 {
                return idx + 1;
            }
            idx += 1;
        }

        // If here, then the inference type is malformed
        unreachable!("Malformed type: {:?}", parts);
    }

    /// Call that attempts to infer the part at `to_infer.parts[to_infer_idx]` 
    /// using the subtree at `template.parts[template_idx]`. Will return 
    /// `Some(depth_change_due_to_traversal)` if type inference has been 
    /// applied. In this case the indices will also be modified to point to the 
    /// next part in both templates. If type inference has not (or: could not) 
    /// be applied then `None` will be returned. Note that this might mean that 
    /// the types are incompatible.
    ///
    /// As this is a helper functions, some assumptions: the parts are not 
    /// exactly equal, and neither of them contains a marker. Also: only the
    /// `to_infer` parts are checked for inference. It might be that this 
    /// function returns `None`, but that that `template` is still compatible
    /// with `to_infer`, e.g. when `template` has an `Unknown` part.
    fn infer_part_for_single_type(
        to_infer: &mut InferenceType, to_infer_idx: &mut usize,
        template_parts: &[InferenceTypePart], template_idx: &mut usize,
    ) -> Option<i32> {
        use InferenceTypePart as ITP;

        let to_infer_part = &to_infer.parts[*to_infer_idx];
        let template_part = &template_parts[*template_idx];

        // Check for programmer mistakes
        debug_assert_ne!(to_infer_part, template_part);
        debug_assert!(!to_infer_part.is_marker(), "marker encountered in 'infer part'");
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");

        // Inference of a somewhat-specified type
        if to_infer_part.may_be_inferred_from(template_part) {
            let depth_change = to_infer_part.depth_change();
            debug_assert_eq!(depth_change, template_part.depth_change());

            to_infer.parts[*to_infer_idx] = template_part.clone();

            *to_infer_idx += 1;
            *template_idx += 1;
            return Some(depth_change);
        }

        // Inference of a completely unknown type
        if *to_infer_part == ITP::Unknown {
            // template part is different, so cannot be unknown, hence copy the
            // entire subtree. Make sure not to copy markers.
            let template_end_idx = Self::find_subtree_end_idx(template_parts, *template_idx);
            to_infer.parts[*to_infer_idx] = template_parts[*template_idx].clone(); // first element

            *to_infer_idx += 1;
            for template_idx in *template_idx + 1..template_end_idx {
                let template_part = &template_parts[template_idx];
                if !template_part.is_marker() {
                    to_infer.parts.insert(*to_infer_idx, template_part.clone());
                    *to_infer_idx += 1;
                }
            }
            *template_idx = template_end_idx;

            // Note: by definition the LHS was Unknown and the RHS traversed a 
            // full subtree.
            return Some(-1);
        }

        None
    }

    /// Call that checks if the `to_check` part is compatible with the `infer`
    /// part. This is essentially a copy of `infer_part_for_single_type`, but
    /// without actually copying the type parts.
    fn check_part_for_single_type(
        to_check_parts: &[InferenceTypePart], to_check_idx: &mut usize,
        template_parts: &[InferenceTypePart], template_idx: &mut usize
    ) -> Option<i32> {
        use InferenceTypePart as ITP;

        let to_check_part = &to_check_parts[*to_check_idx];
        let template_part = &template_parts[*template_idx];

        // Checking programmer errors
        debug_assert_ne!(to_check_part, template_part);
        debug_assert!(!to_check_part.is_marker(), "marker encountered in 'to_check part'");
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");

        if to_check_part.may_be_inferred_from(template_part) {
            let depth_change = to_check_part.depth_change();
            debug_assert_eq!(depth_change, template_part.depth_change());
            *to_check_idx += 1;
            *template_idx += 1;
            return Some(depth_change);
        }

        if *to_check_part == ITP::Unknown {
            *to_check_idx += 1;
            *template_idx = Self::find_subtree_end_idx(template_parts, *template_idx);

            // By definition LHS and RHS had depth change of -1
            return Some(-1);
        }

        None
    }

    /// Attempts to infer types between two `InferenceType` instances. This 
    /// function is unsafe as it accepts pointers to work around Rust's 
    /// borrowing rules. The caller must ensure that the pointers are distinct.
    unsafe fn infer_subtrees_for_both_types(
        type_a: *mut InferenceType, start_idx_a: usize,
        type_b: *mut InferenceType, start_idx_b: usize
    ) -> DualInferenceResult {
        debug_assert!(!std::ptr::eq(type_a, type_b), "encountered pointers to the same inference type");
        let type_a = &mut *type_a;
        let type_b = &mut *type_b;

        let mut modified_a = false;
        let mut modified_b = false;
        let mut idx_a = start_idx_a;
        let mut idx_b = start_idx_b;
        let mut depth = 1;

        while depth > 0 {
            // Advance indices if we encounter markers or equal parts
            let part_a = &type_a.parts[idx_a];
            let part_b = &type_b.parts[idx_b];
            
            if part_a == part_b {
                let depth_change = part_a.depth_change();
                depth += depth_change;
                debug_assert_eq!(depth_change, part_b.depth_change());
                idx_a += 1;
                idx_b += 1;
                continue;
            }
            if part_a.is_marker() { idx_a += 1; continue; }
            if part_b.is_marker() { idx_b += 1; continue; }

            // Types are not equal and are both not markers
            if let Some(depth_change) = Self::infer_part_for_single_type(type_a, &mut idx_a, &type_b.parts, &mut idx_b) {
                depth += depth_change;
                modified_a = true;
                continue;
            }
            if let Some(depth_change) = Self::infer_part_for_single_type(type_b, &mut idx_b, &type_a.parts, &mut idx_a) {
                depth += depth_change;
                modified_b = true;
                continue;
            }

            // Types can not be inferred in any way: types must be incompatible
            return DualInferenceResult::Incompatible;
        }

        if modified_a { type_a.recompute_is_done(); }
        if modified_b { type_b.recompute_is_done(); }

        // If here then we completely inferred the subtrees.
        match (modified_a, modified_b) {
            (false, false) => DualInferenceResult::Neither,
            (false, true) => DualInferenceResult::Second,
            (true, false) => DualInferenceResult::First,
            (true, true) => DualInferenceResult::Both
        }
    }

    /// Attempts to infer the first subtree based on the template. Like
    /// `infer_subtrees_for_both_types`, but now only applying inference to
    /// `to_infer` based on the type information in `template`.
    ///
    /// The `forced_template` flag controls whether `to_infer` is considered
    /// valid if it is more specific then the template. When `forced_template`
    /// is false, then as long as the `to_infer` and `template` types are
    /// compatible the inference will succeed. If `forced_template` is true,
    /// then `to_infer` MUST be less specific than `template` (e.g.
    /// `IntegerLike` is less specific than `UInt32`)
    fn infer_subtree_for_single_type(
        to_infer: &mut InferenceType, mut to_infer_idx: usize,
        template: &[InferenceTypePart], mut template_idx: usize,
        forced_template: bool,
    ) -> SingleInferenceResult {
        let mut modified = false;
        let mut depth = 1;

        while depth > 0 {
            let to_infer_part = &to_infer.parts[to_infer_idx];
            let template_part = &template[template_idx];

            if to_infer_part == template_part {
                let depth_change = to_infer_part.depth_change();
                depth += depth_change;
                debug_assert_eq!(depth_change, template_part.depth_change());
                to_infer_idx += 1;
                template_idx += 1;
                continue;
            }
            if to_infer_part.is_marker() { to_infer_idx += 1; continue; }
            if template_part.is_marker() { template_idx += 1; continue; }

            // Types are not equal and not markers. So check if we can infer 
            // anything
            if let Some(depth_change) = Self::infer_part_for_single_type(
                to_infer, &mut to_infer_idx, template, &mut template_idx
            ) {
                depth += depth_change;
                modified = true;
                continue;
            }

            if !forced_template {
                // We cannot infer anything, but the template may still be
                // compatible with the type we're inferring
                if let Some(depth_change) = Self::check_part_for_single_type(
                    template, &mut template_idx, &to_infer.parts, &mut to_infer_idx
                ) {
                    depth += depth_change;
                    continue;
                }
            }

            return SingleInferenceResult::Incompatible
        }

        if modified {
            to_infer.recompute_is_done();
            return SingleInferenceResult::Modified;
        } else {
            return SingleInferenceResult::Unmodified;
        }
    }

    /// Checks if both types are compatible, doesn't perform any inference
    fn check_subtrees(
        type_parts_a: &[InferenceTypePart], start_idx_a: usize,
        type_parts_b: &[InferenceTypePart], start_idx_b: usize
    ) -> bool {
        let mut depth = 1;
        let mut idx_a = start_idx_a;
        let mut idx_b = start_idx_b;

        while depth > 0 {
            let part_a = &type_parts_a[idx_a];
            let part_b = &type_parts_b[idx_b];

            if part_a == part_b {
                let depth_change = part_a.depth_change();
                depth += depth_change;
                debug_assert_eq!(depth_change, part_b.depth_change());
                idx_a += 1;
                idx_b += 1;
                continue;
            }
            
            if part_a.is_marker() { idx_a += 1; continue; }
            if part_b.is_marker() { idx_b += 1; continue; }

            if let Some(depth_change) = Self::check_part_for_single_type(
                type_parts_a, &mut idx_a, type_parts_b, &mut idx_b
            ) {
                depth += depth_change;
                continue;
            }
            if let Some(depth_change) = Self::check_part_for_single_type(
                type_parts_b, &mut idx_b, type_parts_a, &mut idx_a
            ) {
                depth += depth_change;
                continue;
            }

            return false;
        }

        true
    }

    /// Performs the conversion of the inference type into a concrete type.
    /// By calling this function you must make sure that no unspecified types
    /// (e.g. Unknown or IntegerLike) exist in the type. Will not clear or check
    /// if the supplied `ConcreteType` is empty, will simply append to the parts
    /// vector.
    fn write_concrete_type(&self, concrete_type: &mut ConcreteType) {
        use InferenceTypePart as ITP;
        use ConcreteTypePart as CTP;

        // Make sure inference type is specified but concrete type is not yet specified
        debug_assert!(!self.parts.is_empty());
        concrete_type.parts.reserve(self.parts.len());

        let mut idx = 0;
        while idx < self.parts.len() {
            let part = &self.parts[idx];
            let converted_part = match part {
                ITP::Marker(_) => {
                    // Markers are removed when writing to the concrete type.
                    idx += 1;
                    continue;
                },
                ITP::Unknown | ITP::NumberLike |
                ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => {
                    // Should not happen if type inferencing works correctly: we
                    // should have returned a programmer-readable error or have
                    // inferred all types.
                    unreachable!("attempted to convert inference type part {:?} into concrete type", part);
                },
                ITP::Void => CTP::Void,
                ITP::Message => CTP::Message,
                ITP::Bool => CTP::Bool,
                ITP::UInt8 => CTP::UInt8,
                ITP::UInt16 => CTP::UInt16,
                ITP::UInt32 => CTP::UInt32,
                ITP::UInt64 => CTP::UInt64,
                ITP::SInt8 => CTP::SInt8,
                ITP::SInt16 => CTP::SInt16,
                ITP::SInt32 => CTP::SInt32,
                ITP::SInt64 => CTP::SInt64,
                ITP::Character => CTP::Character,
                ITP::String => {
                    // Inferred type has a 'char' subtype to simplify array
                    // checking, we remove it here.
                    debug_assert_eq!(self.parts[idx + 1], InferenceTypePart::Character);
                    idx += 1;
                    CTP::String
                },
                ITP::Array => CTP::Array,
                ITP::Slice => CTP::Slice,
                ITP::Input => CTP::Input,
                ITP::Output => CTP::Output,
                ITP::Tuple(num) => CTP::Tuple(*num),
                ITP::Instance(id, num) => CTP::Instance(*id, *num),
            };

            concrete_type.parts.push(converted_part);
            idx += 1;
        }
    }

    /// Writes a human-readable version of the type to a string. This is used
    /// to display error messages
    fn write_display_name(
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
    ) -> usize {
        use InferenceTypePart as ITP;

        match &parts[idx] {
            ITP::Marker(_marker_idx) => {
                if debug_log_enabled!() {
                    buffer.push_str(&format!("{{Marker:{}}}", *_marker_idx));
                }
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
            },
            ITP::Unknown => buffer.push_str("?"),
            ITP::NumberLike => buffer.push_str("numberlike"),
            ITP::IntegerLike => buffer.push_str("integerlike"),
            ITP::ArrayLike => {
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push_str("[?]");
            },
            ITP::PortLike => {
                buffer.push_str("portlike<");
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push('>');
            }
            ITP::Void => buffer.push_str("void"),
            ITP::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
            ITP::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
            ITP::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
            ITP::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
            ITP::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
            ITP::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
            ITP::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
            ITP::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
            ITP::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
            ITP::Character => buffer.push_str(KW_TYPE_CHAR_STR),
            ITP::String => {
                buffer.push_str(KW_TYPE_STRING_STR);
                idx += 1; // skip the 'char' subtype
            },
            ITP::Message => {
                buffer.push_str(KW_TYPE_MESSAGE_STR);
                buffer.push('<');
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push('>');
            },
            ITP::Array => {
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push_str("[]");
            },
            ITP::Slice => {
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push_str("[..]");
            },
            ITP::Input => {
                buffer.push_str(KW_TYPE_IN_PORT_STR);
                buffer.push('<');
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push('>');
            },
            ITP::Output => {
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
                buffer.push('<');
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                buffer.push('>');
            },
            ITP::Tuple(num_sub) => {
                buffer.push('(');
                if *num_sub > 0 {
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                    for _sub_idx in 1..*num_sub {
                        buffer.push_str(", ");
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                    }
                }
                buffer.push(')');
            }
            ITP::Instance(definition_id, num_sub) => {
                let definition = &heap[*definition_id];
                buffer.push_str(definition.identifier().value.as_str());
                if *num_sub > 0 {
                    buffer.push('<');
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                    for _sub_idx in 1..*num_sub {
                        buffer.push_str(", ");
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
                    }
                    buffer.push('>');
                }
            },
        }

        idx
    }

    /// Returns the display name of a (part of) the type tree. Will allocate a
    /// string.
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
        let mut buffer = String::with_capacity(parts.len() * 6);
        Self::write_display_name(&mut buffer, heap, parts, 0);
        buffer
    }

    /// Returns the display name of the full type tree. Will allocate a string.
    fn display_name(&self, heap: &Heap) -> String {
        Self::partial_display_name(heap, &self.parts)
    }
}

impl Default for InferenceType {
    fn default() -> Self {
        Self{
            has_marker: false,
            is_done: false,
            parts: Vec::new(),
        }
    }
}

/// Iterator over the subtrees that follow a marker in an `InferenceType`
/// instance. Returns immutable slices over the internal parts
struct InferenceTypeMarkerIter<'a> {
    parts: &'a [InferenceTypePart],
    idx: usize,
}

impl<'a> InferenceTypeMarkerIter<'a> {
    fn new(parts: &'a [InferenceTypePart]) -> Self {
        Self{ parts, idx: 0 }
    }
}

impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
    type Item = (u32, &'a [InferenceTypePart]);

    fn next(&mut self) -> Option<Self::Item> {
        // Iterate until we find a marker
        while self.idx < self.parts.len() {
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
                // Found a marker, find the subtree end
                let start_idx = self.idx + 1;
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);

                // Modify internal index, then return items
                self.idx = end_idx;
                return Some((marker, &self.parts[start_idx..end_idx]));
            }

            self.idx += 1;
        }

        None
    }
}

#[derive(Debug, PartialEq, Eq)]
enum DualInferenceResult {
    Neither,        // neither argument is clarified
    First,          // first argument is clarified using the second one
    Second,         // second argument is clarified using the first one
    Both,           // both arguments are clarified
    Incompatible,   // types are incompatible: programmer error
}

impl DualInferenceResult {
    fn modified_lhs(&self) -> bool {
        match self {
            DualInferenceResult::First | DualInferenceResult::Both => true,
            _ => false
        }
    }
    fn modified_rhs(&self) -> bool {
        match self {
            DualInferenceResult::Second | DualInferenceResult::Both => true,
            _ => false
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
enum SingleInferenceResult {
    Unmodified,
    Modified,
    Incompatible
}

