Files
@ 32d91577e090
Branch filter:
Location: CSY/reowolf/src/runtime2/connector.rs
32d91577e090
61.9 KiB
application/rls-services+xml
initial multithreaded runtime
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 | use std::collections::HashMap;
use std::sync::atomic::AtomicBool;
use crate::PortId;
use crate::protocol::{ComponentState, RunContext, RunResult};
use crate::protocol::eval::{Prompt, Value, ValueGroup};
use super::ConnectorId;
use super::native::Connector;
use super::scheduler::{
SchedulerCtx, ComponentCtxFancy, ComponentPortChange,
ReceivedMessage
};
use super::inbox::{
PublicInbox,
DataMessage, SyncMessage, SolutionMessage, MessageContents,
SyncBranchConstraint, SyncConnectorSolution
};
use super::port::{PortKind, PortIdLocal};
/// Represents the identifier of a branch (the index within its container). An
/// ID of `0` generally means "no branch" (e.g. no parent, or a port did not
/// yet receive anything from any branch).
// TODO: Remove Debug derive
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct BranchId {
pub index: u32,
}
impl BranchId {
fn new_invalid() -> Self {
Self{ index: 0 }
}
fn new(index: u32) -> Self {
debug_assert!(index != 0);
Self{ index }
}
#[inline]
pub(crate) fn is_valid(&self) -> bool {
return self.index != 0;
}
}
#[derive(Debug, PartialEq, Eq)]
pub(crate) enum SpeculativeState {
// Non-synchronous variants
RunningNonSync, // regular execution of code
Error, // encountered a runtime error
Finished, // finished executing connector's code
// Synchronous variants
RunningInSync, // running within a sync block
HaltedAtBranchPoint, // at a branching point (at a `get` call)
ReachedSyncEnd, // reached end of sync block, branch represents a local solution
Inconsistent, // branch can never represent a local solution, so halted
}
pub(crate) struct Branch {
index: BranchId,
parent_index: BranchId,
// Code execution state
code_state: ComponentState,
prepared_channel: Option<(Value, Value)>,
sync_state: SpeculativeState,
halted_at_port: PortIdLocal, // invalid if not halted
next_branch_in_queue: Option<u32>,
// Message/port state
received: HashMap<PortIdLocal, DataMessage>, // TODO: @temporary, remove together with fires()
ports_delta: Vec<ComponentPortChange>,
}
impl Branch {
/// Constructs a non-sync branch. It is assumed that the code is at the
/// first instruction
pub(crate) fn new_initial_branch(component_state: ComponentState) -> Self {
Branch{
index: BranchId::new_invalid(),
parent_index: BranchId::new_invalid(),
code_state: component_state,
prepared_channel: None,
sync_state: SpeculativeState::RunningNonSync,
halted_at_port: PortIdLocal::new_invalid(),
next_branch_in_queue: None,
received: HashMap::new(),
ports_delta: Vec::new(),
}
}
/// Constructs a sync branch. The provided branch is assumed to be the
/// parent of the new branch within the execution tree.
fn new_sync_branching_from(new_index: u32, parent_branch: &Branch) -> Self {
debug_assert!(
(parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_index.is_valid()) ||
(parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
);
debug_assert!(parent_branch.prepared_channel.is_none());
Branch{
index: BranchId::new(new_index),
parent_index: parent_branch.index,
code_state: parent_branch.code_state.clone(),
prepared_channel: None,
sync_state: SpeculativeState::RunningInSync,
halted_at_port: PortIdLocal::new_invalid(),
next_branch_in_queue: None,
received: parent_branch.received.clone(),
ports_delta: parent_branch.ports_delta.clone(),
}
}
fn commit_to_sync(&mut self) {
// Logically impossible conditions (because we have a finished branch
// we are going to commit to)
debug_assert!(self.prepared_channel.is_none());
debug_assert!(!self.halted_at_port.is_valid());
// Reset other variables to their defaults
self.index = BranchId::new_invalid();
self.parent_index = BranchId::new_invalid();
self.sync_state = SpeculativeState::RunningNonSync;
self.next_branch_in_queue = None;
self.received.clear();
self.ports_delta.clear();
}
}
#[derive(Clone)]
struct PortAssignment {
is_assigned: bool,
last_registered_branch_id: BranchId, // invalid branch ID implies not assigned yet
num_times_fired: u32,
}
impl PortAssignment {
fn new_unassigned() -> Self {
Self{
is_assigned: false,
last_registered_branch_id: BranchId::new_invalid(),
num_times_fired: 0,
}
}
#[inline]
fn mark_speculative(&mut self, num_times_fired: u32) {
debug_assert!(!self.last_registered_branch_id.is_valid());
self.is_assigned = true;
self.num_times_fired = num_times_fired;
}
#[inline]
fn mark_definitive(&mut self, branch_id: BranchId, num_times_fired: u32) {
self.is_assigned = true;
self.last_registered_branch_id = branch_id;
self.num_times_fired = num_times_fired;
}
}
#[derive(Debug)]
enum PortOwnershipError {
UsedInInteraction(PortIdLocal),
AlreadyGivenAway(PortIdLocal)
}
/// Contains a description of the port mapping during a particular sync session.
