Files
@ 33ea10021de4
Branch filter:
Location: CSY/reowolf/src/protocol/parser/symbol_table.rs
33ea10021de4
16.4 KiB
application/rls-services+xml
refactored identifiers, initial symbol table implementation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | use crate::protocol::ast::*;
use crate::protocol::inputsource::*;
use std::collections::{HashMap, hash_map::Entry};
use crate::protocol::parser::LexedModule;
#[derive(PartialEq, Eq, Hash)]
struct SymbolKey {
module_id: RootId,
symbol_name: Vec<u8>,
}
pub(crate) enum Symbol {
Namespace(RootId),
Definition((RootId, DefinitionId)),
}
pub(crate) struct SymbolValue {
// Position refers to the origin of the symbol definition (i.e. the module's
// RootId that is in the key being used to lookup this value)
position: InputPosition,
symbol: Symbol,
}
impl SymbolValue {
pub(crate) fn as_namespace(&self) -> Option<RootId> {
match &self.symbol {
Symbol::Namespace(root_id) => Some(*root_id),
_ => None,
}
}
pub(crate) fn as_definition(&self) -> Option<(RootId, DefinitionId)> {
match &self.symbol {
Symbol::Definition((root_id, definition_id)) => Some((*root_id, *definition_id)),
_ => None,
}
}
}
/// `SymbolTable` is responsible for two parts of the parsing process: firstly
/// it ensures that there are no clashing symbol definitions within each file,
/// and secondly it will resolve all symbols within a module to their
/// appropriate definitions (in case of enums, functions, etc.) and namespaces
/// (currently only external modules can act as namespaces). If a symbol clashes
/// or if a symbol cannot be resolved this will be an error.
///
/// Within the compilation process the symbol table is responsible for resolving
/// namespaced identifiers (e.g. Module::Enum::EnumVariant) to the appropriate
/// definition (i.e. not namespaces; as the language has no way to use
/// namespaces except for using them in namespaced identifiers).
// TODO: Maybe allow namespaced-aliased imports. It is currently not possible
// to express the following:
// import Module.Submodule as ModSub
// import SubMod::{Symbol}
pub(crate) struct SymbolTable {
// Lookup from module name (not any aliases) to the root id
module_lookup: HashMap<Vec<u8>, RootId>,
// Lookup from within a module, to a particular imported (potentially
// aliased) or defined symbol. Basically speaking: if the source code of a
// module contains correctly imported/defined symbols, then this lookup
// will always return the corresponding definition
symbol_lookup: HashMap<SymbolKey, SymbolValue>,
}
impl SymbolTable {
pub(crate) fn new(heap: &Heap, modules: &[LexedModule]) -> Result<Self, ParseError2> {
// Sanity check
if cfg!(debug_assertions) {
for (index, module) in modules.iter().enumerate() {
debug_assert_eq!(
index, module.root_id.0.index as usize,
"module RootId does not correspond to LexedModule index"
)
}
}
// Preparation: create a lookup from module name to root id. This does
// not take aliasing into account.
let mut module_lookup = HashMap::with_capacity(modules.len());
for module in modules {
// TODO: Maybe put duplicate module name checking here?
// TODO: @string
module_lookup.insert(module.module_name.clone(), module.root_id);
}
// Preparation: determine total number of imports we will be inserting
// into the lookup table. We could just iterate over the arena, but then
// we don't know the source file the import belongs to.
let mut lookup_reserve_size = 0;
for module in modules {
let module_root = &heap[module.root_id];
for import_id in &module_root.imports {
match &heap[*import_id] {
Import::Module(_) => lookup_reserve_size += 1,
Import::Symbols(import) => {
if import.symbols.is_empty() {
// Add all symbols from the other module
match module_lookup.get(&import.module_name) {
Some(target_module_id) => {
lookup_reserve_size += heap[*target_module_id].definitions.len()
},
None => {
return Err(
ParseError2::new_error(&module.source, import.position, "Cannot resolve module")
);
}
}
}
}
}
}
}
let mut table = Self{
module_lookup,
symbol_lookup: HashMap::with_capacity(lookup_reserve_size)
};
// First pass: we go through all of the modules and add lookups to
// symbols that are defined within that module. Cross-module imports are
// not yet resolved
for module in modules {
let root = &heap[module.root_id];
for definition_id in &root.definitions {
let definition = &heap[*definition_id];
let identifier = definition.identifier();
if let Err(previous_position) = table.add_definition_symbol(
module.root_id, identifier.position, &identifier.value,
module.root_id, *definition_id
) {
return Err(
ParseError2::new_error(&module.source, definition.position(), "Symbol is multiply defined")
.with_postfixed_info(&module.source, previous_position, "Previous definition was here")
)
}
}
}
// Second pass: now that we can find symbols in modules, we can resolve
// all imports (if they're correct, that is)
for module in modules {
let root = &heap[module.root_id];
for import_id in &root.imports {
let import = &heap[*import_id];
match import {
Import::Module(import) => {
// Find the module using its name
let target_root_id = table.resolve_module(&import.module_name);
if target_root_id.is_none() {
return Err(ParseError2::new_error(&module.source, import.position, "Could not resolve module"));
}
let target_root_id = target_root_id.unwrap();
if target_root_id == module.root_id {
return Err(ParseError2::new_error(&module.source, import.position, "Illegal import of self"));
}
// Add the target module under its alias
if let Err(previous_position) = table.add_namespace_symbol(
module.root_id, import.position,
&import.alias, target_root_id
) {
return Err(
ParseError2::new_error(&module.source, import.position, "Symbol is multiply defined")
.with_postfixed_info(&module.source, previous_position, "Previous definition was here")
);
}
},
Import::Symbols(import) => {
// Find the target module using its name
let target_root_id = table.resolve_module(&import.module_name);
if target_root_id.is_none() {
return Err(ParseError2::new_error(&module.source, import.position, "Could not resolve module of symbol imports"));
}
let target_root_id = target_root_id.unwrap();
if target_root_id == module.root_id {
return Err(ParseError2::new_error(&module.source, import.position, "Illegal import of self"));
}
// Determine which symbols to import
if import.symbols.is_empty() {
// Import of all symbols, not using any aliases
for definition_id in &heap[target_root_id].definitions {
let definition = &heap[*definition_id];
let identifier = definition.identifier();
if let Err(previous_position) = table.add_definition_symbol(
module.root_id, import.position, &identifier.value,
target_root_id, *definition_id
) {
return Err(
ParseError2::new_error(
&module.source, import.position,
&format!("Imported symbol '{}' is already defined", String::from_utf8_lossy(&identifier.value))
)
.with_postfixed_info(
&modules[target_root_id.0.index as usize].source,
definition.position(),
"The imported symbol is defined here"
)
.with_postfixed_info(
&module.source, previous_position, "And is previously defined here"
)
)
}
}
} else {
// Import of specific symbols, optionally using aliases
for symbol in &import.symbols {
// Because we have already added per-module definitions, we can use
// the table to lookup this particular symbol. Note: within a single
// module a namespace-import and a symbol-import may not collide.