// -----------------------------------------------------------------------------
// PassTyping - Public Interface
// -----------------------------------------------------------------------------

type InferNodeIndex = usize;
type PolyDataIndex = isize;
type VarDataIndex = usize;

pub(crate) struct ResolveQueueElement {
    // Note that using the `definition_id` and the `monomorph_idx` one may
    // query the type table for the full procedure type, thereby retrieving
    // the polymorphic arguments to the procedure.
    pub(crate) root_id: RootId,
    pub(crate) definition_id: DefinitionId,
    pub(crate) reserved_type_id: TypeId,
    pub(crate) reserved_monomorph_index: u32,
}

pub(crate) type ResolveQueue = VecDeque<ResolveQueueElement>;

struct InferenceNode {
    // filled in during type inference
    expr_type: InferenceType,               // result type from expression
    expr_id: ExpressionId,                  // expression that is evaluated
    inference_rule: InferenceRule,          // rule used to infer node type
    parent_index: Option<InferNodeIndex>,   // parent of inference node
    field_index: i32,                       // index of struct field or tuple member
    poly_data_index: PolyDataIndex,         // index to inference data for polymorphic types
    // filled in once type inference is done
    info_type_id: TypeId,
    info_variant: ExpressionInfoVariant,
}

impl InferenceNode {
    #[inline]
    fn as_expression_info(&self) -> ExpressionInfo {
        return ExpressionInfo {
            type_id: self.info_type_id,
            variant: self.info_variant
        }
    }
}

/// Inferencing rule to apply. Some of these are reasonably generic. Other ones
/// require so much custom logic that we'll not try to come up with an
/// abstraction.
enum InferenceRule {
    Noop,
    MonoTemplate(InferenceRuleTemplate),
    BiEqual(InferenceRuleBiEqual),
    TriEqualArgs(InferenceRuleTriEqualArgs),
    TriEqualAll(InferenceRuleTriEqualAll),
    Concatenate(InferenceRuleTwoArgs),
    IndexingExpr(InferenceRuleIndexingExpr),
    SlicingExpr(InferenceRuleSlicingExpr),
    SelectStructField(InferenceRuleSelectStructField),
    SelectTupleMember(InferenceRuleSelectTupleMember),
    LiteralStruct(InferenceRuleLiteralStruct),
    LiteralEnum,
    LiteralUnion(InferenceRuleLiteralUnion),
    LiteralArray(InferenceRuleLiteralArray),
    LiteralTuple(InferenceRuleLiteralTuple),
    CastExpr(InferenceRuleCastExpr),
    CallExpr(InferenceRuleCallExpr),
    VariableExpr(InferenceRuleVariableExpr),
}

impl InferenceRule {
    union_cast_to_ref_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
    union_cast_to_ref_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
    union_cast_to_ref_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
    union_cast_to_ref_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
    union_cast_to_ref_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
    union_cast_to_ref_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
    union_cast_to_ref_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
    union_cast_to_ref_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
    union_cast_to_ref_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
    union_cast_to_ref_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
    union_cast_to_ref_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
    union_cast_to_ref_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
    union_cast_to_ref_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
    union_cast_to_ref_method_impl!(as_cast_expr, InferenceRuleCastExpr, InferenceRule::CastExpr);
    union_cast_to_ref_method_impl!(as_call_expr, InferenceRuleCallExpr, InferenceRule::CallExpr);
    union_cast_to_ref_method_impl!(as_variable_expr, InferenceRuleVariableExpr, InferenceRule::VariableExpr);
}

// Note: InferenceRuleTemplate is `Copy`, so don't add dynamically allocated
// members in the future (or review places where this struct is copied)
#[derive(Clone, Copy)]
struct InferenceRuleTemplate {
    template: &'static [InferenceTypePart],
    application: InferenceRuleTemplateApplication,
}

impl InferenceRuleTemplate {
    fn new_none() -> Self {
        return Self{
            template: &[],
            application: InferenceRuleTemplateApplication::None,
        };
    }

    fn new_forced(template: &'static [InferenceTypePart]) -> Self {
        return Self{
            template,
            application: InferenceRuleTemplateApplication::Forced,
        };
    }

    fn new_template(template: &'static [InferenceTypePart]) -> Self {
        return Self{
            template,
            application: InferenceRuleTemplateApplication::Template,
        }
    }
}

#[derive(Clone, Copy)]
enum InferenceRuleTemplateApplication {
    None, // do not apply template, silly, but saves some bytes
    Forced,
    Template,
}

/// Type equality applied to 'self' and the argument. An optional template will
/// be applied to 'self' first. Example: "bitwise not"
struct InferenceRuleBiEqual {
    template: InferenceRuleTemplate,
    argument_index: InferNodeIndex,
}

/// Type equality applied to two arguments. Template can be applied to 'self'
/// (generally forced, since this rule does not apply a type equality constraint
/// to 'self') and the two arguments. Example: "equality operator"
struct InferenceRuleTriEqualArgs {
    argument_template: InferenceRuleTemplate,
    result_template: InferenceRuleTemplate,
    argument1_index: InferNodeIndex,
    argument2_index: InferNodeIndex,
}

/// Type equality applied to 'self' and two arguments. Template may be
/// optionally applied to 'self'. Example: "addition operator"
struct InferenceRuleTriEqualAll {
    template: InferenceRuleTemplate,
    argument1_index: InferNodeIndex,
    argument2_index: InferNodeIndex,
}

/// Information for an inference rule that is applied to 'self' and two
/// arguments, see `InferenceRule` for its meaning.
struct InferenceRuleTwoArgs {
    argument1_index: InferNodeIndex,
    argument2_index: InferNodeIndex,
}

struct InferenceRuleIndexingExpr {
    subject_index: InferNodeIndex,
    index_index: InferNodeIndex,
}

struct InferenceRuleSlicingExpr {
    subject_index: InferNodeIndex,
    from_index: InferNodeIndex,
    to_index: InferNodeIndex,
}

struct InferenceRuleSelectStructField {
    subject_index: InferNodeIndex,
    selected_field: Identifier,
}

struct InferenceRuleSelectTupleMember {
    subject_index: InferNodeIndex,
    selected_index: u64,
}

struct InferenceRuleLiteralStruct {
    element_indices: Vec<InferNodeIndex>,
}

struct InferenceRuleLiteralUnion {
    element_indices: Vec<InferNodeIndex>
}

struct InferenceRuleLiteralArray {
    element_indices: Vec<InferNodeIndex>
}

struct InferenceRuleLiteralTuple {
    element_indices: Vec<InferNodeIndex>
}

struct InferenceRuleCastExpr {
    subject_index: InferNodeIndex,
}

struct InferenceRuleCallExpr {
    argument_indices: Vec<InferNodeIndex>
}

/// Data associated with a variable expression: an expression that reads the
/// value from a variable.
struct InferenceRuleVariableExpr {
    var_data_index: VarDataIndex, // shared variable information
}

/// This particular visitor will recurse depth-first into the AST and ensures
/// that all expressions have the appropriate types.
pub(crate) struct PassTyping {
    // Current definition we're typechecking.
    reserved_type_id: TypeId,
    reserved_monomorph_index: u32,
    procedure_id: ProcedureDefinitionId,
    procedure_kind: ProcedureKind,
    poly_vars: Vec<ConcreteType>,
    // Temporary variables during construction of inference rulesr
    parent_index: Option<InferNodeIndex>,
    // Buffers for iteration over various types
    var_buffer: ScopedBuffer<VariableId>,
    expr_buffer: ScopedBuffer<ExpressionId>,
    stmt_buffer: ScopedBuffer<StatementId>,
    bool_buffer: ScopedBuffer<bool>,
    index_buffer: ScopedBuffer<usize>,
    definition_buffer: ScopedBuffer<DefinitionId>,
    poly_progress_buffer: ScopedBuffer<u32>,
    // Mapping from parser type to inferred type. We attempt to continue to
    // specify these types until we're stuck or we've fully determined the type.
    infer_nodes: Vec<InferenceNode>,                     // will be transferred to type table at end
    poly_data: Vec<PolyData>,       // data for polymorph inference
    var_data: Vec<VarData>,
    // Keeping track of which expressions need to be reinferred because the
    // expressions they're linked to made progression on an associated type
    node_queued: DequeSet<InferNodeIndex>,
}

/// Generic struct that is used to store inferred types associated with
/// polymorphic types.
struct PolyData {
    first_rule_application: bool,
    definition_id: DefinitionId, // the definition, only used for user feedback
    /// Inferred types of the polymorphic variables as they are written down
    /// at the type's definition.
    poly_vars: Vec<InferenceType>,
    expr_types: PolyDataTypes,
}

// silly structure, just so we can use `PolyDataTypeIndex` ergonomically while
// making sure we're still capable of borrowing from `poly_vars`.
struct PolyDataTypes {
    /// Inferred types of associated types (e.g. struct fields, tuple members,
    /// function arguments). These types may depend on the polymorphic variables
    /// defined above.
    associated: Vec<InferenceType>,
    /// Inferred "returned" type (e.g. if a struct field is selected, then this
    /// contains the type of the selected field, for a function call it contains
    /// the return type). May depend on the polymorphic variables defined above.
    returned: InferenceType,
}

#[derive(Clone, Copy)]
enum PolyDataTypeIndex {
    Associated(usize), // indexes into `PolyData.associated`
    Returned,
}

impl PolyDataTypes {
    fn get_type(&self, index: PolyDataTypeIndex) -> &InferenceType {
        match index {
            PolyDataTypeIndex::Associated(index) => return &self.associated[index],
            PolyDataTypeIndex::Returned => return &self.returned,
        }
    }

    fn get_type_mut(&mut self, index: PolyDataTypeIndex) -> &mut InferenceType {
        match index {
            PolyDataTypeIndex::Associated(index) => return &mut self.associated[index],
            PolyDataTypeIndex::Returned => return &mut self.returned,
        }
    }
}

struct VarData {
    var_id: VariableId,
    var_type: InferenceType,
    used_at: Vec<InferNodeIndex>, // of variable expressions
    linked_var: Option<VarDataIndex>,
}

impl PassTyping {
    pub(crate) fn new() -> Self {
        PassTyping {
            reserved_type_id: TypeId::new_invalid(),
            reserved_monomorph_index: u32::MAX,
            procedure_id: ProcedureDefinitionId::new_invalid(),
            procedure_kind: ProcedureKind::Function,
            poly_vars: Vec::new(),
            parent_index: None,
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
            bool_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
            index_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
            poly_progress_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
            infer_nodes: Vec::with_capacity(BUFFER_INIT_CAP_LARGE),
            poly_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
            var_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
            node_queued: DequeSet::new(),
        }
    }

    pub(crate) fn queue_module_definitions(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) {
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::ValidatedAndLinked);
        let root_id = ctx.module().root_id;
        let root = &ctx.heap.protocol_descriptions[root_id];
        let definitions_section = self.definition_buffer.start_section_initialized(&root.definitions);

        for definition_id in definitions_section.iter_copied() {
            let definition = &ctx.heap[definition_id];

            let first_concrete_part_and_procedure_id = match definition {
                Definition::Procedure(definition) => {
                    if definition.poly_vars.is_empty() {
                        if definition.kind == ProcedureKind::Function {
                            Some((ConcreteTypePart::Function(definition.this, 0), definition.this))
                        } else {
                            Some((ConcreteTypePart::Component(definition.this, 0), definition.this))
                        }
                    } else {
                        None
                    }
                }
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => None,
            };

            if let Some((first_concrete_part, procedure_id)) = first_concrete_part_and_procedure_id {
                let procedure = &mut ctx.heap[procedure_id];
                let monomorph_index = procedure.monomorphs.len() as u32;
                procedure.monomorphs.push(ProcedureDefinitionMonomorph::new_invalid());

                let concrete_type = ConcreteType{ parts: vec![first_concrete_part] };
                let type_id = ctx.types.reserve_procedure_monomorph_type_id(&definition_id, concrete_type, monomorph_index);
                queue.push_back(ResolveQueueElement{
                    root_id,
                    definition_id,
                    reserved_type_id: type_id,
                    reserved_monomorph_index: monomorph_index,
                })
            }
        }

        definitions_section.forget();
    }

    pub(crate) fn handle_module_definition(
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
    ) -> VisitorResult {
        self.reset();
        debug_assert_eq!(ctx.module().root_id, element.root_id);
        debug_assert!(self.poly_vars.is_empty());

        // Prepare for visiting the definition
        self.reserved_type_id = element.reserved_type_id;
        self.reserved_monomorph_index = element.reserved_monomorph_index;

        let proc_base = ctx.types.get_base_definition(&element.definition_id).unwrap();
        if proc_base.is_polymorph {
            let monomorph = ctx.types.get_monomorph(element.reserved_type_id);
            for poly_arg in monomorph.concrete_type.embedded_iter(0) {
                self.poly_vars.push(ConcreteType{ parts: Vec::from(poly_arg) });
            }
        }

        // Visit the definition, setting up the type resolving process, then
        // (attempt to) resolve all types
        self.visit_definition(ctx, element.definition_id)?;
        self.resolve_types(ctx, queue)?;
        Ok(())
    }

    fn reset(&mut self) {
        self.reserved_type_id = TypeId::new_invalid();
        self.procedure_id = ProcedureDefinitionId::new_invalid();
        self.procedure_kind = ProcedureKind::Function;
        self.poly_vars.clear();
        self.parent_index = None;

        self.infer_nodes.clear();
        self.poly_data.clear();
        self.var_data.clear();
        self.node_queued.clear();
    }
}

// -----------------------------------------------------------------------------
// PassTyping - Visitor-like implementation
// -----------------------------------------------------------------------------

type VisitorResult = Result<(), ParseError>;
type VisitExprResult = Result<InferNodeIndex, ParseError>;

impl PassTyping {
    // Definitions

    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
        return visitor_recursive_definition_impl!(self, &ctx.heap[id], ctx);
    }

    fn visit_enum_definition(&mut self, _: &mut Ctx, _: EnumDefinitionId) -> VisitorResult { return Ok(()) }
    fn visit_struct_definition(&mut self, _: &mut Ctx, _: StructDefinitionId) -> VisitorResult { return Ok(()) }
    fn visit_union_definition(&mut self, _: &mut Ctx, _: UnionDefinitionId) -> VisitorResult { return Ok(()) }

    fn visit_procedure_definition(&mut self, ctx: &mut Ctx, id: ProcedureDefinitionId) -> VisitorResult {
        let procedure_def = &ctx.heap[id];

        self.procedure_id = id;
        self.procedure_kind = procedure_def.kind;
        let body_id = procedure_def.body;

        debug_log!("{}", "-".repeat(50));
        debug_log!("Visiting procedure: '{}' (id: {}, kind: {:?})", procedure_def.identifier.value.as_str(), id.0.index, procedure_def.kind);
        debug_log!("{}", "-".repeat(50));

        // Visit parameters
        let section = self.var_buffer.start_section_initialized(procedure_def.parameters.as_slice());
        for param_id in section.iter_copied() {
            let param = &ctx.heap[param_id];
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
            self.var_data.push(VarData{
                var_id: param_id,
                var_type,
                used_at: Vec::new(),
                linked_var: None
            })
        }
        section.forget();

        // Visit all of the expressions within the body
        self.parent_index = None;
        return self.visit_block_stmt(ctx, body_id);
    }

    // Statements

    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
        return visitor_recursive_statement_impl!(self, &ctx.heap[id], ctx, Ok(()));
    }

    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
        // Transfer statements for traversal
        let block = &ctx.heap[id];

        let section = self.stmt_buffer.start_section_initialized(block.statements.as_slice());
        for stmt_id in section.iter_copied() {
            self.visit_stmt(ctx, stmt_id)?;
        }
        section.forget();

        Ok(())
    }

    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
        return visitor_recursive_local_impl!(self, &ctx.heap[id], ctx);
    }

    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
        let memory_stmt = &ctx.heap[id];
        let initial_expr_id = memory_stmt.initial_expr;

        let local = &ctx.heap[memory_stmt.variable];
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
        self.var_data.push(VarData{
            var_id: memory_stmt.variable,
            var_type,
            used_at: Vec::new(),
            linked_var: None,
        });

        // Process the initial value
        self.visit_assignment_expr(ctx, initial_expr_id)?;

