Files @ 44a98be4e4b4
Branch filter:

Location: CSY/reowolf/src/runtime/mod.rs

44a98be4e4b4 26.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
beginning large overhaul: moving to globally-unique ports & port -> endpoint route mappings
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
// #[cfg(feature = "ffi")]
// pub mod ffi;

// mod actors;
// pub(crate) mod communication;
// pub(crate) mod connector;
// pub(crate) mod endpoint;
// pub mod errors;
// mod serde;
mod my_tests;
mod setup2;
// pub(crate) mod setup;
// mod v2;

use crate::common::*;
// use actors::*;
// use endpoint::*;
// use errors::*;

#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
pub(crate) enum Decision {
    Failure,
    Success(Predicate),
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
pub(crate) enum Msg {
    SetupMsg(SetupMsg),
    CommMsg(CommMsg),
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
pub struct MyPortInfo {
    polarity: Polarity,
    port: PortId,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
pub(crate) enum SetupMsg {
    // sent by the passive endpoint to the active endpoint
    // MyPortInfo(MyPortInfo),
    LeaderEcho { maybe_leader: ControllerId },
    LeaderAnnounce { leader: ControllerId },
    YouAreMyParent,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
pub(crate) struct CommMsg {
    pub round_index: usize,
    pub contents: CommMsgContents,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
pub(crate) enum CommMsgContents {
    SendPayload { payload_predicate: Predicate, payload: Payload },
    Elaborate { partial_oracle: Predicate }, // SINKWARD
    Failure,                                 // SINKWARD
    Announce { decision: Decision },         // SINKAWAYS
}
#[derive(Debug, PartialEq)]
pub(crate) enum CommonSatResult {
    FormerNotLatter,
    LatterNotFormer,
    Equivalent,
    New(Predicate),
    Nonexistant,
}
pub struct Endpoint {
    inbox: Vec<u8>,
    stream: mio07::net::TcpStream,
}
#[derive(Debug, Default)]
pub struct IntStream {
    next: u32,
}
#[derive(Debug)]
pub struct IdManager {
    controller_id: ControllerId,
    port_suffix_stream: IntStream,
}
#[derive(Debug)]
pub struct ProtoComponent {
    state: ComponentState,
    ports: HashSet<PortId>,
}
#[derive(Debug)]
pub enum InpRoute {
    NativeComponent,
    ProtoComponent { index: usize },
    Endpoint { index: usize },
}
pub trait Logger: Debug {
    fn line_writer(&mut self) -> &mut dyn std::fmt::Write;
    fn dump_log(&self, w: &mut dyn std::io::Write);
}
#[derive(Debug, Clone)]
pub struct EndpointSetup {
    pub polarity: Polarity,
    pub sock_addr: SocketAddr,
    pub is_active: bool,
}
#[derive(Debug)]
pub struct EndpointExt {
    endpoint: Endpoint,
    inp_for_emerging_msgs: PortId,
}
#[derive(Debug)]
pub struct Neighborhood {
    parent: Option<usize>,
    children: Vec<usize>, // ordered, deduplicated
}
#[derive(Debug)]
pub struct MemInMsg {
    inp: PortId,
    msg: Payload,
}
#[derive(Debug)]
pub struct EndpointPoller {
    poll: mio07::Poll,
    events: mio07::Events,
    undrained_endpoints: HashSet<usize>,
    delayed_inp_messages: Vec<(PortId, Msg)>,
}
#[derive(Debug)]
pub struct Connector {
    logger: Box<dyn Logger>,
    proto_description: Arc<ProtocolDescription>,
    id_manager: IdManager,
    native_ports: HashSet<PortId>,
    proto_components: Vec<ProtoComponent>,
    outp_to_inp: HashMap<PortId, PortId>,
    inp_to_route: HashMap<PortId, InpRoute>,
    phased: ConnectorPhased,
}
#[derive(Debug)]
pub enum ConnectorPhased {
    Setup {
        endpoint_setups: Vec<(PortId, EndpointSetup)>,
        surplus_sockets: u16,
    },
    Communication {
        endpoint_poller: EndpointPoller,
        endpoint_exts: Vec<EndpointExt>,
        neighborhood: Neighborhood,
        mem_inbox: Vec<MemInMsg>,
    },
}
#[derive(Debug)]
pub struct StringLogger(ControllerId, String);
#[derive(Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
pub(crate) struct Predicate {
    pub assigned: BTreeMap<PortId, bool>,
}
#[derive(Debug, Default)]
struct SyncBatch {
    puts: HashMap<PortId, Payload>,
    gets: HashSet<PortId>,
}
pub struct MonitoredReader<R: Read> {