// Hence per-module symbols are unique.
// However: if we import a symbol from another module, we don't want
// to "import a module's imported symbol". And so if we do find
// a symbol match, we need to make sure it is a definition from
// within that module by checking `source_root_id == target_root_id`
let target_symbol = table.resolve_symbol(target_root_id, &symbol.name);
let symbol_definition_id = match target_symbol {
Some(target_symbol) => {
match target_symbol.symbol {
Symbol::Definition((symbol_root_id, symbol_definition_id)) => {
if symbol_root_id == target_root_id {
Some(symbol_definition_id)
} else {
// This is imported within the target module, and not
// defined within the target module
None
}
},
Symbol::Namespace(_) => {
// We don't import a module's "module import"
None
}
}
},
None => None
};
if symbol_definition_id.is_none() {
return Err(
ParseError2::new_error(&module.source, symbol.position, "Could not resolve symbol")
)
}
let symbol_definition_id = symbol_definition_id.unwrap();
if let Err(previous_position) = table.add_definition_symbol(
module.root_id, symbol.position, &symbol.alias,
target_root_id, symbol_definition_id
) {
return Err(
ParseError2::new_error(&module.source, symbol.position, "Symbol is multiply defined")
.with_postfixed_info(&module.source, previous_position, "Previous definition was here")
)
}
}
}
}
}
}
}
debug_assert_eq!(
table.symbol_lookup.len(), lookup_reserve_size,
"miscalculated reserved size for symbol lookup table"
);
Ok(table)
}
/// Resolves a module by its defined name
pub(crate) fn resolve_module(&self, identifier: &Vec<u8>) -> Option<RootId> {
self.module_lookup.get(identifier).map(|v| *v)
}
/// Resolves a symbol within a particular module, indicated by its RootId,
/// with a single non-namespaced identifier
pub(crate) fn resolve_symbol(&self, within_module_id: RootId, identifier: &Vec<u8>) -> Option<&SymbolValue> {
self.symbol_lookup.get(&SymbolKey{ module_id: within_module_id, symbol_name: identifier.clone() })
}
/// Resolves a namespaced symbol. It will try to go as far as possible in
/// actually finding a definition or a namespace. So a namespace might be
/// resolved, after it which it finds an actual definition. It may be that
/// the namespaced identifier has more elements that should be checked
/// (i.e. an enum variant, or simply an erroneous instance of too many
/// chained identifiers). This function will return None if nothing could be
/// resolved at all.
pub(crate) fn resolve_namespaced_symbol(&self, _within_module_id: RootId) {
todo!("implement")
}
/// Attempts to add a namespace symbol. Returns `Ok` if the symbol was
/// inserted. If the symbol already exists then `Err` will be returned
/// together with the previous definition's source position (in the origin
/// module's source file).
// Note: I would love to return a reference to the value, but Rust is
// preventing me from doing so...
fn add_namespace_symbol(
&mut self, origin_module_id: RootId, origin_position: InputPosition, symbol_name: &Vec<u8>, target_module_id: RootId
) -> Result<(), InputPosition> {
let key = SymbolKey{
module_id: origin_module_id,
symbol_name: symbol_name.clone()
};
match self.symbol_lookup.entry(key) {
Entry::Occupied(o) => Err(o.get().position),
Entry::Vacant(v) => {
v.insert(SymbolValue{
position: origin_position,
symbol: Symbol::Namespace(target_module_id)
});
Ok(())
}
}
}
/// Attempts to add a definition symbol. Returns `Ok` if the symbol was
/// inserted. If the symbol already exists then `Err` will be returned
/// together with the previous definition's source position (in the origin
/// module's source file).
fn add_definition_symbol(
&mut self, origin_module_id: RootId, origin_position: InputPosition, symbol_name: &Vec<u8>,
target_module_id: RootId, target_definition_id: DefinitionId,
) -> Result<(), InputPosition> {
let key = SymbolKey{
module_id: origin_module_id,
symbol_name: symbol_name.clone()
};
match self.symbol_lookup.entry(key) {
Entry::Occupied(o) => Err(o.get().position),
Entry::Vacant(v) => {
v.insert(SymbolValue {
position: origin_position,
symbol: Symbol::Definition((target_module_id, target_definition_id))
});
Ok(())
}
}
}
}
|