/// TODO: Extend documentation
pub(crate) struct ConnectorPorts {
// Essentially a mapping from `port_index` to `port_id`.
pub owned_ports: Vec<PortIdLocal>,
// Contains P*B entries, where P is the number of ports and B is the number
// of branches. One can find the appropriate mapping of port p at branch b
// at linear index `b*P+p`.
port_mapping: Vec<PortAssignment>
}
impl ConnectorPorts {
/// Constructs the initial ports object. Assumes the presence of the
/// non-sync branch at index 0. Will initialize all entries for the non-sync
/// branch.
fn new(owned_ports: Vec<PortIdLocal>) -> Self {
let num_ports = owned_ports.len();
let mut port_mapping = Vec::with_capacity(num_ports);
for _ in 0..num_ports {
port_mapping.push(PortAssignment::new_unassigned());
}
Self{ owned_ports, port_mapping }
}
/// Prepares the port mapping for a new branch. Assumes that there is no
/// intermediate branch index that we have skipped.
fn prepare_sync_branch(&mut self, parent_branch_idx: u32, new_branch_idx: u32) {
let num_ports = self.owned_ports.len();
let parent_base_idx = parent_branch_idx as usize * num_ports;
let new_base_idx = new_branch_idx as usize * num_ports;
debug_assert!(parent_branch_idx < new_branch_idx);
debug_assert!(new_base_idx == self.port_mapping.len());
self.port_mapping.reserve(num_ports);
for offset in 0..num_ports {
let parent_port = &self.port_mapping[parent_base_idx + offset];
let parent_port = parent_port.clone();
self.port_mapping.push(parent_port);
}
}
/// Adds a new port. Caller must make sure that the connector is not in the
/// sync phase.
fn add_port(&mut self, port_id: PortIdLocal) {
debug_assert!(self.port_mapping.len() == self.owned_ports.len());
debug_assert!(!self.owned_ports.contains(&port_id));
self.owned_ports.push(port_id);
self.port_mapping.push(PortAssignment::new_unassigned());
}
/// Commits to a particular branch. Essentially just removes the port
/// mapping information generated during the sync phase.
fn commit_to_sync(&mut self) {
self.port_mapping.truncate(self.owned_ports.len());
debug_assert!(self.port_mapping.iter().all(|v| {
!v.is_assigned && !v.last_registered_branch_id.is_valid()
}));
}
/// Removes a particular port from the connector. May only be done if the
/// connector is in non-sync mode
fn remove_port(&mut self, port_id: PortIdLocal) {
debug_assert!(self.port_mapping.len() == self.owned_ports.len()); // in non-sync mode
let port_index = self.get_port_index(port_id).unwrap();
self.owned_ports.remove(port_index);
self.port_mapping.remove(port_index);
}
/// Retrieves the index associated with a port id. Note that the port might
/// not exist (yet) if a speculative branch has just received the port.
/// TODO: But then again, one cannot use that port, right?
#[inline]
fn get_port_index(&self, port_id: PortIdLocal) -> Option<usize> {
for (idx, port) in self.owned_ports.iter().enumerate() {
if *port == port_id {
return Some(idx)
}
}
return None
}
/// Retrieves the ID associated with the port at the provided index
#[inline]
fn get_port_id(&self, port_index: usize) -> PortIdLocal {
return self.owned_ports[port_index];
}
#[inline]
fn get_port(&self, branch_idx: u32, port_idx: usize) -> &PortAssignment {
let mapped_idx = self.mapped_index(branch_idx, port_idx);
return &self.port_mapping[mapped_idx];
}
#[inline]
fn get_port_mut(&mut self, branch_idx: u32, port_idx: usize) -> &mut PortAssignment {
let mapped_idx = self.mapped_index(branch_idx, port_idx);
return &mut self.port_mapping[mapped_idx];
}
#[inline]
fn num_ports(&self) -> usize {
return self.owned_ports.len();
}
// Function for internal use: retrieve index in flattened port mapping array
// based on branch/port index.
#[inline]
fn mapped_index(&self, branch_idx: u32, port_idx: usize) -> usize {
let branch_idx = branch_idx as usize;
let num_ports = self.owned_ports.len();
debug_assert!(port_idx < num_ports);
debug_assert!((branch_idx + 1) * num_ports <= self.port_mapping.len());
return branch_idx * num_ports + port_idx;
}
}
struct BranchQueue {
first: u32,
last: u32,
}
impl BranchQueue {
#[inline]
fn new() -> Self {
Self{ first: 0, last: 0 }
}
#[inline]
fn is_empty(&self) -> bool {
debug_assert!((self.first == 0) == (self.last == 0));
return self.first == 0;
}
#[inline]
fn clear(&mut self) {
self.first = 0;
self.last = 0;
}
}
/// Public fields of the connector that can be freely shared between multiple
/// threads.
pub(crate) struct ConnectorPublic {
pub inbox: PublicInbox,
pub sleeping: AtomicBool,
}
impl ConnectorPublic {
pub fn new(initialize_as_sleeping: bool) -> Self {
ConnectorPublic{
inbox: PublicInbox::new(),
sleeping: AtomicBool::new(initialize_as_sleeping),
}
}
}
// TODO: Maybe prevent false sharing by aligning `public` to next cache line.
// TODO: Do this outside of the connector, create a wrapping struct
pub(crate) struct ConnectorPDL {
// Branch management
branches: Vec<Branch>, // first branch is always non-speculative one
sync_active: BranchQueue,
sync_pending_get: BranchQueue,
sync_finished: BranchQueue,
sync_finished_last_handled: u32, // TODO: Change to BranchId?