        Ok(())
    }

    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
        let channel_stmt = &ctx.heap[id];

        let from_var_index = self.var_data.len() as VarDataIndex;
        let to_var_index = from_var_index + 1;

        let from_local = &ctx.heap[channel_stmt.from];
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
        self.var_data.push(VarData{
            var_id: channel_stmt.from,
            var_type: from_var_type,
            used_at: Vec::new(),
            linked_var: Some(to_var_index),
        });

        let to_local = &ctx.heap[channel_stmt.to];
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
        self.var_data.push(VarData{
            var_id: channel_stmt.to,
            var_type: to_var_type,
            used_at: Vec::new(),
            linked_var: Some(from_var_index),
        });

        Ok(())
    }

    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
        let labeled_stmt = &ctx.heap[id];
        let substmt_id = labeled_stmt.body;
        self.visit_stmt(ctx, substmt_id)
    }

    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
        let if_stmt = &ctx.heap[id];

        let true_body_case = if_stmt.true_case;
        let false_body_case = if_stmt.false_case;
        let test_expr_id = if_stmt.test;

        self.visit_expr(ctx, test_expr_id)?;
        self.visit_stmt(ctx, true_body_case.body)?;
        if let Some(false_body_case) = false_body_case {
            self.visit_stmt(ctx, false_body_case.body)?;
        }

        Ok(())
    }

    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
        let while_stmt = &ctx.heap[id];

        let body_id = while_stmt.body;
        let test_expr_id = while_stmt.test;

        self.visit_expr(ctx, test_expr_id)?;
        self.visit_stmt(ctx, body_id)?;

        Ok(())
    }

    fn visit_break_stmt(&mut self, _: &mut Ctx, _: BreakStatementId) -> VisitorResult { return Ok(()) }
    fn visit_continue_stmt(&mut self, _: &mut Ctx, _: ContinueStatementId) -> VisitorResult { return Ok(()) }

    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
        let sync_stmt = &ctx.heap[id];
        let body_id = sync_stmt.body;

        self.visit_stmt(ctx, body_id)
    }

    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
        let fork_stmt = &ctx.heap[id];
        let left_body_id = fork_stmt.left_body;
        let right_body_id = fork_stmt.right_body;

        self.visit_stmt(ctx, left_body_id)?;
        if let Some(right_body_id) = right_body_id {
            self.visit_stmt(ctx, right_body_id)?;
        }

        Ok(())
    }

    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
        let select_stmt = &ctx.heap[id];

        let mut section = self.stmt_buffer.start_section();
        let num_cases = select_stmt.cases.len();

        for case in &select_stmt.cases {
            section.push(case.guard);
            section.push(case.body);
        }

        for case_index in 0..num_cases {
            let base_index = 2 * case_index;
            let guard_stmt_id = section[base_index    ];
            let block_stmt_id = section[base_index + 1];

            self.visit_stmt(ctx, guard_stmt_id)?;
            self.visit_stmt(ctx, block_stmt_id)?;
        }
        section.forget();

        Ok(())
    }

    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
        let return_stmt = &ctx.heap[id];
        debug_assert_eq!(return_stmt.expressions.len(), 1);
        let expr_id = return_stmt.expressions[0];

        self.visit_expr(ctx, expr_id)?;
        return Ok(());
    }

    fn visit_goto_stmt(&mut self, _: &mut Ctx, _: GotoStatementId) -> VisitorResult { return Ok(()) }

    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
        let new_stmt = &ctx.heap[id];
        let call_expr_id = new_stmt.expression;

        self.visit_call_expr(ctx, call_expr_id)?;
        return Ok(());
    }

    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
        let expr_stmt = &ctx.heap[id];
        let subexpr_id = expr_stmt.expression;

        self.visit_expr(ctx, subexpr_id)?;
        return Ok(());
    }

    // Expressions

    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitExprResult {
        return visitor_recursive_expression_impl!(self, &ctx.heap[id], ctx);
    }

    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitExprResult {
        use AssignmentOperator as AO;

        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let assign_expr = &ctx.heap[id];
        let assign_op = assign_expr.operation;
        let left_expr_id = assign_expr.left;
        let right_expr_id = assign_expr.right;

        let old_parent = self.parent_index.replace(self_index);
        let left_index = self.visit_expr(ctx, left_expr_id)?;
        let right_index = self.visit_expr(ctx, right_expr_id)?;

        let node = &mut self.infer_nodes[self_index];
        let argument_template = match assign_op {
            AO::Set =>
                InferenceRuleTemplate::new_none(),
            AO::Concatenated =>
                InferenceRuleTemplate::new_template(&ARRAYLIKE_TEMPLATE),
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
                InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
                InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
        };

        node.inference_rule = InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
            argument_template,
            result_template: InferenceRuleTemplate::new_forced(&VOID_TEMPLATE),
            argument1_index: left_index,
            argument2_index: right_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_tri_equal_args(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let binding_expr = &ctx.heap[id];
        let bound_to_id = binding_expr.bound_to;
        let bound_from_id = binding_expr.bound_from;

        let old_parent = self.parent_index.replace(self_index);
        let arg_to_index = self.visit_expr(ctx, bound_to_id)?;
        let arg_from_index = self.visit_expr(ctx, bound_from_id)?;

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
            argument_template: InferenceRuleTemplate::new_none(),
            result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
            argument1_index: arg_to_index,
            argument2_index: arg_from_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_tri_equal_args(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let conditional_expr = &ctx.heap[id];
        let test_expr_id = conditional_expr.test;
        let true_expr_id = conditional_expr.true_expression;
        let false_expr_id = conditional_expr.false_expression;

        let old_parent = self.parent_index.replace(self_index);
        self.visit_expr(ctx, test_expr_id)?;
        let true_index = self.visit_expr(ctx, true_expr_id)?;
        let false_index = self.visit_expr(ctx, false_expr_id)?;

        // Note: the test to the conditional expression has already been forced
        // to the boolean type. So the only thing we need to do while progressing
        // is to apply an equal3 constraint to the arguments and the result of
        // the expression.
        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
            template: InferenceRuleTemplate::new_none(),
            argument1_index: true_index,
            argument2_index: false_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_tri_equal_all(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitExprResult {
        use BinaryOperator as BO;

        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let binary_expr = &ctx.heap[id];
        let binary_op = binary_expr.operation;
        let lhs_expr_id = binary_expr.left;
        let rhs_expr_id = binary_expr.right;

        let old_parent = self.parent_index.replace(self_index);
        let left_index = self.visit_expr(ctx, lhs_expr_id)?;
        let right_index = self.visit_expr(ctx, rhs_expr_id)?;

        let inference_rule = match binary_op {
            BO::Concatenate =>
                InferenceRule::Concatenate(InferenceRuleTwoArgs{
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
            BO::LogicalAnd | BO::LogicalOr =>
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
                    template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight =>
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
                    template: InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
            BO::Equality | BO::Inequality =>
                InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
                    argument_template: InferenceRuleTemplate::new_none(),
                    result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
            BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual =>
                InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
                    argument_template: InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
                    result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide =>
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
                    template: InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
                    argument1_index: left_index,
                    argument2_index: right_index,
                }),
        };

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = inference_rule;

        self.parent_index = old_parent;
        self.progress_inference_rule(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitExprResult {
        use UnaryOperator as UO;

        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let unary_expr = &ctx.heap[id];
        let operation = unary_expr.operation;
        let arg_expr_id = unary_expr.expression;

        let old_parent = self.parent_index.replace(self_index);
        let argument_index = self.visit_expr(ctx, arg_expr_id)?;

        let template = match operation {
            UO::Positive | UO::Negative =>
                InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
            UO::BitwiseNot =>
                InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
            UO::LogicalNot =>
                InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
        };

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::BiEqual(InferenceRuleBiEqual{
            template, argument_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_bi_equal(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let indexing_expr = &ctx.heap[id];
        let subject_expr_id = indexing_expr.subject;
        let index_expr_id = indexing_expr.index;

        let old_parent = self.parent_index.replace(self_index);
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
        let index_index = self.visit_expr(ctx, index_expr_id)?; // cool name, bro

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::IndexingExpr(InferenceRuleIndexingExpr{
            subject_index, index_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_indexing_expr(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let slicing_expr = &ctx.heap[id];
        let subject_expr_id = slicing_expr.subject;
        let from_expr_id = slicing_expr.from_index;
        let to_expr_id = slicing_expr.to_index;

        let old_parent = self.parent_index.replace(self_index);
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
        let from_index = self.visit_expr(ctx, from_expr_id)?;
        let to_index = self.visit_expr(ctx, to_expr_id)?;

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::SlicingExpr(InferenceRuleSlicingExpr{
            subject_index, from_index, to_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_slicing_expr(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let select_expr = &ctx.heap[id];
        let subject_expr_id = select_expr.subject;

        let old_parent = self.parent_index.replace(self_index);
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;

        let node = &mut self.infer_nodes[self_index];
        let inference_rule = match &ctx.heap[id].kind {
            SelectKind::StructField(field_identifier) =>
                InferenceRule::SelectStructField(InferenceRuleSelectStructField{
                    subject_index,
                    selected_field: field_identifier.clone(),
                }),
            SelectKind::TupleMember(member_index) =>
                InferenceRule::SelectTupleMember(InferenceRuleSelectTupleMember{
                    subject_index,
                    selected_index: *member_index,
                }),
        };
        node.inference_rule = inference_rule;

        self.parent_index = old_parent;
        self.progress_inference_rule(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let old_parent = self.parent_index.replace(self_index);

        let literal_expr = &ctx.heap[id];
        match &literal_expr.value {
            Literal::Null => {
                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&MESSAGE_TEMPLATE));
            },
            Literal::Integer(_) => {
                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE));
            },
            Literal::True | Literal::False => {
                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE));
            },
            Literal::Character(_) => {
                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&CHARACTER_TEMPLATE));
            },
            Literal::String(_) => {
                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&STRING_TEMPLATE));
            },
            Literal::Struct(literal) => {
                // Visit field expressions
                let mut expr_ids = self.expr_buffer.start_section();
                for field in &literal.fields {
                    expr_ids.push(field.value);
                }

                let mut expr_indices = self.index_buffer.start_section();
                for expr_id in expr_ids.iter_copied() {
                    let expr_index = self.visit_expr(ctx, expr_id)?;
                    expr_indices.push(expr_index);
                }
                expr_ids.forget();
                let element_indices = expr_indices.into_vec();

                // Assign rule and extra data index to inference node
                let poly_data_index = self.insert_initial_struct_polymorph_data(ctx, id);
                let node = &mut self.infer_nodes[self_index];
                node.poly_data_index = poly_data_index;
                node.inference_rule = InferenceRule::LiteralStruct(InferenceRuleLiteralStruct{
                    element_indices,
                });
            },
            Literal::Enum(_) => {
                // Enumerations do not carry any subexpressions, but may still
                // have a user-defined polymorphic marker variable. For this 
                // reason we may still have to apply inference to this 
                // polymorphic variable
                let poly_data_index = self.insert_initial_enum_polymorph_data(ctx, id);
                let node = &mut self.infer_nodes[self_index];
                node.poly_data_index = poly_data_index;
                node.inference_rule = InferenceRule::LiteralEnum;
            },
            Literal::Union(literal) => {
                // May carry subexpressions and polymorphic arguments
                let expr_ids = self.expr_buffer.start_section_initialized(literal.values.as_slice());
                let poly_data_index = self.insert_initial_union_polymorph_data(ctx, id);

                let mut expr_indices = self.index_buffer.start_section();
                for expr_id in expr_ids.iter_copied() {
                    let expr_index = self.visit_expr(ctx, expr_id)?;
                    expr_indices.push(expr_index);
                }
                expr_ids.forget();
                let element_indices = expr_indices.into_vec();

                let node = &mut self.infer_nodes[self_index];
                node.poly_data_index = poly_data_index;
                node.inference_rule = InferenceRule::LiteralUnion(InferenceRuleLiteralUnion{
                    element_indices,
                });
            },
            Literal::Array(expressions) => {
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());

                let mut expr_indices = self.index_buffer.start_section();
                for expr_id in expr_ids.iter_copied() {
                    let expr_index = self.visit_expr(ctx, expr_id)?;
                    expr_indices.push(expr_index);
                }
                expr_ids.forget();
                let element_indices = expr_indices.into_vec();

                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::LiteralArray(InferenceRuleLiteralArray{
                    element_indices,
                });
            },
            Literal::Tuple(expressions) => {
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());

                let mut expr_indices = self.index_buffer.start_section();
                for expr_id in expr_ids.iter_copied() {
                    let expr_index = self.visit_expr(ctx, expr_id)?;
                    expr_indices.push(expr_index);
                }
                expr_ids.forget();
                let element_indices = expr_indices.into_vec();

                let node = &mut self.infer_nodes[self_index];
                node.inference_rule = InferenceRule::LiteralTuple(InferenceRuleLiteralTuple{
                    element_indices,
                })
            }
        }

        self.parent_index = old_parent;
        self.progress_inference_rule(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let cast_expr = &ctx.heap[id];
        let subject_expr_id = cast_expr.subject;

        let old_parent = self.parent_index.replace(self_index);
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::CastExpr(InferenceRuleCastExpr{
            subject_index,
        });

        self.parent_index = old_parent;

        // The cast expression is a bit special at this point: the progression
        // function simply makes sure input/output types are compatible. But if
        // the programmer explicitly specified the output type, then we can
        // already perform that inference rule here.
        {
            let cast_expr = &ctx.heap[id];
            let specified_type = self.determine_inference_type_from_parser_type_elements(&cast_expr.to_type.elements, true);
            let _progress = self.apply_template_constraint(ctx, self_index, &specified_type.parts)?;
        }

        self.progress_inference_rule_cast_expr(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
        let extra_index = self.insert_initial_call_polymorph_data(ctx, id);

        // By default we set the polymorph idx for calls to 0. If the call
        // refers to a non-polymorphic function, then it will be "monomorphed"
        // once, hence we end up pointing to the correct instance.
        self.infer_nodes[self_index].field_index = 0;

        // Visit all arguments
        let old_parent = self.parent_index.replace(self_index);

        let call_expr = &ctx.heap[id];
        let expr_ids = self.expr_buffer.start_section_initialized(call_expr.arguments.as_slice());
        let mut expr_indices = self.index_buffer.start_section();

        for arg_expr_id in expr_ids.iter_copied() {
            let expr_index = self.visit_expr(ctx, arg_expr_id)?;
            expr_indices.push(expr_index);
        }
        expr_ids.forget();
        let argument_indices = expr_indices.into_vec();

        let node = &mut self.infer_nodes[self_index];
        node.poly_data_index = extra_index;
        node.inference_rule = InferenceRule::CallExpr(InferenceRuleCallExpr{
            argument_indices,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_call_expr(ctx, self_index)?;
        return Ok(self_index);
    }

    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitExprResult {
        let upcast_id = id.upcast();
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;

        let var_expr = &ctx.heap[id];
        debug_assert!(var_expr.declaration.is_some());
        let old_parent = self.parent_index.replace(self_index);

        let declaration = &ctx.heap[var_expr.declaration.unwrap()];
        let mut var_data_index = None;
        for (index, var_data) in self.var_data.iter().enumerate() {
            if var_data.var_id == declaration.this {
                var_data_index = Some(index);
                break;
            }
        }

        let var_data_index = if let Some(var_data_index) = var_data_index {
            let var_data = &mut self.var_data[var_data_index];
            var_data.used_at.push(self_index);

            var_data_index
        } else {
            // If we're in a binding expression then it might the first time we
            // encounter the variable, so add a `VarData` entry.
            debug_assert_eq!(declaration.kind, VariableKind::Binding);
            let var_type = self.determine_inference_type_from_parser_type_elements(
                &declaration.parser_type.elements, true
            );
            let var_data_index = self.var_data.len();
            self.var_data.push(VarData{
                var_id: declaration.this,
                var_type,
                used_at: vec![self_index],
                linked_var: None,
            });

            var_data_index
        };

        let node = &mut self.infer_nodes[self_index];
        node.inference_rule = InferenceRule::VariableExpr(InferenceRuleVariableExpr{
            var_data_index,
        });

        self.parent_index = old_parent;
        self.progress_inference_rule_variable_expr(ctx, self_index)?;
        return Ok(self_index);
    }
}

// -----------------------------------------------------------------------------
// PassTyping - Type-inference progression
// -----------------------------------------------------------------------------

impl PassTyping {
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
    fn debug_get_display_name(&self, ctx: &Ctx, node_index: InferNodeIndex) -> String {
        let expr_type = &self.infer_nodes[node_index].expr_type;
        expr_type.display_name(&ctx.heap)
    }