    bytes: usize,
    r: R,
}
pub enum EndpointRecvErr {
    MalformedMessage,
    BrokenEndpoint,
}
pub struct SyncContext<'a> {
    connector: &'a mut Connector,
}
pub struct NonsyncContext<'a> {
    connector: &'a mut Connector,
}
////////////////
impl Debug for Endpoint {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        f.debug_struct("Endpoint").field("inbox", &self.inbox).finish()
    }
}
impl NonsyncContext<'_> {
    pub fn new_component(&mut self, moved_ports: HashSet<PortId>, init_state: ComponentState) {
        todo!()
    }
    pub fn new_channel(&mut self) -> [PortId; 2] {
        todo!()
    }
}
impl SyncContext<'_> {
    pub fn is_firing(&mut self, port: PortId) -> Option<bool> {
        todo!()
    }
    pub fn read_msg(&mut self, port: PortId) -> Option<&Payload> {
        todo!()
    }
}
impl<R: Read> From<R> for MonitoredReader<R> {
    fn from(r: R) -> Self {
        Self { r, bytes: 0 }
    }
}
impl<R: Read> MonitoredReader<R> {
    pub fn bytes_read(&self) -> usize {
        self.bytes
    }
}
impl<R: Read> Read for MonitoredReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
        let n = self.r.read(buf)?;
        self.bytes += n;
        Ok(n)
    }
}
impl Into<Msg> for SetupMsg {
    fn into(self) -> Msg {
        Msg::SetupMsg(self)
    }
}
impl Debug for Predicate {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        f.pad("{")?;
        for (port, &v) in self.assigned.iter() {
            f.write_fmt(format_args!("{:?}=>{}, ", port, if v { 'T' } else { 'F' }))?
        }
        f.pad("}")
    }
}
impl StringLogger {
    pub fn new(controller_id: ControllerId) -> Self {
        Self(controller_id, String::default())
    }
}
impl Logger for StringLogger {
    fn line_writer(&mut self) -> &mut dyn std::fmt::Write {
        use std::fmt::Write;
        let _ = write!(&mut self.1, "\nCID({}): ", self.0);
        self
    }
    fn dump_log(&self, w: &mut dyn std::io::Write) {
        let _ = w.write(self.1.as_bytes());
    }
}
impl std::fmt::Write for StringLogger {
    fn write_str(&mut self, s: &str) -> Result<(), std::fmt::Error> {
        self.1.write_str(s)
    }
}
impl IntStream {
    fn next(&mut self) -> u32 {
        if self.next == u32::MAX {
            panic!("NO NEXT!")
        }
        self.next += 1;
        self.next - 1
    }
}
impl IdManager {
    fn next_port(&mut self) -> PortId {
        let port_suffix = self.port_suffix_stream.next();
        let controller_id = self.controller_id;
        PortId { controller_id, port_index: port_suffix }
    }
    fn new(controller_id: ControllerId) -> Self {
        Self { controller_id, port_suffix_stream: Default::default() }
    }
}
impl Endpoint {
    fn try_recv<T: serde::de::DeserializeOwned>(&mut self) -> Result<Option<T>, EndpointRecvErr> {
        use EndpointRecvErr::*;
        // populate inbox as much as possible
        'read_loop: loop {
            match self.stream.read_to_end(&mut self.inbox) {
                Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => break 'read_loop,
                Ok(0) => break 'read_loop,
                Ok(_) => (),
                Err(_e) => return Err(BrokenEndpoint),
            }
        }
        let mut monitored = MonitoredReader::from(&self.inbox[..]);
        match bincode::deserialize_from(&mut monitored) {
            Ok(msg) => {
                let msg_size = monitored.bytes_read();
                self.inbox.drain(0..(msg_size.try_into().unwrap()));
                Ok(Some(msg))
            }
            Err(e) => match *e {
                bincode::ErrorKind::Io(k) if k.kind() == std::io::ErrorKind::UnexpectedEof => {
                    Ok(None)
                }
                _ => Err(MalformedMessage),
                // println!("SERDE ERRKIND {:?}", e);
                // Err(MalformedMessage)
            },
        }
    }
    fn send<T: serde::ser::Serialize>(&mut self, msg: &T) -> Result<(), ()> {
        bincode::serialize_into(&mut self.stream, msg).map_err(drop)
    }
}
impl Connector {
    fn get_logger(&self) -> &dyn Logger {
        &*self.logger
    }
}