cur_round: u32,
// Port/message management
pub committed_to: Option<(ConnectorId, u64)>,
pub ports: ConnectorPorts,
}
// TODO: Remove this monstrosity
struct ConnectorRunContext<'a> {
branch_index: u32,
ports: &'a ConnectorPorts,
ports_delta: &'a Vec<ComponentPortChange>,
received: &'a HashMap<PortIdLocal, DataMessage>,
scheduler: SchedulerCtx<'a>,
prepared_channel: Option<(Value, Value)>,
}
impl<'a> RunContext for ConnectorRunContext<'a> {
fn did_put(&mut self, port: PortId) -> bool {
if self.ports_delta.iter().any(|v| v.port.self_id.index == port.0.u32_suffix) {
// Either acquired or released, must be silent
return false;
}
let port_index = self.ports.get_port_index(PortIdLocal::new(port.0.u32_suffix)).unwrap();
let mapping = self.ports.get_port(self.branch_index, port_index);
return mapping.is_assigned;
}
fn get(&mut self, port: PortId) -> Option<ValueGroup> {
let port_id = PortIdLocal::new(port.0.u32_suffix);
match self.received.get(&port_id) {
Some(message) => Some(message.message.clone()),
None => None,
}
}
fn fires(&mut self, port: PortId) -> Option<Value> {
let port_id = PortIdLocal::new(port.0.u32_suffix);
if self.ports_delta.iter().any(|v| v.port.self_id == port_id) {
return None
}
let port_index = self.ports.get_port_index(port_id).unwrap();
let mapping = self.ports.get_port(self.branch_index, port_index);
if mapping.is_assigned {
return Some(Value::Bool(mapping.num_times_fired != 0));
} else {
return None;
}
}
fn get_channel(&mut self) -> Option<(Value, Value)> {
return self.prepared_channel.take();
}
}
impl Connector for ConnectorPDL {
fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
self.handle_new_messages(comp_ctx);
if comp_ctx.is_in_sync() {
let scheduling = self.run_in_speculative_mode(sched_ctx, comp_ctx);
// When in speculative mode we might have generated new sync
// solutions, we need to turn them into proposed solutions here.
if self.sync_finished_last_handled != self.sync_finished.last {
// Retrieve first element in queue
let mut next_id;
if self.sync_finished_last_handled == 0 {
next_id = self.sync_finished.first;
} else {
let last_handled = &self.branches[self.sync_finished_last_handled as usize];
debug_assert!(last_handled.next_branch_in_queue.is_some()); // because "last handled" != "last in queue"
next_id = last_handled.next_branch_in_queue.unwrap();
}
loop {
let branch_id = BranchId::new(next_id);
let branch = &self.branches[next_id as usize];
let branch_next = branch.next_branch_in_queue;
// Turn local solution into a message and send it along
// TODO: Like `ports` access, also revise the construction of this `key`, should not be needed
let solution_message = self.generate_initial_solution_for_branch(branch_id, comp_ctx);
if let Some(valid_solution) = solution_message {
self.submit_sync_solution(valid_solution, comp_ctx);
} else {
// Branch is actually invalid, but we only just figured
// it out. We need to mark it as invalid to prevent
// future use
Self::remove_branch_from_queue(&mut self.branches, &mut self.sync_finished, branch_id);
if branch_id.index == self.sync_finished_last_handled {
self.sync_finished_last_handled = self.sync_finished.last;
}
let branch = &mut self.branches[next_id as usize];
branch.sync_state = SpeculativeState::Inconsistent;
}
match branch_next {
Some(id) => next_id = id,
None => break,
}
}
self.sync_finished_last_handled = next_id;
}
return scheduling;
} else {
let scheduling = self.run_in_deterministic_mode(sched_ctx, comp_ctx);
return scheduling;
}
}
}
impl ConnectorPDL {
/// Constructs a representation of a connector. The assumption is that the
/// initial branch is at the first instruction of the connector's code,
/// hence is in a non-sync state.
pub fn new(initial_branch: Branch, owned_ports: Vec<PortIdLocal>) -> Self {
Self{
branches: vec![initial_branch],
sync_active: BranchQueue::new(),
sync_pending_get: BranchQueue::new(),
sync_finished: BranchQueue::new(),
sync_finished_last_handled: 0, // none at all
cur_round: 0,
committed_to: None,
ports: ConnectorPorts::new(owned_ports),
}
}
// -------------------------------------------------------------------------
// Handling connector messages
// -------------------------------------------------------------------------
pub fn handle_new_messages(&mut self, comp_ctx: &mut ComponentCtxFancy) {
while let Some(message) = comp_ctx.read_next_message() {
match message {
ReceivedMessage::Data((target_port_id, contents)) => {
self.handle_data_message(target_port_id, &contents);
},
ReceivedMessage::Sync(contents) => {
self.handle_sync_message(contents, comp_ctx);
},
ReceivedMessage::RequestCommit(contents) => {
self.handle_request_commit_message(contents, comp_ctx);
},
ReceivedMessage::ConfirmCommit(contents) => {
self.handle_confirm_commit_message(contents, comp_ctx);
},
}
}
}
pub fn handle_data_message(&mut self, target_port_id: PortIdLocal, message: &DataMessage) {
// Go through all branches that are waiting for a message
let mut branch_idx = self.sync_pending_get.first;
while branch_idx != 0 {
let branch = &self.branches[branch_idx as usize];
let next_branch_idx = branch.next_branch_in_queue.unwrap_or(0);
let target_port_index = self.ports.get_port_index(target_port_id).unwrap();
let port_mapping = self.ports.get_port(branch_idx, target_port_index);
// Check if the branch may accept the message
if branch.sync_state == SpeculativeState::HaltedAtBranchPoint &&
branch.halted_at_port == target_port_id &&
port_mapping.last_registered_branch_id == message.sender_prev_branch_id
{
// Branch can accept. So fork it, and let the fork accept the
// message. The original branch stays waiting for new messages.
let new_branch_idx = self.branches.len() as u32;
let new_branch = Branch::new_sync_branching_from(new_branch_idx, branch);
self.ports.prepare_sync_branch(branch_idx, new_branch_idx);
let mapping = self.ports.get_port_mut(branch_idx, target_port_index);
mapping.last_registered_branch_id = message.sender_cur_branch_id;
let new_branch_id = BranchId::new(new_branch_idx);
self.branches.push(new_branch);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, new_branch_id)
}
branch_idx = next_branch_idx;
}
}
/// Accepts a synchronous message and combines it with the locally stored
/// solution(s). Then queue new `Sync`/`Solution` messages when appropriate.