    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
        // Keep inferring until we can no longer make any progress
        while !self.node_queued.is_empty() {
            while !self.node_queued.is_empty() {
                let node_index = self.node_queued.pop_front().unwrap();
                self.progress_inference_rule(ctx, node_index)?;
            }

            // Nothing is queued anymore. However we might have integer literals
            // whose type cannot be inferred. For convenience's sake we'll
            // infer these to be s32.
            for (infer_node_index, infer_node) in self.infer_nodes.iter_mut().enumerate() {
                let expr_type = &mut infer_node.expr_type;
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
                    // Force integer type to s32
                    expr_type.parts[0] = InferenceTypePart::SInt32;
                    expr_type.is_done = true;

                    // Requeue expression (and its parent, if it exists)
                    self.node_queued.push_back(infer_node_index);
                    if let Some(node_parent_index) = infer_node.parent_index {
                        self.node_queued.push_back(node_parent_index);
                    }
                }
            }
        }

        // Helper for transferring polymorphic variables to concrete types and
        // checking if they're completely specified
        fn poly_data_type_to_concrete_type(
            ctx: &Ctx, expr_id: ExpressionId, inference_poly_args: &Vec<InferenceType>,
            first_concrete_part: ConcreteTypePart,
        ) -> Result<ConcreteType, ParseError> {
            // Prepare storage vector
            let mut num_inference_parts = 0;
            for inference_type in inference_poly_args {
                num_inference_parts += inference_type.parts.len();
            }

            let mut concrete_type = ConcreteType{
                parts: Vec::with_capacity(1 + num_inference_parts),
            };
            concrete_type.parts.push(first_concrete_part);

            // Go through all polymorphic arguments and add them to the concrete
            // types.
            for (poly_idx, poly_type) in inference_poly_args.iter().enumerate() {
                if !poly_type.is_done {
                    let expr = &ctx.heap[expr_id];
                    let definition = match expr {
                        Expression::Call(expr) => expr.procedure.upcast(),
                        Expression::Literal(expr) => match &expr.value {
                            Literal::Enum(lit) => lit.definition,
                            Literal::Union(lit) => lit.definition,
                            Literal::Struct(lit) => lit.definition,
                            _ => unreachable!()
                        },
                        _ => unreachable!(),
                    };
                    let poly_vars = ctx.heap[definition].poly_vars();
                    return Err(ParseError::new_error_at_span(
                        &ctx.module().source, expr.operation_span(), format!(
                            "could not fully infer the type of polymorphic variable '{}' of this expression (got '{}')",
                            poly_vars[poly_idx].value.as_str(), poly_type.display_name(&ctx.heap)
                        )
                    ));
                }

                poly_type.write_concrete_type(&mut concrete_type);
            }

            Ok(concrete_type)
        }

        // Every expression checked, and new monomorphs are queued. Transfer the
        // expression information to the AST. If this is the first time we're
        // visiting this procedure then we assign expression indices as well.
        let procedure = &ctx.heap[self.procedure_id];
        let num_infer_nodes = self.infer_nodes.len();
        let mut monomorph = ProcedureDefinitionMonomorph{
            argument_types: Vec::with_capacity(procedure.parameters.len()),
            expr_info: Vec::with_capacity(num_infer_nodes),
        };

        // For all of the expressions look up the TypeId (or create a new one).
        // For function calls and component instantiations figure out if they
        // need to be typechecked
        for infer_node in self.infer_nodes.iter_mut() {
            // Determine type ID
            let expr = &ctx.heap[infer_node.expr_id];

            // TODO: Maybe optimize? Split insertion up into lookup, then clone
            //  if needed?
            let mut concrete_type = ConcreteType::default();
            infer_node.expr_type.write_concrete_type(&mut concrete_type);
            let info_type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, concrete_type)?;

            // Determine procedure type ID, i.e. a called/instantiated
            // procedure's signature.
            let info_variant = if let Expression::Call(expr) = expr {
                // Construct full function type. If not yet typechecked then
                // queue it for typechecking.
                let poly_data = &self.poly_data[infer_node.poly_data_index as usize];
                debug_assert!(expr.method.is_user_defined() || expr.method.is_public_builtin());
                let procedure_id = expr.procedure;
                let num_poly_vars = poly_data.poly_vars.len() as u32;

                let first_part = match expr.method {
                    Method::UserFunction => ConcreteTypePart::Function(procedure_id, num_poly_vars),
                    Method::UserComponent => ConcreteTypePart::Component(procedure_id, num_poly_vars),
                    _ => ConcreteTypePart::Function(procedure_id, num_poly_vars),
                };


                let definition_id = procedure_id.upcast();
                let signature_type = poly_data_type_to_concrete_type(
                    ctx, infer_node.expr_id, &poly_data.poly_vars, first_part
                )?;

                let (type_id, monomorph_index) = if let Some(type_id) = ctx.types.get_procedure_monomorph_type_id(&definition_id, &signature_type.parts) {
                    // Procedure is already typechecked
                    let monomorph_index = ctx.types.get_monomorph(type_id).variant.as_procedure().monomorph_index;
                    (type_id, monomorph_index)
                } else {
                    // Procedure is not yet typechecked, reserve a TypeID and a monomorph index
                    let procedure_to_check = &mut ctx.heap[procedure_id];
                    let monomorph_index = procedure_to_check.monomorphs.len() as u32;
                    procedure_to_check.monomorphs.push(ProcedureDefinitionMonomorph::new_invalid());
                    let type_id = ctx.types.reserve_procedure_monomorph_type_id(&definition_id, signature_type, monomorph_index);

                    if !procedure_to_check.builtin {
                        // Only perform typechecking on the user-defined
                        // procedures
                        queue.push_back(ResolveQueueElement{
                            root_id: ctx.heap[definition_id].defined_in(),
                            definition_id,
                            reserved_type_id: type_id,
                            reserved_monomorph_index: monomorph_index,
                        });
                    }

                    (type_id, monomorph_index)
                };

                ExpressionInfoVariant::Procedure(type_id, monomorph_index)
            } else if let Expression::Select(_expr) = expr {
                ExpressionInfoVariant::Select(infer_node.field_index)
            } else {
                ExpressionInfoVariant::Generic
            };

            infer_node.info_type_id = info_type_id;
            infer_node.info_variant = info_variant;
        }

        // Write the types of the arguments
        let procedure = &ctx.heap[self.procedure_id];
        for parameter_id in procedure.parameters.iter().copied() {
            let mut concrete = ConcreteType::default();
            let var_data = self.var_data.iter().find(|v| v.var_id == parameter_id).unwrap();
            var_data.var_type.write_concrete_type(&mut concrete);
            let type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, concrete)?;
            monomorph.argument_types.push(type_id)
        }

        // Determine if we have already assigned type indices to the expressions
        // before (the indices that, for a monomorph, can retrieve the type of
        // the expression).
        let has_type_indices = self.reserved_monomorph_index > 0;
        if has_type_indices {
            // already have indices, so resize and then index into it
            debug_assert!(monomorph.expr_info.is_empty());
            monomorph.expr_info.resize(num_infer_nodes, ExpressionInfo::new_invalid());
            for infer_node in self.infer_nodes.iter() {
                let type_index = ctx.heap[infer_node.expr_id].type_index();
                monomorph.expr_info[type_index as usize] = infer_node.as_expression_info();
            }
        } else {
            // no indices yet, need to be assigned in AST
            for infer_node in self.infer_nodes.iter() {
                let type_index = monomorph.expr_info.len();
                monomorph.expr_info.push(infer_node.as_expression_info());
                *ctx.heap[infer_node.expr_id].type_index_mut() = type_index as i32;
            }
        }

        // Push the information into the AST
        let procedure = &mut ctx.heap[self.procedure_id];
        procedure.monomorphs[self.reserved_monomorph_index as usize] = monomorph;

        Ok(())
    }

    fn progress_inference_rule(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        use InferenceRule as IR;

        let node = &self.infer_nodes[node_index];
        match &node.inference_rule {
            IR::Noop =>
                unreachable!(),
            IR::MonoTemplate(_) =>
                self.progress_inference_rule_mono_template(ctx, node_index),
            IR::BiEqual(_) =>
                self.progress_inference_rule_bi_equal(ctx, node_index),
            IR::TriEqualArgs(_) =>
                self.progress_inference_rule_tri_equal_args(ctx, node_index),
            IR::TriEqualAll(_) =>
                self.progress_inference_rule_tri_equal_all(ctx, node_index),
            IR::Concatenate(_) =>
                self.progress_inference_rule_concatenate(ctx, node_index),
            IR::IndexingExpr(_) =>
                self.progress_inference_rule_indexing_expr(ctx, node_index),
            IR::SlicingExpr(_) =>
                self.progress_inference_rule_slicing_expr(ctx, node_index),
            IR::SelectStructField(_) =>
                self.progress_inference_rule_select_struct_field(ctx, node_index),
            IR::SelectTupleMember(_) =>
                self.progress_inference_rule_select_tuple_member(ctx, node_index),
            IR::LiteralStruct(_) =>
                self.progress_inference_rule_literal_struct(ctx, node_index),
            IR::LiteralEnum =>
                self.progress_inference_rule_literal_enum(ctx, node_index),
            IR::LiteralUnion(_) =>
                self.progress_inference_rule_literal_union(ctx, node_index),
            IR::LiteralArray(_) =>
                self.progress_inference_rule_literal_array(ctx, node_index),
            IR::LiteralTuple(_) =>
                self.progress_inference_rule_literal_tuple(ctx, node_index),
            IR::CastExpr(_) =>
                self.progress_inference_rule_cast_expr(ctx, node_index),
            IR::CallExpr(_) =>
                self.progress_inference_rule_call_expr(ctx, node_index),
            IR::VariableExpr(_) =>
                self.progress_inference_rule_variable_expr(ctx, node_index),
        }
    }

    fn progress_inference_rule_mono_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = *node.inference_rule.as_mono_template();

        let progress = self.progress_template(ctx, node_index, rule.application, rule.template)?;
        if progress { self.queue_node_parent(node_index); }

        return Ok(());
    }

    fn progress_inference_rule_bi_equal(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_bi_equal();
        let template = rule.template;
        let arg_index = rule.argument_index;

        let base_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
        let (node_progress, arg_progress) = self.apply_equal2_constraint(ctx, node_index, node_index, 0, arg_index, 0)?;

        if base_progress || node_progress { self.queue_node_parent(node_index); }
        if arg_progress { self.queue_node(arg_index); }

        return Ok(())
    }

    fn progress_inference_rule_tri_equal_args(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_tri_equal_args();

        let result_template = rule.result_template;
        let argument_template = rule.argument_template;
        let arg1_index = rule.argument1_index;
        let arg2_index = rule.argument2_index;

        let self_template_progress = self.progress_template(ctx, node_index, result_template.application, result_template.template)?;
        let arg1_template_progress = self.progress_template(ctx, arg1_index, argument_template.application, argument_template.template)?;
        let (arg1_progress, arg2_progress) = self.apply_equal2_constraint(ctx, node_index, arg1_index, 0, arg2_index, 0)?;

        if self_template_progress { self.queue_node_parent(node_index); }
        if arg1_template_progress || arg1_progress { self.queue_node(arg1_index); }
        if arg2_progress { self.queue_node(arg2_index); }

        return Ok(());
    }

    fn progress_inference_rule_tri_equal_all(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_tri_equal_all();

        let template = rule.template;
        let arg1_index = rule.argument1_index;
        let arg2_index = rule.argument2_index;

        let template_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
        let (node_progress, arg1_progress, arg2_progress) =
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?;

        if template_progress || node_progress { self.queue_node_parent(node_index); }
        if arg1_progress { self.queue_node(arg1_index); }
        if arg2_progress { self.queue_node(arg2_index); }

        return Ok(());
    }

    fn progress_inference_rule_concatenate(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_concatenate();
        let arg1_index = rule.argument1_index;
        let arg2_index = rule.argument2_index;

        // Two cases: one of the arguments is a string (then all must be), or
        // one of the arguments is an array (and all must be arrays).
        let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(node_index);
        let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg1_index);
        let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg2_index);

        let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
        let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
        // Note: this statement is an expression returning the progression bools
        let (node_progress, arg1_progress, arg2_progress) = if someone_is_str {
            // One of the arguments is a string, then all must be strings
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?
        } else {
            let progress_expr = if someone_is_not_str {
                // Output must be a normal array
                self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?
            } else {
                // Output may still be anything
                self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?
            };

            let progress_arg1 = self.apply_template_constraint(ctx, arg1_index, &ARRAYLIKE_TEMPLATE)?;
            let progress_arg2 = self.apply_template_constraint(ctx, arg2_index, &ARRAYLIKE_TEMPLATE)?;

            // If they're all arraylike, then we want the subtype to match
            let (subtype_expr, subtype_arg1, subtype_arg2) =
                self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 1)?;

            (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
        };

        if node_progress { self.queue_node_parent(node_index); }
        if arg1_progress { self.queue_node(arg1_index); }
        if arg2_progress { self.queue_node(arg2_index); }

        return Ok(())
    }

    fn progress_inference_rule_indexing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_indexing_expr();
        let subject_index = rule.subject_index;
        let index_index = rule.index_index; // which one?

        // Subject is arraylike, index in integerlike
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
        let index_template_progress = self.apply_template_constraint(ctx, index_index, &INTEGERLIKE_TEMPLATE)?;

        // If subject is type `Array<T>`, then expr type is `T`
        let (node_progress, subject_progress) =
            self.apply_equal2_constraint(ctx, node_index, node_index, 0, subject_index, 1)?;

        if node_progress { self.queue_node_parent(node_index); }
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
        if index_template_progress { self.queue_node(index_index); }

        return Ok(());
    }

    fn progress_inference_rule_slicing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_slicing_expr();
        let subject_index = rule.subject_index;
        let from_index_index = rule.from_index;
        let to_index_index = rule.to_index;

        debug_log!("Rule slicing [node: {}, expr: {}]", node_index, node.expr_id.index);

        // Subject is arraylike, indices are integerlike
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
        let from_template_progress = self.apply_template_constraint(ctx, from_index_index, &INTEGERLIKE_TEMPLATE)?;
        let to_template_progress = self.apply_template_constraint(ctx, to_index_index, &INTEGERLIKE_TEMPLATE)?;
        let (from_index_progress, to_index_progress) =
            self.apply_equal2_constraint(ctx, node_index, from_index_index, 0, to_index_index, 0)?;

        // Same as array indexing: result depends on whether subject is string
        // or array
        let (is_string, is_not_string) = self.type_is_certainly_or_certainly_not_string(node_index);
        let (node_progress, subject_progress) = if is_string {
            // Certainly a string
            (
                self.apply_forced_constraint(ctx, node_index, &STRING_TEMPLATE)?,
                false
            )
        } else if is_not_string {
            // Certainly not a string, apply template constraint. Then make sure
            // that if we have an `Array<T>`, that the slice produces `Slice<T>`
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &SLICE_TEMPLATE)?;
            let (node_progress, subject_progress) =
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;

            (
                node_template_progress || node_progress,
                subject_progress
            )
        } else {
            // Not sure yet
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?;
            let (node_progress, subject_progress) =
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;

            (
                node_template_progress || node_progress,
                subject_progress
            )
        };

        if node_progress { self.queue_node_parent(node_index); }
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
        if from_template_progress || from_index_progress { self.queue_node(from_index_index); }
        if to_template_progress || to_index_progress { self.queue_node(to_index_index); }

        return Ok(());
    }

    fn progress_inference_rule_select_struct_field(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_select_struct_field();

        let subject_index = rule.subject_index;
        let selected_field = rule.selected_field.clone();

        fn get_definition_id_from_inference_type(inference_type: &InferenceType) -> Result<Option<DefinitionId>, ()> {
            for part in inference_type.parts.iter() {
                if part.is_marker() { continue; }
                if !part.is_concrete() { break; }

                if let InferenceTypePart::Instance(definition_id, _) = part {
                    return Ok(Some(*definition_id));
                } else {
                    return Err(())
                }
            }