// #[derive(Debug)]
// pub enum Connector {
//     Unconfigured(Unconfigured),
//     Configured(Configured),
//     Connected(Connected), // TODO consider boxing. currently takes up a lot of stack space
// }
// #[derive(Debug)]
// pub struct Unconfigured {
//     pub controller_id: ControllerId,
// }
// #[derive(Debug)]
// pub struct Configured {
//     controller_id: ControllerId,
//     polarities: Vec<Polarity>,
//     bindings: HashMap<usize, PortBinding>,
//     protocol_description: Arc<ProtocolD>,
//     main_component: Vec<u8>,
//     logger: String,
// }
// #[derive(Debug)]
// pub struct Connected {
//     native_interface: Vec<(PortId, Polarity)>,
//     sync_batches: Vec<SyncBatch>,
//     // controller is cooperatively scheduled with the native application
//     // (except for transport layer behind Endpoints, which are managed by the OS)
//     // control flow is passed to the controller during methods on Connector (primarily, connect and sync).
//     controller: Controller,
// }

// #[derive(Debug, Copy, Clone)]
// pub enum PortBinding {
//     Native,
//     Active(SocketAddr),
//     Passive(SocketAddr),
// }

// #[derive(Debug)]
// struct Arena<T> {
//     storage: Vec<T>,
// }

// #[derive(Debug)]
// struct ReceivedMsg {
//     recipient: PortId,
//     msg: Msg,
// }

// #[derive(Debug)]
// struct MessengerState {
//     poll: Poll,
//     events: Events,
//     delayed: Vec<ReceivedMsg>,
//     undelayed: Vec<ReceivedMsg>,
//     polled_undrained: IndexSet<PortId>,
// }
// #[derive(Debug)]
// struct ChannelIdStream {
//     controller_id: ControllerId,
//     next_channel_index: ChannelIndex,
// }

// #[derive(Debug)]
// struct Controller {
//     protocol_description: Arc<ProtocolD>,
//     inner: ControllerInner,
//     ephemeral: ControllerEphemeral,
//     unrecoverable_error: Option<SyncErr>, // prevents future calls to Sync
// }
// #[derive(Debug)]
// struct ControllerInner {
//     round_index: usize,
//     channel_id_stream: ChannelIdStream,
//     endpoint_exts: Arena<EndpointExt>,
//     messenger_state: MessengerState,
//     mono_n: MonoN,       // state at next round start
//     mono_ps: Vec<MonoP>, // state at next round start
//     family: ControllerFamily,
//     logger: String,
// }

// /// This structure has its state entirely reset between synchronous rounds
// #[derive(Debug, Default)]
// struct ControllerEphemeral {
//     solution_storage: SolutionStorage,
//     poly_n: Option<PolyN>,
//     poly_ps: Vec<PolyP>,
//     mono_ps: Vec<MonoP>,
//     port_to_holder: HashMap<PortId, PolyId>,
// }

// #[derive(Debug)]
// struct ControllerFamily {
//     parent_port: Option<PortId>,
//     children_ports: Vec<PortId>,
// }

// #[derive(Debug)]
// pub(crate) enum SyncRunResult {
//     BlockingForRecv,
//     AllBranchesComplete,
//     NoBranches,
// }

// // Used to identify poly actors
// #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
// enum PolyId {
//     N,
//     P { index: usize },
// }

// #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
// pub(crate) enum SubtreeId {
//     PolyN,
//     PolyP { index: usize },
//     ChildController { port: PortId },
// }

// pub(crate) struct MonoPContext<'a> {
//     inner: &'a mut ControllerInner,
//     ports: &'a mut HashSet<PortId>,
//     mono_ps: &'a mut Vec<MonoP>,
// }
// pub(crate) struct PolyPContext<'a> {
//     my_subtree_id: SubtreeId,
//     inner: &'a mut ControllerInner,
//     solution_storage: &'a mut SolutionStorage,
// }
// impl PolyPContext<'_> {
//     #[inline(always)]
//     fn reborrow<'a>(&'a mut self) -> PolyPContext<'a> {
//         let Self { solution_storage, my_subtree_id, inner } = self;
//         PolyPContext { solution_storage, my_subtree_id: *my_subtree_id, inner }
//     }
// }
// struct BranchPContext<'m, 'r> {
//     m_ctx: PolyPContext<'m>,
//     ports: &'r HashSet<PortId>,
//     predicate: &'r Predicate,
//     inbox: &'r HashMap<PortId, Payload>,
// }