pub fn handle_sync_message(&mut self, message: SyncMessage, comp_ctx: &mut ComponentCtxFancy) {
debug_assert!(!message.to_visit.contains(&comp_ctx.id)); // own ID already removed
debug_assert!(message.constraints.iter().any(|v| v.connector_id == comp_ctx.id)); // we have constraints
// TODO: Optimize, use some kind of temp workspace vector
let mut execution_path_branch_ids = Vec::new();
if self.sync_finished_last_handled != 0 {
// We have some solutions to match against
let constraints_index = message.constraints
.iter()
.position(|v| v.connector_id == comp_ctx.id)
.unwrap();
let constraints = &message.constraints[constraints_index].constraints;
debug_assert!(!constraints.is_empty());
// Note that we only iterate over the solutions we've already
// handled ourselves, not necessarily
let mut branch_index = self.sync_finished.first;
'branch_loop: loop {
// Load solution branch
let branch = &self.branches[branch_index as usize];
execution_path_branch_ids.clear();
self.branch_ids_of_execution_path(BranchId::new(branch_index), &mut execution_path_branch_ids);
// Check if the branch matches all of the applied constraints
for constraint in constraints {
match constraint {
SyncBranchConstraint::SilentPort(silent_port_id) => {
let port_index = self.ports.get_port_index(*silent_port_id);
if port_index.is_none() {
// Nefarious peer
continue 'branch_loop;
}
let port_index = port_index.unwrap();
let mapping = self.ports.get_port(branch_index, port_index);
debug_assert!(mapping.is_assigned);
if mapping.num_times_fired != 0 {
// Not silent, constraint not satisfied
continue 'branch_loop;
}
},
SyncBranchConstraint::BranchNumber(expected_branch_id) => {
if !execution_path_branch_ids.contains(expected_branch_id) {
// Not the expected execution path, constraint not satisfied
continue 'branch_loop;
}
},
SyncBranchConstraint::PortMapping(port_id, expected_branch_id) => {
let port_index = self.ports.get_port_index(*port_id);
if port_index.is_none() {
// Nefarious peer
continue 'branch_loop;
}
let port_index = port_index.unwrap();
let mapping = self.ports.get_port(branch_index, port_index);
if mapping.last_registered_branch_id != *expected_branch_id {
// Not the expected interaction on this port, constraint not satisfied
continue 'branch_loop;
}
},
}
}
// If here, then all of the external constraints were satisfied
// for the current branch. But the branch itself also imposes
// constraints. So while building up the new solution, make sure
// that those are satisfied as well.
// TODO: Code below can probably be merged with initial solution
// generation.
// - clone old solution so we can add to it
let mut new_solution = message.clone();
// - determine the initial port mapping
let num_ports = self.ports.num_ports();
let mut new_solution_mapping = Vec::with_capacity(num_ports);
for port_index in 0..self.ports.num_ports() {
let port_id = self.ports.get_port_id(port_index);
let mapping = self.ports.get_port(branch_index, port_index);
new_solution_mapping.push((port_id, mapping.last_registered_branch_id));
}
// - replace constraints with a local solution
new_solution.constraints.remove(constraints_index);
new_solution.local_solutions.push(SyncConnectorSolution{
connector_id: comp_ctx.id,
terminating_branch_id: BranchId::new(branch_index),
execution_branch_ids: execution_path_branch_ids.clone(),
final_port_mapping: new_solution_mapping,
});
// - do a second pass on the ports to generate and add the
// constraints that should be applied to other connectors
for port_index in 0..self.ports.num_ports() {
let port_id = self.ports.get_port_id(port_index);
let (peer_connector_id, peer_port_id, peer_is_getter) = {
let port = comp_ctx.get_port_by_id(port_id).unwrap();
(port.peer_connector, port.peer_id, port.kind == PortKind::Putter)
};
let mapping = self.ports.get_port(branch_index, port_index);
let constraint = if mapping.num_times_fired == 0 {
SyncBranchConstraint::SilentPort(peer_port_id)
} else {
if peer_is_getter {
SyncBranchConstraint::PortMapping(peer_port_id, mapping.last_registered_branch_id)
} else {
SyncBranchConstraint::BranchNumber(mapping.last_registered_branch_id)
}
};
match new_solution.add_or_check_constraint(peer_connector_id, constraint) {
Err(_) => continue 'branch_loop,
Ok(false) => continue 'branch_loop,
Ok(true) => {},
}
}
// If here, then the newly generated solution is completely
// compatible.
let next_branch = branch.next_branch_in_queue;
self.submit_sync_solution(new_solution, comp_ctx);
// Consider the next branch
if branch_index == self.sync_finished_last_handled {
// At the end of the previously handled solutions
break;
}
debug_assert!(next_branch.is_some()); // because we cannot be at the end of the queue
branch_index = next_branch.unwrap();
}
}
}
fn handle_request_commit_message(&mut self, mut message: SolutionMessage, comp_ctx: &mut ComponentCtxFancy) {
let should_propagate_message = match &self.committed_to {
Some((previous_origin, previous_comparison)) => {
// Already committed to something. So will commit to this if it
// takes precedence over the current solution
message.comparison_number > *previous_comparison ||
(message.comparison_number == *previous_comparison && message.connector_origin.0 > previous_origin.0)
},
None => {
// Not yet committed to a solution, so commit to this one
true
}
};
if should_propagate_message {
self.committed_to = Some((message.connector_origin, message.comparison_number));
if message.to_visit.is_empty() {
// Visited all of the connectors, so every connector can now
// apply the solution
// TODO: Use temporary workspace
let mut to_visit = Vec::with_capacity(message.local_solutions.len() - 1);
for (connector_id, _) in &message.local_solutions {
if *connector_id != comp_ctx.id {
to_visit.push(*connector_id);
}
}
message.to_visit = to_visit;
comp_ctx.submit_message(MessageContents::ConfirmCommit(message.clone()));
self.handle_confirm_commit_message(message, comp_ctx);
} else {
// Not yet visited all of the connectors
comp_ctx.submit_message(MessageContents::RequestCommit(message));
}
}
}
fn handle_confirm_commit_message(&mut self, message: SolutionMessage, comp_ctx: &mut ComponentCtxFancy) {
// Make sure this is the message we actually committed to. As long as
// we're running on a single machine this is fine.