            // Nothing is known yet
            return Ok(None);
        }

        if node.field_index < 0 {
            // Don't know the subject definition, hence the field yet. Try to
            // determine it.
            let subject_node = &self.infer_nodes[subject_index];
            match get_definition_id_from_inference_type(&subject_node.expr_type) {
                Ok(Some(definition_id)) => {
                    // Determined definition of subject for the first time.
                    let base_definition = ctx.types.get_base_definition(&definition_id).unwrap();
                    let struct_definition = if let DefinedTypeVariant::Struct(struct_definition) = &base_definition.definition {
                        struct_definition
                    } else {
                        return Err(ParseError::new_error_at_span(
                            &ctx.module().source, selected_field.span, format!(
                                "Can only apply field access to structs, got a subject of type '{}'",
                                subject_node.expr_type.display_name(&ctx.heap)
                            )
                        ));
                    };

                    // Seek the field that is referenced by the select
                    // expression
                    let mut field_found = false;
                    for (field_index, field) in struct_definition.fields.iter().enumerate() {
                        if field.identifier.value == selected_field.value {
                            // Found the field of interest
                            field_found = true;
                            let node = &mut self.infer_nodes[node_index];
                            node.field_index = field_index as i32;
                            break;
                        }
                    }

                    if !field_found {
                        let struct_definition = ctx.heap[definition_id].as_struct();
                        return Err(ParseError::new_error_at_span(
                            &ctx.module().source, selected_field.span, format!(
                                "this field does not exist on the struct '{}'",
                                struct_definition.identifier.value.as_str()
                            )
                        ));
                    }

                    // Insert the initial data needed to infer polymorphic
                    // fields
                    let extra_index = self.insert_initial_select_polymorph_data(ctx, node_index, definition_id);
                    let node = &mut self.infer_nodes[node_index];
                    node.poly_data_index = extra_index;
                },
                Ok(None) => {
                    // We don't know what to do yet, because we don't know the
                    // subject type yet.
                    return Ok(())
                },
                Err(()) => {
                    return Err(ParseError::new_error_at_span(
                        &ctx.module().source, rule.selected_field.span, format!(
                            "Can only apply field access to structs, got a subject of type '{}'",
                            subject_node.expr_type.display_name(&ctx.heap)
                        )
                    ));
                },
            }
        }

        // If here then the field index is known, hence we can start inferring
        // the type of the selected field
        let field_expr_id = self.infer_nodes[node_index].expr_id;
        let subject_expr_id = self.infer_nodes[subject_index].expr_id;
        let mut poly_progress_section = self.poly_progress_buffer.start_section();

        let (_, progress_subject_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, subject_expr_id, "selected struct's",
            PolyDataTypeIndex::Associated(0), 0, subject_index, 0, &mut poly_progress_section
        )?;
        let (_, progress_field_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, field_expr_id, "selected field's",
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
        )?;

        // Maybe make progress on types due to inferred polymorphic variables
        let progress_subject_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Associated(0), subject_index, &poly_progress_section
        );
        let progress_field_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
        );

        if progress_subject_1 || progress_subject_2 { self.queue_node(subject_index); }
        if progress_field_1 || progress_field_2 { self.queue_node_parent(node_index); }

        poly_progress_section.forget();
        self.finish_polydata_constraint(node_index);
        return Ok(())
    }

    fn progress_inference_rule_select_tuple_member(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_select_tuple_member();
        let subject_index = rule.subject_index;
        let tuple_member_index = rule.selected_index;

        if node.field_index < 0 {
            let subject_type = &self.infer_nodes[subject_index].expr_type;
            let tuple_size = get_tuple_size_from_inference_type(subject_type);
            let tuple_size = match tuple_size {
                Ok(Some(tuple_size)) => {
                    tuple_size
                },
                Ok(None) => {
                    // We can't infer anything yet
                    return Ok(())
                },
                Err(()) => {
                    let select_expr_span = ctx.heap[node.expr_id].full_span();
                    return Err(ParseError::new_error_at_span(
                        &ctx.module().source, select_expr_span, format!(
                            "tuple element select cannot be applied to a subject of type '{}'",
                            subject_type.display_name(&ctx.heap)
                        )
                    ));
                }
            };

            // If here then we at least have the tuple size. Now check if the
            // index doesn't exceed that size.
            if tuple_member_index >= tuple_size as u64 {
                let select_expr_span = ctx.heap[node.expr_id].full_span();
                return Err(ParseError::new_error_at_span(
                    &ctx.module().source, select_expr_span, format!(
                        "element index {} is out of bounds, tuple has {} elements",
                        tuple_member_index, tuple_size
                    )
                ));
            }

            // Within bounds, set index on the type inference node
            let node = &mut self.infer_nodes[node_index];
            node.field_index = tuple_member_index as i32;
        }

        // If here then we know we can use `tuple_member_index`. We need to keep
        // computing the offset to the subtype, as its value changes during
        // inference
        let subject_type = &self.infer_nodes[subject_index].expr_type;
        let mut selected_member_start_index = 1; // start just after the InferenceTypeElement::Tuple
        for _ in 0..tuple_member_index {
            selected_member_start_index = InferenceType::find_subtree_end_idx(&subject_type.parts, selected_member_start_index);
        }

        let (progress_member, progress_subject) = self.apply_equal2_constraint(
            ctx, node_index, node_index, 0, subject_index, selected_member_start_index
        )?;

        if progress_member { self.queue_node_parent(node_index); }
        if progress_subject { self.queue_node(subject_index); }

        return Ok(());
    }

    fn progress_inference_rule_literal_struct(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let node_expr_id = node.expr_id;
        let rule = node.inference_rule.as_literal_struct();

        // For each of the fields in the literal struct, apply the type equality
        // constraint. If the literal is polymorphic, then we try to progress
        // their types during this process
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
            let field_expr_id = self.infer_nodes[field_node_index].expr_id;
            let (_, progress_field) = self.apply_polydata_equal2_constraint(
                ctx, node_index, field_expr_id, "struct field's",
                PolyDataTypeIndex::Associated(field_index), 0,
                field_node_index, 0, &mut poly_progress_section
            )?;

            if progress_field { self.queue_node(field_node_index); }
        }

        // Now we do the same thing for the struct literal expression (the type
        // of the struct itself).
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, node_expr_id, "struct literal's",
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
        )?;

        // And the other way around: if any of our polymorphic variables are
        // more specific then they were before, then we forward that information
        // back to our struct/fields.
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
            let progress_field = self.apply_polydata_polyvar_constraint(
                ctx, node_index, PolyDataTypeIndex::Associated(field_index),
                field_node_index, &poly_progress_section
            );

            if progress_field { self.queue_node(field_node_index); }
        }

        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Returned,
            node_index, &poly_progress_section
        );

        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }

        poly_progress_section.forget();
        element_indices_section.forget();

        self.finish_polydata_constraint(node_index);
        return Ok(())
    }

    fn progress_inference_rule_literal_enum(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let node_expr_id = node.expr_id;
        let mut poly_progress_section = self.poly_progress_buffer.start_section();

        // An enum literal type is simply, well, the enum's type. However, it
        // might still have polymorphic variables, hence the use of `PolyData`.
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, node_expr_id, "enum literal's",
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
        )?;

        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
        );

        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }

        poly_progress_section.forget();
        self.finish_polydata_constraint(node_index);
        return Ok(());
    }

    fn progress_inference_rule_literal_union(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let node_expr_id = node.expr_id;
        let rule = node.inference_rule.as_literal_union();

        // Infer type of any embedded values in the union variant. At the same
        // time progress the polymorphic variables associated with the union.
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
        let mut poly_progress_section = self.poly_progress_buffer.start_section();

        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
            let embedded_node_expr_id = self.infer_nodes[embedded_node_index].expr_id;
            let (_, progress_embedded) = self.apply_polydata_equal2_constraint(
                ctx, node_index, embedded_node_expr_id, "embedded value's",
                PolyDataTypeIndex::Associated(embedded_index), 0,
                embedded_node_index, 0, &mut poly_progress_section
            )?;

            if progress_embedded { self.queue_node(embedded_node_index); }
        }

        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, node_expr_id, "union's",
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
        )?;

        // Propagate progress in the polymorphic variables to the expressions
        // that constitute the union literal.
        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
            let progress_embedded = self.apply_polydata_polyvar_constraint(
                ctx, node_index, PolyDataTypeIndex::Associated(embedded_index),
                embedded_node_index, &poly_progress_section
            );

            if progress_embedded { self.queue_node(embedded_node_index); }
        }

        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
        );

        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }

        poly_progress_section.forget();
        self.finish_polydata_constraint(node_index);
        return Ok(());
    }

    fn progress_inference_rule_literal_array(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_literal_array();

        // Apply equality rule to all of the elements that form the array
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
        let mut argument_progress_section = self.bool_buffer.start_section();
        self.apply_equal_n_constraint(ctx, node_index, &argument_node_indices, &mut argument_progress_section)?;

        debug_assert_eq!(argument_node_indices.len(), argument_progress_section.len());
        for argument_index in 0..argument_node_indices.len() {
            let argument_node_index = argument_node_indices[argument_index];
            let progress = argument_progress_section[argument_index];

            if progress { self.queue_node(argument_node_index); }
        }

        // If elements are of type `T`, then the array is of type `Array<T>`, so:
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?;
        if argument_node_indices.len() != 0 {
            let argument_node_index = argument_node_indices[0];
            let (progress_literal_inner, progress_argument) = self.apply_equal2_constraint(
                ctx, node_index, node_index, 1, argument_node_index, 0
            )?;

            progress_literal = progress_literal || progress_literal_inner;

            // It is possible that the `Array<T>` has a more progress `T` then
            // the arguments. So in the case we progress our argument type we
            // simply queue this rule again
            if progress_argument { self.queue_node(node_index); }
        }

        argument_node_indices.forget();
        argument_progress_section.forget();

        if progress_literal { self.queue_node_parent(node_index); }
        return Ok(());
    }

    fn progress_inference_rule_literal_tuple(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_literal_tuple();

        let element_indices = self.index_buffer.start_section_initialized(&rule.element_indices);

        // Check if we need to apply the initial tuple template type. Note that
        // this is a hacky check.
        let num_tuple_elements = rule.element_indices.len();
        let mut template_type = Vec::with_capacity(num_tuple_elements + 1); // TODO: @performance
        template_type.push(InferenceTypePart::Tuple(num_tuple_elements as u32));
        for _ in 0..num_tuple_elements {
            template_type.push(InferenceTypePart::Unknown);
        }

        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &template_type)?;

        // Because of the (early returning error) check above, we're certain
        // that the tuple has the correct number of elements. Now match each
        // element expression type to the tuple subtype.
        let mut element_subtree_start_index = 1; // first element is InferenceTypePart::Tuple
        for element_node_index in element_indices.iter_copied() {
            let (progress_literal_element, progress_element) = self.apply_equal2_constraint(
                ctx, node_index, node_index, element_subtree_start_index, element_node_index, 0
            )?;

            progress_literal = progress_literal || progress_literal_element;
            if progress_element {
                self.queue_node(element_node_index);
            }

            // Prepare for next element
            let node = &self.infer_nodes[node_index];
            let subtree_end_index = InferenceType::find_subtree_end_idx(&node.expr_type.parts, element_subtree_start_index);
            element_subtree_start_index = subtree_end_index;
        }
        debug_assert_eq!(element_subtree_start_index, self.infer_nodes[node_index].expr_type.parts.len());

        if progress_literal { self.queue_node_parent(node_index); }

        element_indices.forget();
        return Ok(());
    }

    fn progress_inference_rule_cast_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_cast_expr();
        let subject_index = rule.subject_index;
        let subject = &self.infer_nodes[subject_index];

        // Make sure that both types are completely done. Note: a cast
        // expression cannot really infer anything between the subject and the
        // output type, we can only make sure that, at the end, the cast is
        // correct.
        if !node.expr_type.is_done || !subject.expr_type.is_done {
            return Ok(());
        }

        // Both types are known, currently the only valid casts are bool,
        // integer and character casts.
        fn is_bool_int_or_char(parts: &[InferenceTypePart]) -> bool {
            let mut index = 0;
            while index < parts.len() {
                let part = &parts[index];
                if !part.is_marker() { break; }
                index += 1;
            }

            debug_assert!(index != parts.len());
            let part = &parts[index];
            if *part == InferenceTypePart::Bool || *part == InferenceTypePart::Character || part.is_concrete_integer() {
                debug_assert!(index + 1 == parts.len()); // type is done, first part does not have children -> must be at end
                return true;
            } else {
                return false;
            }
        }

        let is_valid = if is_bool_int_or_char(&node.expr_type.parts) && is_bool_int_or_char(&subject.expr_type.parts) {
            true
        } else if InferenceType::check_subtrees(&node.expr_type.parts, 0, &subject.expr_type.parts, 0) {
            // again: check_subtrees is sufficient since both types are done
            true
        } else {
            false
        };

        if !is_valid {
            let cast_expr = &ctx.heap[node.expr_id];
            let subject_expr = &ctx.heap[subject.expr_id];
            return Err(ParseError::new_error_str_at_span(
                &ctx.module().source, cast_expr.full_span(), "invalid casting operation"
            ).with_info_at_span(
                &ctx.module().source, subject_expr.full_span(), format!(
                    "cannot cast the argument type '{}' to the type '{}'",
                    subject.expr_type.display_name(&ctx.heap),
                    node.expr_type.display_name(&ctx.heap)
                )
            ));
        }

        return Ok(())
    }

    fn progress_inference_rule_call_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &self.infer_nodes[node_index];
        let node_expr_id = node.expr_id;
        let rule = node.inference_rule.as_call_expr();

        let mut poly_progress_section = self.poly_progress_buffer.start_section();
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.argument_indices);

        // Perform inference on arguments to function, while trying to figure
        // out the polymorphic variables
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
            let argument_expr_id = self.infer_nodes[argument_node_index].expr_id;
            let (_, progress_argument) = self.apply_polydata_equal2_constraint(
                ctx, node_index, argument_expr_id, "argument's",
                PolyDataTypeIndex::Associated(argument_index), 0,
                argument_node_index, 0, &mut poly_progress_section
            )?;

            if progress_argument { self.queue_node(argument_node_index); }
        }

        // Same for the return type.
        let (_, progress_call_1) = self.apply_polydata_equal2_constraint(
            ctx, node_index, node_expr_id, "return",
            PolyDataTypeIndex::Returned, 0,
            node_index, 0, &mut poly_progress_section
        )?;

        // We will now apply any progression in the polymorphic variable type
        // back to the arguments.
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
            let progress_argument = self.apply_polydata_polyvar_constraint(
                ctx, node_index, PolyDataTypeIndex::Associated(argument_index),
                argument_node_index, &poly_progress_section
            );

            if progress_argument { self.queue_node(argument_node_index); }
        }

        // And back to the return type.
        let progress_call_2 = self.apply_polydata_polyvar_constraint(
            ctx, node_index, PolyDataTypeIndex::Returned,
            node_index, &poly_progress_section
        );

        if progress_call_1 || progress_call_2 { self.queue_node_parent(node_index); }

        poly_progress_section.forget();
        argument_node_indices.forget();

        self.finish_polydata_constraint(node_index);
        return Ok(())
    }

    fn progress_inference_rule_variable_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
        let node = &mut self.infer_nodes[node_index];
        let rule = node.inference_rule.as_variable_expr();
        let var_data_index = rule.var_data_index;

        let var_data = &mut self.var_data[var_data_index];
        // Apply inference to the shared variable type and the expression type
        let shared_type: *mut _ = &mut var_data.var_type;
        let expr_type: *mut _ = &mut node.expr_type;

        let inference_result = unsafe {
            // safety: vectors exist in different storage vectors, so cannot alias
            InferenceType::infer_subtrees_for_both_types(shared_type, 0, expr_type, 0)
        };

        if inference_result == DualInferenceResult::Incompatible {
            return Err(self.construct_variable_type_error(ctx, node_index));
        }

        let progress_var_data = inference_result.modified_lhs();
        let progress_expr = inference_result.modified_rhs();

        if progress_var_data {
            // We progressed the type of the shared variable, so propagate this
            // to all associated variable expressions (and relatived variables).
            for other_node_index in var_data.used_at.iter().copied() {
                if other_node_index != node_index {
                    self.node_queued.push_back(other_node_index);
                }
            }

            if let Some(linked_var_data_index) = var_data.linked_var {
                // Only perform one-way inference, progressing the linked
                // variable.
                // note: because this "linking" is used only for channels, we
                // will start inference one level below the top-level in the
                // type tree (i.e. ensure `T` in `in<T>` and `out<T>` is equal).
                debug_assert!(
                    var_data.var_type.parts[0] == InferenceTypePart::Input ||
                    var_data.var_type.parts[0] == InferenceTypePart::Output
                );
                let this_var_type: *const _ = &var_data.var_type;
                let linked_var_data = &mut self.var_data[linked_var_data_index];
                debug_assert!(
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Input ||
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Output
                );

