Files
@ 333f1e2197ac
Branch filter:
Location: CSY/reowolf/src/runtime/experimental/vec_storage.rs
333f1e2197ac
9.8 KiB
application/rls-services+xml
removing btreesets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | use super::bits::{usize_bits, BitChunkIter};
use crate::common::*;
use core::mem::MaybeUninit;
#[derive(Default)]
struct Bitvec(Vec<usize>);
impl Bitvec {
#[inline(always)]
fn offsets_of(i: usize) -> [usize; 2] {
[i / usize_bits(), i % usize_bits()]
}
// assumes read will not go out of bounds
unsafe fn insert(&mut self, i: usize) {
let [o_of, o_in] = Self::offsets_of(i);
let chunk = self.0.get_unchecked_mut(o_of);
*chunk |= 1 << o_in;
}
// assumes read will not go out of bounds
unsafe fn remove(&mut self, i: usize) -> bool {
let [o_of, o_in] = Self::offsets_of(i);
let chunk = self.0.get_unchecked_mut(o_of);
let singleton_mask = 1 << o_in;
let was = (*chunk & singleton_mask) != 0;
*chunk &= !singleton_mask;
was
}
// assumes read will not go out of bounds
unsafe fn contains(&self, i: usize) -> bool {
let [o_of, o_in] = Self::offsets_of(i);
(*self.0.get_unchecked(o_of) & (1 << o_in)) != 0
}
fn pop_first(&mut self) -> Option<usize> {
let i = self.first()?;
unsafe { self.remove(i) };
Some(i)
}
fn iter(&self) -> impl Iterator<Item = usize> + '_ {
BitChunkIter::new(self.0.iter().copied()).map(|x| x as usize)
}
fn first(&self) -> Option<usize> {
self.iter().next()
}
}
// A T-type arena which:
// 1. does not check for the ABA problem
// 2. imposes the object keys on the user
// 3. allows the reservation of a space (getting the key) to precede the value being provided.
//
// data contains values in one of three states:
// 1. occupied: ininitialized. will be dropped.
// 2. vacant: uninitialized. may be reused implicitly. won't be dropped.
// 2. reserved: uninitialized. may be occupied implicitly. won't be dropped.
// invariant A: elements at indices (0..data.len()) / vacant / reserved are occupied
// invariant B: reserved & vacant = {}
// invariant C: (vacant U reserved) subset of (0..data.len)
// invariant D: last element of data is not in VACANT state
// invariant E: number of allocated bits in vacant and reserved >= data.len()
pub struct VecStorage<T> {
data: Vec<MaybeUninit<T>>,
vacant: Bitvec,
reserved: Bitvec,
}
impl<T> Default for VecStorage<T> {
fn default() -> Self {
Self { data: Default::default(), vacant: Default::default(), reserved: Default::default() }
}
}
impl<T: Debug> Debug for VecStorage<T> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
enum FmtT<'a, T> {
Vacant,
Reserved,
Occupied(&'a T),
};
impl<T: Debug> Debug for FmtT<'_, T> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
match self {
FmtT::Vacant => write!(f, "Vacant"),
FmtT::Reserved => write!(f, "Reserved"),
FmtT::Occupied(t) => write!(f, "Occupied({:?})", t),
}
}
}
let iter = (0..self.data.len()).map(|i| {
if unsafe { self.vacant.contains(i) } {
FmtT::Vacant
} else if unsafe { self.reserved.contains(i) } {
FmtT::Reserved
} else {
// 2. Invariant A => reading valid ata
unsafe {
// 1. index is within bounds
// 2. i is occupied => initialized data is being dropped
FmtT::Occupied(&*self.data.get_unchecked(i).as_ptr())
}
}
});
f.debug_list().entries(iter).finish()
}
}
impl<T> Drop for VecStorage<T> {
fn drop(&mut self) {
self.clear();
}
}
impl<T> VecStorage<T> {
// ASSUMES that i in 0..self.data.len()
unsafe fn get_occupied_unchecked(&self, i: usize) -> Option<&T> {
if self.vacant.contains(i) || self.reserved.contains(i) {
None
} else {
// 2. Invariant A => reading valid ata
Some(&*self.data.get_unchecked(i).as_ptr())
}
}
// breaks invariant A: returned index is in NO state
fn pop_vacant(&mut self) -> usize {
if let Some(i) = self.vacant.pop_first() {
i
} else {
let bitsets_need_another_chunk = self.data.len() % usize_bits() == 0;
if bitsets_need_another_chunk {
self.vacant.0.push(0usize);
self.reserved.0.push(0usize);
}
self.data.push(MaybeUninit::uninit());
self.data.len() - 1
}
}
//////////////