// TODO: Take care of nefarious peers
let (expected_connector_id, expected_comparison_number) =
self.committed_to.unwrap();
assert_eq!(message.connector_origin, expected_connector_id);
assert_eq!(message.comparison_number, expected_comparison_number);
// Find the branch we're supposed to commit to
let (_, branch_id) = message.local_solutions
.iter()
.find(|(id, _)| *id == comp_ctx.id)
.unwrap();
let branch_id = *branch_id;
// Commit to the branch. That is: move the solution branch to the first
// of the connector's branches
self.branches.swap(0, branch_id.index as usize);
self.branches.truncate(1); // TODO: Or drain and do not deallocate?
let solution_branch = &mut self.branches[0];
// Clear all of the other sync-related variables
self.sync_active.clear();
self.sync_pending_get.clear();
self.sync_finished.clear();
self.sync_finished_last_handled = 0;
self.cur_round += 1;
self.committed_to = None;
self.ports.commit_to_sync();
// Add/remove any of the ports we lost during the sync phase
// TODO: Probably might not need this with the port syncing
for port_delta in &solution_branch.ports_delta {
if port_delta.is_acquired {
self.ports.add_port(port_delta.port.self_id);
} else {
self.ports.remove_port(port_delta.port.self_id);
}
}
comp_ctx.notify_sync_end(&solution_branch.ports_delta);
solution_branch.commit_to_sync();
}
// -------------------------------------------------------------------------
// Executing connector code
// -------------------------------------------------------------------------
/// Runs the connector in synchronous mode. Potential changes to the global
/// system's state are added to the `RunDeltaState` object by the connector,
/// where it is the caller's responsibility to immediately take care of
/// those changes. The return value indicates when (and if) the connector
/// needs to be scheduled again.
pub fn run_in_speculative_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
debug_assert!(comp_ctx.is_in_sync());
if self.sync_active.is_empty() {
return ConnectorScheduling::NotNow;
}
let branch = Self::pop_branch_from_queue(&mut self.branches, &mut self.sync_active);
// Run the branch to the next blocking point
debug_assert!(branch.prepared_channel.is_none());
let mut run_context = ConnectorRunContext {
branch_index: branch.index.index,
ports: &self.ports,
ports_delta: &branch.ports_delta,
scheduler: sched_ctx,
prepared_channel: None,
received: &branch.received,
};
let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
// Match statement contains `return` statements only if the particular
// run result behind handled requires an immediate re-run of the
// connector.
match run_result {
RunResult::BranchInconsistent => {
// Speculative branch became inconsistent
branch.sync_state = SpeculativeState::Inconsistent;
},
RunResult::BranchMissingPortState(port_id) => {
// Branch called `fires()` on a port that does not yet have an
// assigned speculative value. So we need to create those
// branches
let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
let local_port_index = self.ports.get_port_index(local_port_id).unwrap();
debug_assert!(self.ports.owned_ports.contains(&local_port_id));
// Create two copied branches, one silent and one firing
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
let parent_branch_id = branch.index;
let parent_branch = &self.branches[parent_branch_id.index as usize];
let silent_index = self.branches.len() as u32;
let firing_index = silent_index + 1;
let silent_branch = Branch::new_sync_branching_from(silent_index, parent_branch);
self.ports.prepare_sync_branch(parent_branch.index.index, silent_index);
let firing_branch = Branch::new_sync_branching_from(firing_index, parent_branch);
self.ports.prepare_sync_branch(parent_branch.index.index, firing_index);
// Assign the port values of the two new branches
let silent_port = self.ports.get_port_mut(silent_index, local_port_index);
silent_port.mark_speculative(0);
let firing_port = self.ports.get_port_mut(firing_index, local_port_index);
firing_port.mark_speculative(1);
// Run both branches again
let silent_branch_id = silent_branch.index;
self.branches.push(silent_branch);
let firing_branch_id = firing_branch.index;
self.branches.push(firing_branch);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, silent_branch_id);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, firing_branch_id);
return ConnectorScheduling::Immediate;
},
RunResult::BranchMissingPortValue(port_id) => {
// Branch performed a `get` on a port that has not yet received
// a value in its inbox.
let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
let local_port_index = self.ports.get_port_index(local_port_id);
if local_port_index.is_none() {
todo!("deal with the case where the port is acquired");
}
let local_port_index = local_port_index.unwrap();
let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);
// Check for port mapping assignment and, if present, if it is
// consistent
let is_valid_get = if port_mapping.is_assigned {
assert!(port_mapping.num_times_fired <= 1); // temporary, until we get rid of `fires`
port_mapping.num_times_fired == 1
} else {
// Not yet assigned
port_mapping.mark_speculative(1);
true
};
if is_valid_get {
// Mark as a branching point for future messages
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
branch.halted_at_port = local_port_id;
let branch_id = branch.index;
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_pending_get, branch_id);
// But if some messages can be immediately applied, do so
// now.
let messages = comp_ctx.get_read_data_messages(local_port_id, port_mapping.last_registered_branch_id);
let mut did_have_messages = false;
for message in messages {
did_have_messages = true;
// For each message prepare a new branch to execute
let parent_branch = &self.branches[branch_id.index as usize];
let new_branch_index = self.branches.len() as u32;
let mut new_branch = Branch::new_sync_branching_from(new_branch_index, parent_branch);
self.ports.prepare_sync_branch(branch_id.index, new_branch_index);
let port_mapping = self.ports.get_port_mut(new_branch_index, local_port_index);
port_mapping.last_registered_branch_id = message.sender_cur_branch_id;
debug_assert!(port_mapping.is_assigned && port_mapping.num_times_fired == 1);
new_branch.received.insert(local_port_id, message.clone());
// If the message contains any ports then they will now
// be owned by the new branch
let mut transferred_ports = Vec::new(); // TODO: Create workspace somewhere
find_ports_in_value_group(&message.message, &mut transferred_ports);
Self::acquire_ports_during_sync(&mut self.ports, &mut new_branch, &transferred_ports);
// Schedule the new branch
debug_assert!(new_branch.sync_state == SpeculativeState::RunningInSync);
let new_branch_id = new_branch.index;
self.branches.push(new_branch);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, new_branch_id);
}
if did_have_messages {
// If we did create any new branches, then we can run
// them immediately.