                // safety: by construction var_data_index and linked_var_data_index cannot be the
                // same, hence we're not aliasing here.
                let inference_result = InferenceType::infer_subtree_for_single_type(
                    &mut linked_var_data.var_type, 1,
                    unsafe{ &(*this_var_type).parts }, 1, false
                );
                match inference_result {
                    SingleInferenceResult::Modified => {
                        for used_at in linked_var_data.used_at.iter().copied() {
                            self.node_queued.push_back(used_at);
                        }
                    },
                    SingleInferenceResult::Unmodified => {},
                    SingleInferenceResult::Incompatible => {
                        let var_data_this = &self.var_data[var_data_index];
                        let var_decl_this = &ctx.heap[var_data_this.var_id];
                        let var_data_linked = &self.var_data[linked_var_data_index];
                        let var_decl_linked = &ctx.heap[var_data_linked.var_id];

                        return Err(ParseError::new_error_at_span(
                            &ctx.module().source, var_decl_this.identifier.span, format!(
                                "conflicting types for this channel, this port has type '{}'",
                                var_data_this.var_type.display_name(&ctx.heap)
                            )
                        ).with_info_at_span(
                            &ctx.module().source, var_decl_linked.identifier.span, format!(
                                "while this port has type '{}'",
                                var_data_linked.var_type.display_name(&ctx.heap)
                            )
                        ));
                    }
                }
            }
        }

        if progress_expr { self.queue_node_parent(node_index); }

        return Ok(());
    }

    fn progress_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex, application: InferenceRuleTemplateApplication, template: &[InferenceTypePart]) -> Result<bool, ParseError> {
        use InferenceRuleTemplateApplication as TA;

        match application {
            TA::None => Ok(false),
            TA::Template => self.apply_template_constraint(ctx, node_index, template),
            TA::Forced => self.apply_forced_constraint(ctx, node_index, template),
        }
    }

    fn queue_node_parent(&mut self, node_index: InferNodeIndex) {
        let node = &self.infer_nodes[node_index];
        if let Some(parent_node_index) = node.parent_index {
            self.node_queued.push_back(parent_node_index);
        }
    }

    #[inline]
    fn queue_node(&mut self, node_index: InferNodeIndex) {
        self.node_queued.push_back(node_index);
    }

    /// Returns whether the type is certainly a string (true, false), certainly
    /// not a string (false, true), or still unknown (false, false).
    fn type_is_certainly_or_certainly_not_string(&self, node_index: InferNodeIndex) -> (bool, bool) {
        let expr_type = &self.infer_nodes[node_index].expr_type;
        let mut part_index = 0;
        while part_index < expr_type.parts.len() {
            let part = &expr_type.parts[part_index];

            if part.is_marker() {
                part_index += 1;
                continue;
            }
            if !part.is_concrete() { break; }

            if *part == InferenceTypePart::String {
                // First part is a string
                return (true, false);
            } else {
                return (false, true);
            }
        }

        // If here then first non-marker type is not concrete
        if part_index == expr_type.parts.len() {
            // nothing known at all
            return (false, false);
        }

        // Special case: array-like where its argument is not a character
        if part_index + 1 < expr_type.parts.len() {
            if expr_type.parts[part_index] == InferenceTypePart::ArrayLike && expr_type.parts[part_index + 1] != InferenceTypePart::Character {
                return (false, true);
            }
        }


        (false, false)
    }

    /// Applies a template type constraint: the type associated with the
    /// supplied expression will be molded into the provided `template`. But
    /// will be considered valid if the template could've been molded into the
    /// expression type as well. Hence the template may be fully specified (e.g.
    /// a bool) or contain "inference" variables (e.g. an array of T)
    fn apply_template_constraint(
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
    ) -> Result<bool, ParseError> {
        let expr_type = &mut self.infer_nodes[node_index].expr_type;
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, false) {
            SingleInferenceResult::Modified => Ok(true),
            SingleInferenceResult::Unmodified => Ok(false),
            SingleInferenceResult::Incompatible => Err(
                self.construct_template_type_error(ctx, node_index, template)
            )
        }
    }

    /// Applies a forced constraint: the supplied expression's type MUST be
    /// inferred from the template, the other way around is considered invalid.
    fn apply_forced_constraint(
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
    ) -> Result<bool, ParseError> {
        let expr_type = &mut self.infer_nodes[node_index].expr_type;

        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, true) {
            SingleInferenceResult::Modified => Ok(true),
            SingleInferenceResult::Unmodified => Ok(false),
            SingleInferenceResult::Incompatible => Err(
                self.construct_template_type_error(ctx, node_index, template)
            )
        }
    }

    /// Applies a type constraint that expects the two provided types to be
    /// equal. We attempt to make progress in inferring the types. If the call
    /// is successful then the composition of all types are made equal.
    /// The "parent" `expr_id` is provided to construct errors.
    fn apply_equal2_constraint(
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
        arg1_index: InferNodeIndex, arg1_start_idx: usize,
        arg2_index: InferNodeIndex, arg2_start_idx: usize
    ) -> Result<(bool, bool), ParseError> {
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;

        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
            arg1_type, arg1_start_idx,
            arg2_type, arg2_start_idx
        ) };
        if infer_res == DualInferenceResult::Incompatible {
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
        }

        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
    }

    /// Applies an equal2 constraint between a member of the `PolyData` struct,
    /// and another inferred type. If any progress is made in the `PolyData`
    /// struct then the affected polymorphic variables are updated as well.
    ///
    /// Because a lot of types/expressions are involved in polymorphic typFe
    /// inference, some explanation: "outer_node" refers to the main expression
    /// that is the root cause of type inference (e.g. a struct literal
    /// expression, or a tuple member select expression). Associated with that
    /// outer node is `PolyData`, so that is what the "poly_data" variables
    /// are referring to. We are applying equality between a "poly_data" type
    /// and an associated expression (not necessarily the "outer_node", e.g.
    /// the expression that constructs the value of a struct field). Hence the
    /// "associated" variables.
    ///
    /// Finally, when an error occurs we'll first show the outer node's
    /// location. As info, the `error_location_expr_id` span is shown,
    /// indicating that the "`error_type_name` type has been resolved to
    /// `outer_node_type`, but this expression has been resolved to
    /// `associated_node_type`".
    fn apply_polydata_equal2_constraint(
        &mut self, ctx: &Ctx,
        outer_node_index: InferNodeIndex, error_location_expr_id: ExpressionId, error_type_name: &str,
        poly_data_type_index: PolyDataTypeIndex, poly_data_start_index: usize,
        associated_node_index: InferNodeIndex, associated_node_start_index: usize,
        poly_progress_section: &mut ScopedSection<u32>,
    ) -> Result<(bool, bool), ParseError> {
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
        let poly_data = &mut self.poly_data[poly_data_index as usize];
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
        let associated_type: *mut _ = &mut self.infer_nodes[associated_node_index].expr_type;

        let inference_result = unsafe{
            // Safety: pointers originate from different vectors, so cannot
            // alias.
            let poly_data_type: *mut _ = poly_data_type;
            InferenceType::infer_subtrees_for_both_types(
                poly_data_type, poly_data_start_index,
                associated_type, associated_node_start_index
            )
        };

        let modified_poly_data = inference_result.modified_lhs();
        let modified_associated = inference_result.modified_rhs();
        if inference_result == DualInferenceResult::Incompatible {
            let outer_node_expr_id = self.infer_nodes[outer_node_index].expr_id;
            let outer_node_span = ctx.heap[outer_node_expr_id].full_span();
            let detailed_span = ctx.heap[error_location_expr_id].full_span();

            let outer_node_type = poly_data_type.display_name(&ctx.heap);
            let associated_type = self.infer_nodes[associated_node_index].expr_type.display_name(&ctx.heap);

            let source = &ctx.module().source;
            return Err(ParseError::new_error_str_at_span(
                source, outer_node_span, "failed to resolve the types of this expression"
            ).with_info_str_at_span(
                source, detailed_span, &format!(
                    "because the {} type has been resolved to '{}', but this expression has been resolved to '{}'",
                    error_type_name, outer_node_type, associated_type
                )
            ));
        }

        if modified_poly_data {
            debug_assert!(poly_data_type.has_marker);

            // Go through markers for polymorphic variables and use the
            // (hopefully) more specific types to update their representation
            // in the PolyData struct
            for (poly_var_index, poly_var_section) in poly_data_type.marker_iter() {
                let poly_var_type = &mut poly_data.poly_vars[poly_var_index as usize];
                match InferenceType::infer_subtree_for_single_type(poly_var_type, 0, poly_var_section, 0, false) {
                    SingleInferenceResult::Modified => {
                        poly_progress_section.push_unique(poly_var_index);
                    },
                    SingleInferenceResult::Unmodified => {
                        // nothing to do
                    },
                    SingleInferenceResult::Incompatible => {
                        return Err(Self::construct_poly_arg_error(
                            ctx, &self.poly_data[poly_data_index as usize],
                            self.infer_nodes[outer_node_index].expr_id
                        ));
                    }
                }
            }
        }

        return Ok((modified_poly_data, modified_associated));
    }

    /// After calling `apply_polydata_equal2_constraint` on several expressions
    /// that are associated with some kind of polymorphic expression, several of
    /// the polymorphic variables might have been inferred to more specific
    /// types than before.
    ///
    /// At this point one should call this function to apply the progress in
    /// these polymorphic variables back onto the types that are functions of
    /// these polymorphic variables.
    ///
    /// An example: a struct literal with a polymorphic variable `T` may have
    /// two fields `foo` and `bar` each with different types that are a function
    /// of the polymorhic variable `T`. If the expressions constructing the
    /// value for the field `foo` causes the type `T` to progress, then we can
    /// also progress the type of the expression that constructs `bar`.
    ///
    /// And so we have `outer_node_index` + `poly_data_type_index` pointing to
    /// the appropriate type in the `PolyData` struct. Which will be updated
    /// first using the polymorphic variables. If we happen to have updated that
    /// type, then we should also progress the associated expression, hence the
    /// `associated_node_index`.
    fn apply_polydata_polyvar_constraint(
        &mut self, _ctx: &Ctx,
        outer_node_index: InferNodeIndex, poly_data_type_index: PolyDataTypeIndex,
        associated_node_index: InferNodeIndex, poly_progress_section: &ScopedSection<u32>
    ) -> bool {
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
        let poly_data = &mut self.poly_data[poly_data_index as usize];

        // Early exit, most common case (literals or functions calls which are
        // actually not polymorphic)
        if !poly_data.first_rule_application && poly_progress_section.len() == 0 {
            return false;
        }

        // safety: we're borrowing from two distinct fields, so should be fine
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
        let mut last_start_index = 0;
        let mut modified_poly_type = false;

        while let Some((poly_var_index, poly_var_start_index)) = poly_data_type.find_marker(last_start_index) {
            let poly_var_end_index = InferenceType::find_subtree_end_idx(&poly_data_type.parts, poly_var_start_index);

            if poly_data.first_rule_application || poly_progress_section.contains(&poly_var_index) {
                // We have updated this polymorphic variable, so try updating it
                // in the PolyData type
                let modified_in_poly_data = match InferenceType::infer_subtree_for_single_type(
                    poly_data_type, poly_var_start_index, &poly_data.poly_vars[poly_var_index as usize].parts, 0, false
                ) {
                    SingleInferenceResult::Modified => true,
                    SingleInferenceResult::Unmodified => false,
                    SingleInferenceResult::Incompatible => {
                        // practically impossible: before calling this function we gather all the
                        // data on the polymorphic variables from the associated expressions. So if
                        // the polymorphic variables in those expressions were not mutually
                        // compatible, we must have encountered that error already.
                        unreachable!()
                    },
                };

                modified_poly_type = modified_poly_type || modified_in_poly_data;
            }

            last_start_index = poly_var_end_index;
        }

        if modified_poly_type {
            let associated_type = &mut self.infer_nodes[associated_node_index].expr_type;
            match InferenceType::infer_subtree_for_single_type(
                associated_type, 0, &poly_data_type.parts, 0, true
            ) {
                SingleInferenceResult::Modified => return true,
                SingleInferenceResult::Unmodified => return false,
                SingleInferenceResult::Incompatible => unreachable!(), // same as above
            }
        } else {
            // Did not update associated type
            return false;
        }
    }

    /// Should be called after completing one full round of applying polydata
    /// constraints.
    fn finish_polydata_constraint(&mut self, outer_node_index: InferNodeIndex) {
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
        let poly_data = &mut self.poly_data[poly_data_index as usize];
        poly_data.first_rule_application = false;
    }

    /// Applies a type constraint that expects all three provided types to be
    /// equal. In case we can make progress in inferring the types then we
    /// attempt to do so. If the call is successful then the composition of all
    /// types is made equal.
    fn apply_equal3_constraint(
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
        arg1_index: InferNodeIndex, arg2_index: InferNodeIndex,
        start_idx: usize
    ) -> Result<(bool, bool, bool), ParseError> {
        // Safety: all indices are unique
        //         containers may not be modified
        let expr_type: *mut _ = &mut self.infer_nodes[node_index].expr_type;
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;

        let expr_res = unsafe{
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
        };
        if expr_res == DualInferenceResult::Incompatible {
            return Err(self.construct_expr_type_error(ctx, node_index, arg1_index));
        }

        let args_res = unsafe{
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
        if args_res == DualInferenceResult::Incompatible {
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
        }

        // If all types are compatible, but the second call caused the arg1_type
        // to be expanded, then we must also assign this to expr_type.
        let mut progress_expr = expr_res.modified_lhs();
        let mut progress_arg1 = expr_res.modified_rhs();
        let progress_arg2 = args_res.modified_rhs();

        if args_res.modified_lhs() { 
            unsafe {
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
                (*expr_type).replace_subtree(start_idx, subtree);
            }
            progress_expr = true;
            progress_arg1 = true;
        }

        Ok((progress_expr, progress_arg1, progress_arg2))
    }

    /// Applies equal constraint to N consecutive expressions. The returned
    /// `progress` vec will contain which expressions were progressed and will
    /// have length N.
    fn apply_equal_n_constraint(
        &mut self, ctx: &Ctx, outer_node_index: InferNodeIndex,
        arguments: &ScopedSection<InferNodeIndex>, progress: &mut ScopedSection<bool>
    ) -> Result<(), ParseError> {
        // Depending on the argument perform an early exit. This simplifies
        // later logic
        debug_assert_eq!(progress.len(), 0);
        match arguments.len() {
            0 => {
                // nothing to progress
                return Ok(())
            },
            1 => {
                // only one type, so nothing to infer
                progress.push(false);
                return Ok(())
            },
            n => {
                for _ in 0..n {
                    progress.push(false);
                }
            }
        }

        // We'll start doing pairwise inference for all of the inference nodes
        // (node[0] with node[1], then node[1] with node[2], then node[2] ...,
        // etc.), so when we're at the end we have `node[N-1]` as the most
        // progressed type.
        let mut last_index_requiring_inference = 0;

        for prev_argument_index in 0..arguments.len() - 1 {
            let next_argument_index = prev_argument_index + 1;

            let prev_node_index = arguments[prev_argument_index];
            let next_node_index = arguments[next_argument_index];
            let (prev_progress, next_progress) = self.apply_equal2_constraint(
                ctx, outer_node_index, prev_node_index, 0, next_node_index, 0
            )?;

            if prev_progress {
                // Previous node is progress, so every type in front of it needs
                // to be reinferred.
                progress[prev_argument_index] = true;
                last_index_requiring_inference = prev_argument_index;
            }
            progress[next_argument_index] = next_progress;
        }