// #[derive(Default)]
// pub(crate) struct SolutionStorage {
//     old_local: HashSet<Predicate>,
//     new_local: HashSet<Predicate>,
//     // this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
//     subtree_solutions: Vec<HashSet<Predicate>>,
//     subtree_id_to_index: HashMap<SubtreeId, usize>,
// }

// trait Messengerlike {
//     fn get_state_mut(&mut self) -> &mut MessengerState;
//     fn get_endpoint_mut(&mut self, eport: PortId) -> &mut Endpoint;

//     fn delay(&mut self, received: ReceivedMsg) {
//         self.get_state_mut().delayed.push(received);
//     }
//     fn undelay_all(&mut self) {
//         let MessengerState { delayed, undelayed, .. } = self.get_state_mut();
//         undelayed.extend(delayed.drain(..))
//     }

//     fn send(&mut self, to: PortId, msg: Msg) -> Result<(), EndpointErr> {
//         self.get_endpoint_mut(to).send(msg)
//     }

//     // attempt to receive a message from one of the endpoints before the deadline
//     fn recv(&mut self, deadline: Instant) -> Result<Option<ReceivedMsg>, MessengerRecvErr> {
//         // try get something buffered
//         if let Some(x) = self.get_state_mut().undelayed.pop() {
//             return Ok(Some(x));
//         }

//         loop {
//             // polled_undrained may not be empty
//             while let Some(eport) = self.get_state_mut().polled_undrained.pop() {
//                 if let Some(msg) = self
//                     .get_endpoint_mut(eport)
//                     .recv()
//                     .map_err(|e| MessengerRecvErr::EndpointErr(eport, e))?
//                 {
//                     // this endpoint MAY still have messages! check again in future
//                     self.get_state_mut().polled_undrained.insert(eport);
//                     return Ok(Some(ReceivedMsg { recipient: eport, msg }));
//                 }
//             }

//             let state = self.get_state_mut();
//             match state.poll_events(deadline) {
//                 Ok(()) => {
//                     for e in state.events.iter() {
//                         state.polled_undrained.insert(PortId::from_token(e.token()));
//                     }
//                 }
//                 Err(PollDeadlineErr::PollingFailed) => return Err(MessengerRecvErr::PollingFailed),
//                 Err(PollDeadlineErr::Timeout) => return Ok(None),
//             }
//         }
//     }
//     fn recv_blocking(&mut self) -> Result<ReceivedMsg, MessengerRecvErr> {
//         // try get something buffered
//         if let Some(x) = self.get_state_mut().undelayed.pop() {
//             return Ok(x);
//         }

//         loop {
//             // polled_undrained may not be empty
//             while let Some(eport) = self.get_state_mut().polled_undrained.pop() {
//                 if let Some(msg) = self
//                     .get_endpoint_mut(eport)
//                     .recv()
//                     .map_err(|e| MessengerRecvErr::EndpointErr(eport, e))?
//                 {
//                     // this endpoint MAY still have messages! check again in future
//                     self.get_state_mut().polled_undrained.insert(eport);
//                     return Ok(ReceivedMsg { recipient: eport, msg });
//                 }
//             }

//             let state = self.get_state_mut();

//             state
//                 .poll
//                 .poll(&mut state.events, None)
//                 .map_err(|_| MessengerRecvErr::PollingFailed)?;
//             for e in state.events.iter() {
//                 state.polled_undrained.insert(PortId::from_token(e.token()));
//             }
//         }
//     }
// }