return ConnectorScheduling::Immediate;
}
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
},
RunResult::BranchAtSyncEnd => {
// Branch is done, go through all of the ports that are not yet
// assigned and map them to non-firing.
for port_idx in 0..self.ports.num_ports() {
let port_mapping = self.ports.get_port_mut(branch.index.index, port_idx);
if !port_mapping.is_assigned {
port_mapping.mark_speculative(0);
}
}
let branch_id = branch.index;
branch.sync_state = SpeculativeState::ReachedSyncEnd;
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_finished, branch_id);
},
RunResult::BranchPut(port_id, value_group) => {
// Branch performed a `put` on a particualar port.
let local_port_id = PortIdLocal{ index: port_id.0.u32_suffix };
let local_port_index = self.ports.get_port_index(local_port_id);
if local_port_index.is_none() {
todo!("handle case where port was received before (i.e. in ports_delta)")
}
let local_port_index = local_port_index.unwrap();
// Check the port mapping for consistency
// TODO: For now we can only put once, so that simplifies stuff
let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);
let is_valid_put = if port_mapping.is_assigned {
// Already assigned, so must be speculative and one time
// firing, otherwise we are `put`ing multiple times.
if port_mapping.last_registered_branch_id.is_valid() {
// Already did a `put`
todo!("handle error through RunDeltaState");
} else {
// Valid if speculatively firing
port_mapping.num_times_fired == 1
}
} else {
// Not yet assigned, do so now
true
};
if is_valid_put {
// Put in run results for thread to pick up and transfer to
// the correct connector inbox.
port_mapping.mark_definitive(branch.index, 1);
let message = DataMessage{
sending_port: local_port_id,
sender_prev_branch_id: BranchId::new_invalid(),
sender_cur_branch_id: branch.index,
message: value_group,
};
// If the message contains any ports then we release our
// ownership over them in this branch
let mut transferred_ports = Vec::new(); // TODO: Put in some temp workspace
find_ports_in_value_group(&message.message, &mut transferred_ports);
Self::release_ports_during_sync(&mut self.ports, branch, &transferred_ports).unwrap();
comp_ctx.submit_message(MessageContents::Data(message));
let branch_index = branch.index;
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, branch_index);
return ConnectorScheduling::Immediate
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
},
_ => unreachable!("unexpected run result '{:?}' while running in sync mode", run_result),
}
// Not immediately scheduling, so schedule again if there are more
// branches to run
if self.sync_active.is_empty() {
return ConnectorScheduling::NotNow;
} else {
return ConnectorScheduling::Later;
}
}
/// Runs the connector in non-synchronous mode.
pub fn run_in_deterministic_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
debug_assert!(!comp_ctx.is_in_sync());
debug_assert!(self.sync_active.is_empty() && self.sync_pending_get.is_empty() && self.sync_finished.is_empty());
debug_assert!(self.branches.len() == 1);
let branch = &mut self.branches[0];
debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);
let mut run_context = ConnectorRunContext{
branch_index: branch.index.index,
ports: &self.ports,
ports_delta: &branch.ports_delta,
scheduler: sched_ctx,
prepared_channel: branch.prepared_channel.take(),
received: &branch.received,
};
let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
match run_result {
RunResult::ComponentTerminated => {
// Need to wait until all children are terminated
// TODO: Think about how to do this?
branch.sync_state = SpeculativeState::Finished;
return ConnectorScheduling::Exit;
},
RunResult::ComponentAtSyncStart => {
// Prepare for sync execution and reschedule immediately
// TODO: Not sure about this. I want a clear synchronization
// point between scheduler/component view on the ports. But is
// this the way to do it?
let current_ports = comp_ctx.notify_sync_start();
for port in current_ports {
debug_assert!(self.ports.get_port_index(port.self_id).is_some());
}
let first_sync_branch = Branch::new_sync_branching_from(1, branch);
let first_sync_branch_id = first_sync_branch.index;
self.ports.prepare_sync_branch(0, 1);
self.branches.push(first_sync_branch);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, first_sync_branch_id);
return ConnectorScheduling::Later;
},
RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
// Construction of a new component. Find all references to ports
// inside of the arguments
let mut transferred_ports = Vec::new();
find_ports_in_value_group(&arguments, &mut transferred_ports);
if !transferred_ports.is_empty() {
// Ports changing ownership
if let Err(_) = Self::release_ports_during_non_sync(&mut self.ports, branch, &transferred_ports) {
todo!("fatal error handling");
}
}
// Add connector for later execution
let new_connector_state = ComponentState {
prompt: Prompt::new(
&sched_ctx.runtime.protocol_description.types,
&sched_ctx.runtime.protocol_description.heap,
definition_id, monomorph_idx, arguments
)
};
let new_connector_branch = Branch::new_initial_branch(new_connector_state);
let new_connector = ConnectorPDL::new(new_connector_branch, transferred_ports);
comp_ctx.push_component(new_connector);
return ConnectorScheduling::Later;
},
RunResult::NewChannel => {
// Need to prepare a new channel
let (getter, putter) = sched_ctx.runtime.create_channel(comp_ctx.id);
debug_assert_eq!(getter.kind, PortKind::Getter);
branch.prepared_channel = Some((
Value::Input(PortId::new(putter.self_id.index)),
Value::Output(PortId::new(getter.self_id.index))
));
comp_ctx.push_port(putter);
comp_ctx.push_port(getter);
return ConnectorScheduling::Immediate;
},
_ => unreachable!("unexpected run result '{:?}' while running in non-sync mode", run_result),
}
}
// -------------------------------------------------------------------------
// Internal helpers
// -------------------------------------------------------------------------
// Helpers for management of the branches and their internally stored
// `next_branch_in_queue` and the `BranchQueue` objects. Essentially forming
// linked lists inside of the vector of branches.