        // Apply inference using the most progressed type (the last one) to the
        // ones that did not obtain this information during the inference
        // process.
        let last_argument_node_index = arguments[arguments.len() - 1];
        let last_argument_type: *mut _ = &mut self.infer_nodes[last_argument_node_index].expr_type;

        for argument_index in 0..last_index_requiring_inference {
            // We can cheat, we know the LHS is less specific than the right
            // hand side, so:
            let argument_node_index = arguments[argument_index];
            let argument_type = &mut self.infer_nodes[argument_node_index].expr_type;
            unsafe {
                // safety: we're dealing with different vectors, so cannot alias
                argument_type.replace_subtree(0, &(*last_argument_type).parts);
            }
            progress[argument_index] = true;
        }

        return Ok(());
    }

    /// Determines the `InferenceType` for the expression based on the
    /// expression parent (this is not done if the parent is a regular 'ol
    /// expression). Expects `parent_index` to be set to the parent of the
    /// inference node that is created here.
    fn insert_initial_inference_node(
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
    ) -> Result<InferNodeIndex, ParseError> {
        use ExpressionParent as EP;
        use InferenceTypePart as ITP;

        // Set the initial inference type based on the expression parent.
        let expr = &ctx.heap[expr_id];
        let inference_type = match expr.parent() {
            EP::None =>
                // Should have been set by linker
                unreachable!(),
            EP::Memory(_) | EP::ExpressionStmt(_) =>
                // Determined during type inference
                InferenceType::new(false, false, vec![ITP::Unknown]),
            EP::Expression(parent_id, idx_in_parent) => {
                // If we are the test expression of a conditional expression,
                // then we must resolve to a boolean
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
                    true
                } else {
                    false
                };

                if is_conditional && *idx_in_parent == 0 {
                    InferenceType::new(false, true, vec![ITP::Bool])
                } else {
                    InferenceType::new(false, false, vec![ITP::Unknown])
                }
            },
            EP::If(_) | EP::While(_) =>
                // Must be a boolean
                InferenceType::new(false, true, vec![ITP::Bool]),
            EP::Return(_) => {
                // Must match the return type of the function
                debug_assert_eq!(self.procedure_kind, ProcedureKind::Function);
                let returned = &ctx.heap[self.procedure_id].return_type.as_ref().unwrap();
                self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
            },
            EP::New(_) =>
                // Must be a component call, which we assign a "Void" return
                // type
                InferenceType::new(false, true, vec![ITP::Void]),
        };

        let infer_index = self.infer_nodes.len() as InferNodeIndex;
        self.infer_nodes.push(InferenceNode {
            expr_type: inference_type,
            expr_id,
            inference_rule: InferenceRule::Noop,
            parent_index: self.parent_index,
            field_index: -1,
            poly_data_index: -1,
            info_type_id: TypeId::new_invalid(),
            info_variant: ExpressionInfoVariant::Generic,
        });

        return Ok(infer_index);
    }

    fn insert_initial_call_polymorph_data(
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
    ) -> PolyDataIndex {
        // Note: the polymorph variables may be partially specified and may
        // contain references to the wrapping definition's (i.e. the proctype
        // we are currently visiting) polymorphic arguments.
        //
        // The arguments of the call may refer to polymorphic variables in the
        // definition of the function we're calling, not of the wrapping
        // definition. We insert markers in these inferred types to be able to
        // map them back and forth to the polymorphic arguments of the function
        // we are calling.
        let call = &ctx.heap[call_id];

        // Handle the polymorphic arguments (if there are any)
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
        let mut poly_args = Vec::with_capacity(num_poly_args);
        for embedded_elements in call.parser_type.iter_embedded(0) {
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
        }

        // Handle the arguments and return types
        let definition = &ctx.heap[call.procedure];
        debug_assert_eq!(poly_args.len(), definition.poly_vars.len());

        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
        let parameter_section = self.var_buffer.start_section_initialized(&definition.parameters);
        for parameter_id in parameter_section.iter_copied() {
            let param = &ctx.heap[parameter_id];
            parameter_types.push(self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, false));
        }
        parameter_section.forget();

        let return_type = match &definition.return_type {
            None => {
                // Component, so returns a "Void"
                debug_assert_ne!(definition.kind, ProcedureKind::Function);
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
            },
            Some(returned) => {
                debug_assert_eq!(definition.kind, ProcedureKind::Function);
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
            }
        };

        let extra_data_idx = self.poly_data.len() as PolyDataIndex;
        self.poly_data.push(PolyData {
            first_rule_application: true,
            definition_id: call.procedure.upcast(),
            poly_vars: poly_args,
            expr_types: PolyDataTypes {
                associated: parameter_types,
                returned: return_type
            }
        });
        return extra_data_idx
    }

    fn insert_initial_struct_polymorph_data(
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
    ) -> PolyDataIndex {
        use InferenceTypePart as ITP;
        let literal = ctx.heap[lit_id].value.as_struct();

        // Handle polymorphic arguments
        let num_embedded = literal.parser_type.elements[0].variant.num_embedded();
        let mut total_num_poly_parts = 0;
        let mut poly_args = Vec::with_capacity(num_embedded);

        for embedded_elements in literal.parser_type.iter_embedded(0) {
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
            total_num_poly_parts += poly_type.parts.len();
            poly_args.push(poly_type);
        }

        // Handle parser types on struct definition
        let defined_type = ctx.types.get_base_definition(&literal.definition).unwrap();
        let struct_type = defined_type.definition.as_struct();
        debug_assert_eq!(poly_args.len(), defined_type.poly_vars.len());

        // Note: programmer is capable of specifying fields in a struct literal
        // in a different order than on the definition. We take the literal-
        // specified order to be leading.
        let mut embedded_types = Vec::with_capacity(struct_type.fields.len());
        for lit_field in literal.fields.iter() {
            let def_field = &struct_type.fields[lit_field.field_idx];
            let inference_type = self.determine_inference_type_from_parser_type_elements(&def_field.parser_type.elements, false);
            embedded_types.push(inference_type);
        }

        // Return type is the struct type itself, with the appropriate 
        // polymorphic variables. So:
        // - 1 part for definition
        // - N_poly_arg marker parts for each polymorphic argument
        // - all the parts for the currently known polymorphic arguments 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
        let mut parts = Vec::with_capacity(parts_reserved);
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
        let mut return_type_done = true;
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
            if !poly_var.is_done { return_type_done = false; }

            parts.push(ITP::Marker(poly_var_idx as u32));
            parts.extend(poly_var.parts.iter().cloned());
        }

        debug_assert_eq!(parts.len(), parts_reserved);
        let return_type = InferenceType::new(!poly_args.is_empty(), return_type_done, parts);

        let extra_data_index = self.poly_data.len() as PolyDataIndex;
        self.poly_data.push(PolyData {
            first_rule_application: true,
            definition_id: literal.definition,
            poly_vars: poly_args,
            expr_types: PolyDataTypes {
                associated: embedded_types,
                returned: return_type,
            },
        });

        return extra_data_index
    }

    /// Inserts the extra polymorphic data struct for enum expressions. These
    /// can never be determined from the enum itself, but may be inferred from
    /// the use of the enum.
    fn insert_initial_enum_polymorph_data(
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
    ) -> PolyDataIndex {
        use InferenceTypePart as ITP;
        let literal = ctx.heap[lit_id].value.as_enum();

        // Handle polymorphic arguments to the enum
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
        let mut total_num_poly_parts = 0;
        let mut poly_args = Vec::with_capacity(num_poly_args);

        for embedded_elements in literal.parser_type.iter_embedded(0) {
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
            total_num_poly_parts += poly_type.parts.len();
            poly_args.push(poly_type);
        }

        // Handle enum type itself
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
        let mut parts = Vec::with_capacity(parts_reserved);
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
        let mut enum_type_done = true;
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
            if !poly_var.is_done { enum_type_done = false; }

            parts.push(ITP::Marker(poly_var_idx as u32));
            parts.extend(poly_var.parts.iter().cloned());
        }

        debug_assert_eq!(parts.len(), parts_reserved);
        let enum_type = InferenceType::new(!poly_args.is_empty(), enum_type_done, parts);

        let extra_data_index = self.poly_data.len() as PolyDataIndex;
        self.poly_data.push(PolyData {
            first_rule_application: true,
            definition_id: literal.definition,
            poly_vars: poly_args,
            expr_types: PolyDataTypes {
                associated: Vec::new(),
                returned: enum_type,
            },
        });

        return extra_data_index;
    }

    /// Inserts the extra polymorphic data struct for unions. The polymorphic
    /// arguments may be partially determined from embedded values in the union.
    fn insert_initial_union_polymorph_data(
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
    ) -> PolyDataIndex {
        use InferenceTypePart as ITP;
        let literal = ctx.heap[lit_id].value.as_union();

        // Construct the polymorphic variables
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
        let mut total_num_poly_parts = 0;
        let mut poly_args = Vec::with_capacity(num_poly_args);

        for embedded_elements in literal.parser_type.iter_embedded(0) {
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
            total_num_poly_parts += poly_type.parts.len();
            poly_args.push(poly_type);
        }

        // Handle any of the embedded values in the variant, if specified
        let definition_id = literal.definition;
        let type_definition = ctx.types.get_base_definition(&definition_id).unwrap();
        let union_definition = type_definition.definition.as_union();
        debug_assert_eq!(poly_args.len(), type_definition.poly_vars.len());

        let variant_definition = &union_definition.variants[literal.variant_idx];
        debug_assert_eq!(variant_definition.embedded.len(), literal.values.len());

        let mut embedded = Vec::with_capacity(variant_definition.embedded.len());
        for embedded_parser_type in &variant_definition.embedded {
            let inference_type = self.determine_inference_type_from_parser_type_elements(&embedded_parser_type.elements, false);
            embedded.push(inference_type);
        }

        // Handle the type of the union itself
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
        let mut parts = Vec::with_capacity(parts_reserved);
        parts.push(ITP::Instance(definition_id, poly_args.len() as u32));
        let mut union_type_done = true;
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
            if !poly_var.is_done { union_type_done = false; }

            parts.push(ITP::Marker(poly_var_idx as u32));
            parts.extend(poly_var.parts.iter().cloned());
        }

        debug_assert_eq!(parts_reserved, parts.len());
        let union_type = InferenceType::new(!poly_args.is_empty(), union_type_done, parts);

        let extra_data_index = self.poly_data.len() as isize;
        self.poly_data.push(PolyData {
            first_rule_application: true,
            definition_id: literal.definition,
            poly_vars: poly_args,
            expr_types: PolyDataTypes {
                associated: embedded,
                returned: union_type,
            },
        });

        return extra_data_index;
    }

    /// Inserts the extra polymorphic data struct. Assumes that the select
    /// expression's referenced (definition_id, field_idx) has been resolved.
    fn insert_initial_select_polymorph_data(
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, struct_def_id: DefinitionId
    ) -> PolyDataIndex {
        use InferenceTypePart as ITP;

        let definition = ctx.heap[struct_def_id].as_struct();
        let node = &self.infer_nodes[node_index];
        let field_index = node.field_index as usize;

        // Generate initial polyvar types and struct type
        // TODO: @Performance: we can immediately set the polyvars of the subject's struct type
        let num_poly_vars = definition.poly_vars.len();
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
        struct_parts.push(ITP::Instance(struct_def_id, num_poly_vars as u32));

        for poly_idx in 0..num_poly_vars {
            poly_vars.push(InferenceType::new(true, false, vec![
                ITP::Marker(poly_idx as u32), ITP::Unknown,
            ]));
            struct_parts.push(ITP::Marker(poly_idx as u32));
            struct_parts.push(ITP::Unknown);
        }
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);

        // Generate initial field type
        let field_type = self.determine_inference_type_from_parser_type_elements(&definition.fields[field_index].parser_type.elements, false);

        let extra_data_index = self.poly_data.len() as PolyDataIndex;
        self.poly_data.push(PolyData {
            first_rule_application: true,
            definition_id: struct_def_id,
            poly_vars,
            expr_types: PolyDataTypes {
                associated: vec![InferenceType::new(num_poly_vars != 0, num_poly_vars == 0, struct_parts)],
                returned: field_type,
            },
        });

        return extra_data_index;
    }

    /// Determines the initial InferenceType from the provided ParserType. This
    /// may be called with two kinds of intentions:
    /// 1. To resolve a ParserType within the body of a function, or on
    ///     polymorphic arguments to calls/instantiations within that body. This
    ///     means that the polymorphic variables are known and can be replaced
    ///     with the monomorph we're instantiating.
    /// 2. To resolve a ParserType on a called function's definition or on
    ///     an instantiated datatype's members. This means that the polymorphic
    ///     arguments inside those ParserTypes refer to the polymorphic
    ///     variables in the called/instantiated type's definition.
    /// In the second case we place InferenceTypePart::Marker instances such
    /// that we can perform type inference on the polymorphic variables.
    fn determine_inference_type_from_parser_type_elements(
        &mut self, elements: &[ParserTypeElement],
        use_definitions_known_poly_args: bool
    ) -> InferenceType {
        use ParserTypeVariant as PTV;
        use InferenceTypePart as ITP;

        let mut infer_type = Vec::with_capacity(elements.len());
        let mut has_inferred = false;
        let mut has_markers = false;

        for element in elements {
            match &element.variant {
                // Compiler-only types
                PTV::Void => { infer_type.push(ITP::Void); },
                PTV::InputOrOutput => { infer_type.push(ITP::PortLike); has_inferred = true },
                PTV::ArrayLike => { infer_type.push(ITP::ArrayLike); has_inferred = true },
                PTV::IntegerLike => { infer_type.push(ITP::IntegerLike); has_inferred = true },
                // Builtins
                PTV::Message => {
                    // TODO: @types Remove the Message -> Byte hack at some point...
                    infer_type.push(ITP::Message);
                    infer_type.push(ITP::UInt8);
                },
                PTV::Bool => { infer_type.push(ITP::Bool); },
                PTV::UInt8 => { infer_type.push(ITP::UInt8); },
                PTV::UInt16 => { infer_type.push(ITP::UInt16); },
                PTV::UInt32 => { infer_type.push(ITP::UInt32); },
                PTV::UInt64 => { infer_type.push(ITP::UInt64); },
                PTV::SInt8 => { infer_type.push(ITP::SInt8); },
                PTV::SInt16 => { infer_type.push(ITP::SInt16); },
                PTV::SInt32 => { infer_type.push(ITP::SInt32); },
                PTV::SInt64 => { infer_type.push(ITP::SInt64); },
                PTV::Character => { infer_type.push(ITP::Character); },
                PTV::String => {
                    infer_type.push(ITP::String);
                    infer_type.push(ITP::Character);
                },
                // Special markers
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
                PTV::Inferred => {
                    infer_type.push(ITP::Unknown);
                    has_inferred = true;
                },
                // With nested types
                PTV::Array => { infer_type.push(ITP::Array); },
                PTV::Input => { infer_type.push(ITP::Input); },
                PTV::Output => { infer_type.push(ITP::Output); },
                PTV::Tuple(num_embedded) => { infer_type.push(ITP::Tuple(*num_embedded)); },
                PTV::PolymorphicArgument(belongs_to_definition, poly_arg_idx) => {
                    let poly_arg_idx = *poly_arg_idx;
                    if use_definitions_known_poly_args {
                        // Refers to polymorphic argument on procedure we're currently processing.
                        // This argument is already known.
                        debug_assert_eq!(*belongs_to_definition, self.procedure_id.upcast());
                        debug_assert!((poly_arg_idx as usize) < self.poly_vars.len());

                        Self::determine_inference_type_from_concrete_type(
                            &mut infer_type, &self.poly_vars[poly_arg_idx as usize].parts
                        );
                    } else {
                        // Polymorphic argument has to be inferred
                        has_markers = true;
                        has_inferred = true;
                        infer_type.push(ITP::Marker(poly_arg_idx));
                        infer_type.push(ITP::Unknown)
                    }
                },
                PTV::Definition(definition_id, num_embedded) => {
                    infer_type.push(ITP::Instance(*definition_id, *num_embedded));
                }
            }
        }