pub fn clear(&mut self) {
for i in 0..self.data.len() {
// SAFE: bitvec bounds ensured by invariant E
if unsafe { !self.vacant.contains(i) && !self.reserved.contains(i) } {
// invariant A: this element is OCCUPIED
unsafe {
// 1. by construction, i is in bounds
// 2. i is occupied => initialized data is being dropped
drop(self.data.get_unchecked_mut(i).as_ptr().read());
}
}
}
self.vacant.0.clear();
self.reserved.0.clear();
}
pub fn iter(&self) -> impl Iterator<Item = &T> {
(0..self.data.len()).filter_map(move |i| unsafe { self.get_occupied_unchecked(i) })
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
(0..self.data.len()).filter_map(move |i| unsafe {
// SAFE: bitvec bounds ensured by invariant E
if self.vacant.contains(i) || self.reserved.contains(i) {
None
} else {
// 2. Invariant A => reading valid ata
Some(&mut *self.data.get_unchecked_mut(i).as_mut_ptr())
}
})
}
pub fn get_occupied(&self, i: usize) -> Option<&T> {
if i >= self.data.len() {
None
} else {
unsafe {
// index is within bounds
self.get_occupied_unchecked(i)
}
}
}
pub fn get_occupied_mut(&mut self, i: usize) -> Option<&mut T> {
// SAFE: bitvec bounds ensured by invariant E
if i >= self.data.len() || unsafe { self.vacant.contains(i) || self.reserved.contains(i) } {
None
} else {
unsafe {
// 1. index is within bounds
// 2. Invariant A => reading valid ata
Some(&mut *self.data.get_unchecked_mut(i).as_mut_ptr())
}
}
}
pub fn new_reserved(&mut self) -> usize {
let i = self.pop_vacant(); // breaks invariant A: i is in NO state
// SAFE: bitvec bounds ensured by invariant E
unsafe { self.reserved.insert(i) }; // restores invariant A
i
}
pub fn occupy_reserved(&mut self, i: usize, t: T) {
// SAFE: bitvec bounds ensured by invariant E
assert!(unsafe { self.reserved.remove(i) }); // breaks invariant A
unsafe {
// 1. invariant C => write is within bounds
// 2. i WAS reserved => no initialized data is being overwritten
self.data.get_unchecked_mut(i).as_mut_ptr().write(t)
// restores invariant A
};
}
pub fn new_occupied(&mut self, t: T) -> usize {
let i = self.pop_vacant(); // breaks invariant A: i is in NO state
unsafe {
// 1. invariant C => write is within bounds
// 2. i WAS reserved => no initialized data is being overwritten
self.data.get_unchecked_mut(i).as_mut_ptr().write(t)
// restores invariant A
};
i
}
pub fn vacate(&mut self, i: usize) -> Option<T> {
// SAFE: bitvec bounds ensured by invariant E
if i >= self.data.len() || unsafe { self.vacant.contains(i) } {
// already vacant. nothing to do here
return None;
}
// i is certainly within bounds of self.data
// SAFE: bitvec bounds ensured by invariant E
let value = if unsafe { self.reserved.remove(i) } {
// no data to drop
None
} else {
// invariant A => this element is OCCUPIED!
unsafe {
// 1. index is within bounds
// 2. i is occupied => initialized data is being dropped
Some(self.data.get_unchecked_mut(i).as_ptr().read())
}
};
// Mark as vacant...
if i + 1 == self.data.len() {
// ... by truncating self.data.
// must truncate to avoid violating invariant D.
// pops at least once:
while let Some(_) = self.data.pop() {
let pop_next = self
.data
.len()
.checked_sub(1)
.map(|index| unsafe {
// SAFE: bitvec bounds ensured by invariant E
self.vacant.remove(index)
})
.unwrap_or(false);
if !pop_next {
break;
}
}
} else {
// ... by populating self.vacant.
// SAFE: bitvec bounds ensured by invariant E
unsafe { self.vacant.insert(i) };
}
value
}
pub fn iter_reserved(&self) -> impl Iterator<Item = usize> + '_ {
self.reserved.iter()
}
}
#[test]
fn vec_storage() {
#[derive(Debug)]
struct Foo;
impl Drop for Foo {
fn drop(&mut self) {
println!("DROPPING FOO!");
}
}
let mut v = VecStorage::default();
let i0 = v.new_occupied(Foo);
println!("{:?}", &v);
let i1 = v.new_reserved();
println!("{:?}", &v);
let q = v.vacate(i0);
println!("q {:?}", q);
println!("{:?}", &v);
v.occupy_reserved(i1, Foo);
println!("{:?}", &v);
*v.get_occupied_mut(i1).unwrap() = Foo;
println!("{:?}", &v);
}
|