/// Pops from front of linked-list branch queue.
fn pop_branch_from_queue<'a>(branches: &'a mut Vec<Branch>, queue: &mut BranchQueue) -> &'a mut Branch {
debug_assert!(queue.first != 0);
let branch = &mut branches[queue.first as usize];
queue.first = branch.next_branch_in_queue.unwrap_or(0);
branch.next_branch_in_queue = None;
if queue.first == 0 {
// No more entries in queue
debug_assert_eq!(queue.last, branch.index.index);
queue.last = 0;
}
return branch;
}
/// Pushes branch at the end of the linked-list branch queue.
fn push_branch_into_queue(
branches: &mut Vec<Branch>, queue: &mut BranchQueue, to_push: BranchId,
) {
debug_assert!(to_push.is_valid());
let to_push = to_push.index;
if queue.last == 0 {
// No branches in the queue at all
debug_assert_eq!(queue.first, 0);
branches[to_push as usize].next_branch_in_queue = None;
queue.first = to_push;
queue.last = to_push;
} else {
// Pre-existing branch in the queue
debug_assert_ne!(queue.first, 0);
branches[queue.last as usize].next_branch_in_queue = Some(to_push);
queue.last = to_push;
}
}
/// Removes branch from linked-list queue. Walks through the entire list to
/// find the element (!). Assumption is that this is not called often.
fn remove_branch_from_queue(
branches: &mut Vec<Branch>, queue: &mut BranchQueue, to_delete: BranchId,
) {
debug_assert!(to_delete.is_valid()); // we're deleting a valid item
debug_assert!(queue.first != 0 && queue.last != 0); // queue isn't empty to begin with
// Retrieve branch and its next element
let branch_to_delete = &mut branches[to_delete.index as usize];
let branch_next_index_option = branch_to_delete.next_branch_in_queue;
let branch_next_index_unwrapped = branch_next_index_option.unwrap_or(0);
branch_to_delete.next_branch_in_queue = None;
// Walk through all elements in queue to find branch to delete
let mut prev_index = 0;
let mut next_index = queue.first;
while next_index != 0 {
if next_index == to_delete.index {
// Found the element we're going to delete
// - check if at the first element or not
if prev_index == 0 {
queue.first = branch_next_index_unwrapped;
} else {
let prev_branch = &mut branches[prev_index as usize];
prev_branch.next_branch_in_queue = branch_next_index_option;
}
// - check if at last element or not (also takes care of "no elements left in queue")
if branch_next_index_option.is_none() {
queue.last = prev_index;
}
return;
}
prev_index = next_index;
let entry = &branches[next_index as usize];
next_index = entry.next_branch_in_queue.unwrap_or(0);
}
// If here, then we didn't find the element
panic!("branch does not exist in provided queue");
}
// Helpers for local port management. Specifically for adopting/losing
// ownership over ports, and for checking if specific ports can be sent
// over another port.
/// Releasing ownership of ports while in non-sync mode. This only occurs
/// while instantiating new connectors
fn release_ports_during_non_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
debug_assert!(!branch.index.is_valid()); // branch in non-sync mode
for port_id in port_ids {
// We must own the port, or something is wrong with our code
todo!("Set up some kind of message router");
debug_assert!(ports.get_port_index(*port_id).is_some());
ports.remove_port(*port_id);
}
return Ok(())
}
/// Releasing ownership of ports during a sync-session. Will provide an
/// error if the port was already used during a sync block.
fn release_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
if port_ids.is_empty() {
return Ok(())
}
todo!("unfinished: add port properties during final solution-commit msgs");
debug_assert!(branch.index.is_valid()); // branch in sync mode
for port_id in port_ids {
match ports.get_port_index(*port_id) {
Some(port_index) => {
// We (used to) own the port. Make sure it is not given away
// already and not used to put/get data.
let port_mapping = ports.get_port(branch.index.index, port_index);
if port_mapping.is_assigned && port_mapping.num_times_fired != 0 {
// Already used
return Err(PortOwnershipError::UsedInInteraction(*port_id));
}
for delta in &branch.ports_delta {
if delta.port.self_id == *port_id {
// We cannot have acquired this port, because the
// call to `ports.get_port_index` returned an index.
debug_assert!(!delta.is_acquired);
return Err(PortOwnershipError::AlreadyGivenAway(*port_id));
}
}
// TODO: Obtain port description
// branch.ports_delta.push(ComponentPortChange{
// is_acquired: false,
// port_id: *port_id,
// });
},
None => {
// Not in port mapping, so we must have acquired it before,
// remove the acquirement.
let mut to_delete_index: isize = -1;
for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
if delta.port.self_id == *port_id {
debug_assert!(delta.is_acquired);
to_delete_index = delta_idx as isize;
break;
}
}
debug_assert!(to_delete_index != -1);
branch.ports_delta.remove(to_delete_index as usize);
}
}
}
return Ok(())
}
/// Acquiring ports during a sync-session.
fn acquire_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
if port_ids.is_empty() {
return Ok(())
}
todo!("unfinished: add port properties during final solution-commit msgs");
debug_assert!(branch.index.is_valid()); // branch in sync mode
'port_loop: for port_id in port_ids {
for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
if delta.port.self_id == *port_id {
if delta.is_acquired {
// Somehow already received this port.