        InferenceType::new(has_markers, !has_inferred, infer_type)
    }

    /// Determines the inference type from an already concrete type. Applies the
    /// various type "hacks" inside the type inferencer.
    fn determine_inference_type_from_concrete_type(parser_type: &mut Vec<InferenceTypePart>, concrete_type: &[ConcreteTypePart]) {
        use InferenceTypePart as ITP;
        use ConcreteTypePart as CTP;

        for concrete_part in concrete_type {
            match concrete_part {
                CTP::Void => parser_type.push(ITP::Void),
                CTP::Message => {
                    parser_type.push(ITP::Message);
                    parser_type.push(ITP::UInt8)
                },
                CTP::Bool => parser_type.push(ITP::Bool),
                CTP::UInt8 => parser_type.push(ITP::UInt8),
                CTP::UInt16 => parser_type.push(ITP::UInt16),
                CTP::UInt32 => parser_type.push(ITP::UInt32),
                CTP::UInt64 => parser_type.push(ITP::UInt64),
                CTP::SInt8 => parser_type.push(ITP::SInt8),
                CTP::SInt16 => parser_type.push(ITP::SInt16),
                CTP::SInt32 => parser_type.push(ITP::SInt32),
                CTP::SInt64 => parser_type.push(ITP::SInt64),
                CTP::Character => parser_type.push(ITP::Character),
                CTP::String => {
                    parser_type.push(ITP::String);
                    parser_type.push(ITP::Character)
                },
                CTP::Array => parser_type.push(ITP::Array),
                CTP::Slice => parser_type.push(ITP::Slice),
                CTP::Input => parser_type.push(ITP::Input),
                CTP::Output => parser_type.push(ITP::Output),
                CTP::Pointer => unreachable!("pointer type during concrete to inference type conversion"),
                CTP::Tuple(num) => parser_type.push(ITP::Tuple(*num)),
                CTP::Instance(id, num) => parser_type.push(ITP::Instance(*id, *num)),
                CTP::Function(_, _) => unreachable!("function type during concrete to inference type conversion"),
                CTP::Component(_, _) => unreachable!("component type during concrete to inference type conversion"),
            }
        }
    }

    /// Construct an error when an expression's type does not match. This
    /// happens if we infer the expression type from its arguments (e.g. the
    /// expression type of an addition operator is the type of the arguments)
    /// But the expression type was already set due to our parent (e.g. an
    /// "if statement" or a "logical not" always expecting a boolean)
    fn construct_expr_type_error(
        &self, ctx: &Ctx, expr_index: InferNodeIndex, arg_index: InferNodeIndex
    ) -> ParseError {
        // TODO: Expand and provide more meaningful information for humans
        let expr_node = &self.infer_nodes[expr_index];
        let arg_node = &self.infer_nodes[arg_index];

        let expr = &ctx.heap[expr_node.expr_id];
        let arg = &ctx.heap[arg_node.expr_id];

        return ParseError::new_error_at_span(
            &ctx.module().source, expr.operation_span(), format!(
                "incompatible types: this expression expected a '{}'",
                expr_node.expr_type.display_name(&ctx.heap)
            )
        ).with_info_at_span(
            &ctx.module().source, arg.full_span(), format!(
                "but this expression yields a '{}'",
                arg_node.expr_type.display_name(&ctx.heap)
            )
        )
    }

    fn construct_arg_type_error(
        &self, ctx: &Ctx, expr_index: InferNodeIndex,
        arg1_index: InferNodeIndex, arg2_index: InferNodeIndex
    ) -> ParseError {
        let arg1_node = &self.infer_nodes[arg1_index];
        let arg2_node = &self.infer_nodes[arg2_index];

        let expr_id = self.infer_nodes[expr_index].expr_id;
        let expr = &ctx.heap[expr_id];
        let arg1 = &ctx.heap[arg1_node.expr_id];
        let arg2 = &ctx.heap[arg2_node.expr_id];

        return ParseError::new_error_str_at_span(
            &ctx.module().source, expr.operation_span(),
            "incompatible types: cannot apply this expression"
        ).with_info_at_span(
            &ctx.module().source, arg1.full_span(), format!(
                "Because this expression has type '{}'",
                arg1_node.expr_type.display_name(&ctx.heap)
            )
        ).with_info_at_span(
            &ctx.module().source, arg2.full_span(), format!(
                "But this expression has type '{}'",
                arg2_node.expr_type.display_name(&ctx.heap)
            )
        )
    }

    fn construct_template_type_error(
        &self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
    ) -> ParseError {
        let node = &self.infer_nodes[node_index];
        let expr = &ctx.heap[node.expr_id];
        let expr_type = &node.expr_type;

        return ParseError::new_error_at_span(
            &ctx.module().source, expr.full_span(), format!(
                "incompatible types: got a '{}' but expected a '{}'",
                expr_type.display_name(&ctx.heap), 
                InferenceType::partial_display_name(&ctx.heap, template)
            )
        )
    }

    fn construct_variable_type_error(
        &self, ctx: &Ctx, node_index: InferNodeIndex,
    ) -> ParseError {
        let node = &self.infer_nodes[node_index];
        let rule = node.inference_rule.as_variable_expr();

        let var_data = &self.var_data[rule.var_data_index];
        let var_decl = &ctx.heap[var_data.var_id];
        let var_expr = &ctx.heap[node.expr_id];

        return ParseError::new_error_at_span(
            &ctx.module().source, var_decl.identifier.span, format!(
                "conflicting types for this variable, previously assigned the type '{}'",
                var_data.var_type.display_name(&ctx.heap)
            )
        ).with_info_at_span(
            &ctx.module().source, var_expr.full_span(), format!(
                "but inferred to have incompatible type '{}' here",
                node.expr_type.display_name(&ctx.heap)
            )
        );
    }

    /// Constructs a human interpretable error in the case that type inference
    /// on a polymorphic variable to a function call or literal construction 
    /// failed. This may only be caused by a pair of inference types (which may 
    /// come from arguments or the return type) having two different inferred 
    /// values for that polymorphic variable.
    ///
    /// So we find this pair and construct the error using it.
    ///
    /// We assume that the expression is a function call or a struct literal,
    /// and that an actual error has occurred.
    fn construct_poly_arg_error(
        ctx: &Ctx, poly_data: &PolyData, expr_id: ExpressionId
    ) -> ParseError {
        // Helper function to check for polymorph mismatch between two inference
        // types.
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(u32, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
            if !type_a.has_marker || !type_b.has_marker {
                return None
            }

            for (marker_a, section_a) in type_a.marker_iter() {
                for (marker_b, section_b) in type_b.marker_iter() {
                    if marker_a != marker_b {
                        // Not the same polymorphic variable
                        continue;
                    }

                    if !InferenceType::check_subtrees(section_a, 0, section_b, 0) {
                        // Not compatible
                        return Some((marker_a, section_a, section_b))
                    }
                }
            }

            None
        }

        // Helper function to check for polymorph mismatch between an inference
        // type and the polymorphic variables in the poly_data struct.
        fn has_explicit_poly_mismatch<'a>(
            poly_vars: &'a [InferenceType], arg: &'a InferenceType
        ) -> Option<(u32, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
            for (marker, section) in arg.marker_iter() {
                debug_assert!((marker as usize) < poly_vars.len());
                let poly_section = &poly_vars[marker as usize].parts;
                if !InferenceType::check_subtrees(poly_section, 0, section, 0) {
                    return Some((marker, poly_section, section))
                }
            }

            None
        }

        // Helpers function to retrieve polyvar name and definition name
        fn get_poly_var_and_definition_name<'a>(ctx: &'a Ctx, poly_var_idx: u32, definition_id: DefinitionId) -> (&'a str, &'a str) {
            let definition = &ctx.heap[definition_id];
            let poly_var = definition.poly_vars()[poly_var_idx as usize].value.as_str();
            let func_name = definition.identifier().value.as_str();

            (poly_var, func_name)
        }

        // Helper function to construct initial error
        fn construct_main_error(ctx: &Ctx, poly_data: &PolyData, poly_var_idx: u32, expr: &Expression) -> ParseError {
            match expr {
                Expression::Call(expr) => {
                    let (poly_var, func_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
                    return ParseError::new_error_at_span(
                        &ctx.module().source, expr.func_span, format!(
                            "Conflicting type for polymorphic variable '{}' of '{}'",
                            poly_var, func_name
                        )
                    )
                },
                Expression::Literal(expr) => {
                    let (poly_var, type_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
                    return ParseError::new_error_at_span(
                        &ctx.module().source, expr.span, format!(
                            "Conflicting type for polymorphic variable '{}' of instantiation of '{}'",
                            poly_var, type_name
                        )
                    );
                },
                Expression::Select(expr) => {
                    let (poly_var, struct_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
                    let field_name = match &expr.kind {
                        SelectKind::StructField(v) => v,
                        SelectKind::TupleMember(_) => unreachable!(), // because we're constructing a polymorph error, and tuple access does not deal with polymorphs
                    };
                    return ParseError::new_error_at_span(
                        &ctx.module().source, expr.full_span, format!(
                            "Conflicting type for polymorphic variable '{}' while accessing field '{}' of '{}'",
                            poly_var, field_name.value.as_str(), struct_name
                        )
                    )
                }
                _ => unreachable!("called construct_poly_arg_error without an expected expression, got: {:?}", expr)
            }
        }

        // Actual checking
        let expr = &ctx.heap[expr_id];
        let (expr_args, expr_return_name) = match expr {
            Expression::Call(expr) => 
                (
                    expr.arguments.clone(),
                    "return type"
                ),
            Expression::Literal(expr) => {
                let expressions = match &expr.value {
                    Literal::Struct(v) => v.fields.iter()
                        .map(|f| f.value)
                        .collect(),
                    Literal::Enum(_) => Vec::new(),
                    Literal::Union(v) => v.values.clone(),
                    _ => unreachable!()
                };

                ( expressions, "literal" )
            },
            Expression::Select(expr) =>
                // Select expression uses the polymorphic variables of the 
                // struct it is accessing, so get the subject expression.
                (
                    vec![expr.subject],
                    "selected field"
                ),
            _ => unreachable!(),
        };

        // - check return type with itself
        if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(
            &poly_data.expr_types.returned, &poly_data.expr_types.returned
        ) {
            return construct_main_error(ctx, poly_data, poly_idx, expr)
                .with_info_at_span(
                    &ctx.module().source, expr.full_span(), format!(
                        "The {} inferred the conflicting types '{}' and '{}'",
                        expr_return_name,
                        InferenceType::partial_display_name(&ctx.heap, section_a),
                        InferenceType::partial_display_name(&ctx.heap, section_b)
                    )
                );
        }

        // - check arguments with each other argument and with return type
        for (arg_a_idx, arg_a) in poly_data.expr_types.associated.iter().enumerate() {
            for (arg_b_idx, arg_b) in poly_data.expr_types.associated.iter().enumerate() {
                if arg_b_idx > arg_a_idx {
                    break;
                }

                if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&arg_a, &arg_b) {
                    let error = construct_main_error(ctx, poly_data, poly_idx, expr);
                    if arg_a_idx == arg_b_idx {
                        // Same argument
                        let arg = &ctx.heap[expr_args[arg_a_idx]];
                        return error.with_info_at_span(
                            &ctx.module().source, arg.full_span(), format!(
                                "This argument inferred the conflicting types '{}' and '{}'",
                                InferenceType::partial_display_name(&ctx.heap, section_a),
                                InferenceType::partial_display_name(&ctx.heap, section_b)
                            )
                        );
                    } else {
                        let arg_a = &ctx.heap[expr_args[arg_a_idx]];
                        let arg_b = &ctx.heap[expr_args[arg_b_idx]];
                        return error.with_info_at_span(
                            &ctx.module().source, arg_a.full_span(), format!(
                                "This argument inferred it to '{}'",
                                InferenceType::partial_display_name(&ctx.heap, section_a)
                            )
                        ).with_info_at_span(
                            &ctx.module().source, arg_b.full_span(), format!(
                                "While this argument inferred it to '{}'",
                                InferenceType::partial_display_name(&ctx.heap, section_b)
                            )
                        )
                    }
                }
            }

            // Check with return type
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &poly_data.expr_types.returned) {
                let arg = &ctx.heap[expr_args[arg_a_idx]];
                return construct_main_error(ctx, poly_data, poly_idx, expr)
                    .with_info_at_span(
                        &ctx.module().source, arg.full_span(), format!(
                            "This argument inferred it to '{}'",
                            InferenceType::partial_display_name(&ctx.heap, section_arg)
                        )
                    )
                    .with_info_at_span(
                        &ctx.module().source, expr.full_span(), format!(
                            "While the {} inferred it to '{}'",
                            expr_return_name,
                            InferenceType::partial_display_name(&ctx.heap, section_ret)
                        )
                    );
            }
        }

        // Now check against the explicitly specified polymorphic variables (if
        // any).
        for (arg_idx, arg) in poly_data.expr_types.associated.iter().enumerate() {
            if let Some((poly_idx, poly_section, arg_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, arg) {
                let arg = &ctx.heap[expr_args[arg_idx]];
                return construct_main_error(ctx, poly_data, poly_idx, expr)
                    .with_info_at_span(
                        &ctx.module().source, arg.full_span(), format!(
                            "The polymorphic variable has type '{}' (which might have been partially inferred) while the argument inferred it to '{}'",
                            InferenceType::partial_display_name(&ctx.heap, poly_section),
                            InferenceType::partial_display_name(&ctx.heap, arg_section)
                        )
                    );
            }
        }

        if let Some((poly_idx, poly_section, ret_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, &poly_data.expr_types.returned) {
            return construct_main_error(ctx, poly_data, poly_idx, expr)
                .with_info_at_span(
                    &ctx.module().source, expr.full_span(), format!(
                        "The polymorphic variable has type '{}' (which might have been partially inferred) while the {} inferred it to '{}'",
                        InferenceType::partial_display_name(&ctx.heap, poly_section),
                        expr_return_name,
                        InferenceType::partial_display_name(&ctx.heap, ret_section)
                    )
                )
        }

        unreachable!("construct_poly_arg_error without actual error found?")
    }
}

fn get_tuple_size_from_inference_type(inference_type: &InferenceType) -> Result<Option<u32>, ()> {
    for part in &inference_type.parts {
        if part.is_marker() { continue; }
        if !part.is_concrete() { break; }

        if let InferenceTypePart::Tuple(size) = part {
            return Ok(Some(*size));
        } else {
            return Err(()); // not a tuple!
        }
    }

    return Ok(None);
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocol::arena::Id;
    use InferenceTypePart as ITP;
    use InferenceType as IT;

    #[test]
    fn test_single_part_inference() {
        // lhs argument inferred from rhs
        let pairs = [
            (ITP::NumberLike, ITP::UInt8),
            (ITP::IntegerLike, ITP::SInt32),
            (ITP::Unknown, ITP::UInt64),
            (ITP::Unknown, ITP::Bool)
        ];
        for (lhs, rhs) in pairs.iter() {
            // Using infer-both
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
            let mut rhs_type = IT::new(false, true, vec![rhs.clone()]);
            let result = unsafe{ IT::infer_subtrees_for_both_types(
                &mut lhs_type, 0, &mut rhs_type, 0
            ) };
            assert_eq!(DualInferenceResult::First, result);
            assert_eq!(lhs_type.parts, rhs_type.parts);

            // Using infer-single
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
            let rhs_type = IT::new(false, true, vec![rhs.clone()]);
            let result = IT::infer_subtree_for_single_type(
                &mut lhs_type, 0, &rhs_type.parts, 0, false
            );
            assert_eq!(SingleInferenceResult::Modified, result);
            assert_eq!(lhs_type.parts, rhs_type.parts);
        }
    }

    #[test]
    fn test_multi_part_inference() {
        let pairs = [
            (vec![ITP::ArrayLike, ITP::NumberLike], vec![ITP::Slice, ITP::SInt8]),
            (vec![ITP::Unknown], vec![ITP::Input, ITP::Array, ITP::String, ITP::Character]),
            (vec![ITP::PortLike, ITP::SInt32], vec![ITP::Input, ITP::SInt32]),
            (vec![ITP::Unknown], vec![ITP::Output, ITP::SInt32]),
            (
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Unknown, ITP::Output, ITP::Unknown],
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Array, ITP::SInt32, ITP::Output, ITP::SInt32]
            )
        ];

        for (lhs, rhs) in pairs.iter() {
            let mut lhs_type = IT::new(false, false, lhs.clone());
            let mut rhs_type = IT::new(false, true, rhs.clone());
            let result = unsafe{ IT::infer_subtrees_for_both_types(
                &mut lhs_type, 0, &mut rhs_type, 0
            ) };
            assert_eq!(DualInferenceResult::First, result);
            assert_eq!(lhs_type.parts, rhs_type.parts);

            let mut lhs_type = IT::new(false, false, lhs.clone());
            let rhs_type = IT::new(false, true, rhs.clone());
            let result = IT::infer_subtree_for_single_type(
                &mut lhs_type, 0, &rhs_type.parts, 0, false
            );
            assert_eq!(SingleInferenceResult::Modified, result);
            assert_eq!(lhs_type.parts, rhs_type.parts)
        }
    }
}