// TODO: @security
todo!("take care of nefarious peers");
} else {
// Sending ports to ourselves
debug_assert!(ports.get_port_index(*port_id).is_some());
branch.ports_delta.remove(delta_idx);
continue 'port_loop;
}
}
}
// If here then we can safely acquire the new port
// TODO: Retrieve port infor
// branch.ports_delta.push(PortOwnershipDelta{
// acquired: true,
// port_id: *port_id,
// });
}
return Ok(())
}
// Helpers for generating and handling sync messages (and the solutions that
// are described by those sync messages)
/// Generates the initial solution for a finished sync branch. If initial
/// local solution is valid, then the appropriate message is returned.
/// Otherwise the initial solution is inconsistent.
fn generate_initial_solution_for_branch(&self, branch_id: BranchId, comp_ctx: &ComponentCtxFancy) -> Option<SyncMessage> {
// Retrieve branchh
debug_assert!(branch_id.is_valid()); // because we're supposed to be in sync mode
let branch = &self.branches[branch_id.index as usize];
debug_assert_eq!(branch.sync_state, SpeculativeState::ReachedSyncEnd);
// Set up storage (this is also the storage for all of the connectors
// that will be visited, hence the initial size approximation)
let mut all_branch_ids = Vec::new();
self.branch_ids_of_execution_path(branch_id, &mut all_branch_ids);
let num_ports = self.ports.num_ports();
let approximate_peers = num_ports;
let mut initial_solution_port_mapping = Vec::with_capacity(num_ports);
for port_idx in 0..self.ports.num_ports() {
let port_id = self.ports.get_port_id(port_idx);
let port_desc = self.ports.get_port(branch_id.index, port_idx);
// Note: if assigned then we expect a valid branch ID. Otherwise we have the "invalid
// branch" as ID, marking that we want it to be silent
debug_assert!(port_desc.is_assigned == port_desc.last_registered_branch_id.is_valid());
initial_solution_port_mapping.push((port_id, port_desc.last_registered_branch_id));
}
let initial_local_solution = SyncConnectorSolution{
connector_id: comp_ctx.id,
terminating_branch_id: branch_id,
execution_branch_ids: all_branch_ids,
final_port_mapping: initial_solution_port_mapping,
};
let mut sync_message = SyncMessage::new(initial_local_solution, approximate_peers);
// Turn local port mapping into constraints on other connectors
// - constraints on other components due to transferred ports
for port_delta in &branch.ports_delta {
// For transferred ports we always have two constraints: one for the
// sender and one for the receiver, ensuring it was not used.
// TODO: This will fail if a port is passed around multiple times.
// maybe a special "passed along" entry in `ports_delta`.
if !sync_message.check_constraint(comp_ctx.id, SyncBranchConstraint::SilentPort(port_delta.port.self_id)).unwrap() {
return None;
}
// Might need to check if we own the other side of the channel
let port = comp_ctx.get_port_by_id(port_delta.port.self_id).unwrap();
if !sync_message.add_or_check_constraint(port.peer_connector, SyncBranchConstraint::SilentPort(port.peer_id)).unwrap() {
return None;
}
}
// - constraints on other components due to owned ports
for port_index in 0..self.ports.num_ports() {
let port_id = self.ports.get_port_id(port_index);
let port_mapping = self.ports.get_port(branch_id.index, port_index);
let port = comp_ctx.get_port_by_id(port_id).unwrap();
let constraint = if port_mapping.is_assigned {
if port.kind == PortKind::Getter {
SyncBranchConstraint::BranchNumber(port_mapping.last_registered_branch_id)
} else {
SyncBranchConstraint::PortMapping(port.peer_id, port_mapping.last_registered_branch_id)
}
} else {
SyncBranchConstraint::SilentPort(port.peer_id)
};
if !sync_message.add_or_check_constraint(port.peer_connector, constraint).unwrap() {
return None;
}
}
return Some(sync_message);
}
fn submit_sync_solution(&mut self, partial_solution: SyncMessage, comp_ctx: &mut ComponentCtxFancy) {
if partial_solution.to_visit.is_empty() {
// Solution is completely consistent. So ask everyone to commit
// TODO: Maybe another package for random?
let comparison_number: u64 = unsafe {
let mut random_array = [0u8; 8];
getrandom::getrandom(&mut random_array).unwrap();
std::mem::transmute(random_array)
};
let num_local = partial_solution.local_solutions.len();
let mut full_solution = SolutionMessage{
comparison_number,
connector_origin: comp_ctx.id,
local_solutions: Vec::with_capacity(num_local),
to_visit: Vec::with_capacity(num_local - 1),
};
for local_solution in &partial_solution.local_solutions {
full_solution.local_solutions.push((local_solution.connector_id, local_solution.terminating_branch_id));
if local_solution.connector_id != comp_ctx.id {
full_solution.to_visit.push(local_solution.connector_id);
}
}
debug_assert!(self.committed_to.is_none());
self.committed_to = Some((full_solution.connector_origin, full_solution.comparison_number));
comp_ctx.submit_message(MessageContents::RequestCommit(full_solution));
} else {
// Still have connectors to visit
comp_ctx.submit_message(MessageContents::Sync(partial_solution));
}
}
fn branch_ids_of_execution_path(&self, leaf_branch_id: BranchId, parents: &mut Vec<BranchId>) {
debug_assert!(parents.is_empty());
let mut next_branch_id = leaf_branch_id;
debug_assert!(next_branch_id.is_valid());
while next_branch_id.is_valid() {
parents.push(next_branch_id);
let branch = &self.branches[next_branch_id.index as usize];
next_branch_id = branch.parent_index;
}
}
}
#[derive(Eq, PartialEq)]
pub(crate) enum ConnectorScheduling {
Immediate, // Run again, immediately
Later, // Schedule for running, at some later point in time
NotNow, // Do not reschedule for running
Exit, // Connector has exited
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortIdLocal::new(port_id.0.u32_suffix);
for prev_port in ports.iter() {
if *prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
|