// /////////////////////////////////
// impl Debug for SolutionStorage {
//     fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
//         f.pad("Solutions: [")?;
//         for (subtree_id, &index) in self.subtree_id_to_index.iter() {
//             let sols = &self.subtree_solutions[index];
//             f.write_fmt(format_args!("{:?}: {:?}, ", subtree_id, sols))?;
//         }
//         f.pad("]")
//     }
// }
// impl From<EvalErr> for SyncErr {
//     fn from(e: EvalErr) -> SyncErr {
//         SyncErr::EvalErr(e)
//     }
// }
// impl From<MessengerRecvErr> for SyncErr {
//     fn from(e: MessengerRecvErr) -> SyncErr {
//         SyncErr::MessengerRecvErr(e)
//     }
// }
// impl From<MessengerRecvErr> for ConnectErr {
//     fn from(e: MessengerRecvErr) -> ConnectErr {
//         ConnectErr::MessengerRecvErr(e)
//     }
// }
// impl<T> Default for Arena<T> {
//     fn default() -> Self {
//         Self { storage: vec![] }
//     }
// }
// impl<T> Arena<T> {
//     pub fn alloc(&mut self, t: T) -> PortId {
//         self.storage.push(t);
//         let l: u32 = self.storage.len().try_into().unwrap();
//         PortId::from_raw(l - 1u32)
//     }
//     pub fn get(&self, key: PortId) -> Option<&T> {
//         self.storage.get(key.to_raw() as usize)
//     }
//     pub fn get_mut(&mut self, key: PortId) -> Option<&mut T> {
//         self.storage.get_mut(key.to_raw() as usize)
//     }
//     pub fn type_convert<X>(self, f: impl FnMut((PortId, T)) -> X) -> Arena<X> {
//         Arena { storage: self.keyspace().zip(self.storage.into_iter()).map(f).collect() }
//     }
//     pub fn iter(&self) -> impl Iterator<Item = (PortId, &T)> {
//         self.keyspace().zip(self.storage.iter())
//     }
//     pub fn len(&self) -> usize {
//         self.storage.len()
//     }
//     pub fn keyspace(&self) -> impl Iterator<Item = PortId> {
//         (0u32..self.storage.len().try_into().unwrap()).map(PortId::from_raw)
//     }
// }

// impl ChannelIdStream {
//     fn new(controller_id: ControllerId) -> Self {
//         Self { controller_id, next_channel_index: 0 }
//     }
//     fn next(&mut self) -> ChannelId {
//         self.next_channel_index += 1;
//         ChannelId { controller_id: self.controller_id, channel_index: self.next_channel_index - 1 }
//     }
// }

// impl MessengerState {
//     // does NOT guarantee that events is non-empty
//     fn poll_events(&mut self, deadline: Instant) -> Result<(), PollDeadlineErr> {
//         use PollDeadlineErr::*;
//         self.events.clear();
//         let poll_timeout = deadline.checked_duration_since(Instant::now()).ok_or(Timeout)?;
//         self.poll.poll(&mut self.events, Some(poll_timeout)).map_err(|_| PollingFailed)?;
//         Ok(())
//     }
// }
// impl From<PollDeadlineErr> for ConnectErr {
//     fn from(e: PollDeadlineErr) -> ConnectErr {
//         match e {
//             PollDeadlineErr::Timeout => ConnectErr::Timeout,
//             PollDeadlineErr::PollingFailed => ConnectErr::PollingFailed,
//         }
//     }
// }

// impl std::ops::Not for Polarity {
//     type Output = Self;
//     fn not(self) -> Self::Output {
//         use Polarity::*;
//         match self {
//             Putter => Getter,
//             Getter => Putter,
//         }
//     }
// }

// impl Predicate {
//     // returns true IFF self.unify would return Equivalent OR FormerNotLatter
//     pub fn satisfies(&self, other: &Self) -> bool {
//         let mut s_it = self.assigned.iter();
//         let mut s = if let Some(s) = s_it.next() {
//             s
//         } else {
//             return other.assigned.is_empty();
//         };
//         for (oid, ob) in other.assigned.iter() {
//             while s.0 < oid {
//                 s = if let Some(s) = s_it.next() {
//                     s
//                 } else {
//                     return false;
//                 };
//             }
//             if s.0 > oid || s.1 != ob {
//                 return false;
//             }
//         }
//         true
//     }

//     /// Given self and other, two predicates, return the most general Predicate possible, N
//     /// such that n.satisfies(self) && n.satisfies(other).
//     /// If none exists Nonexistant is returned.
//     /// If the resulting predicate is equivlanet to self, other, or both,
//     /// FormerNotLatter, LatterNotFormer and Equivalent are returned respectively.
//     /// otherwise New(N) is returned.
//     pub fn common_satisfier(&self, other: &Self) -> CommonSatResult {
//         use CommonSatResult::*;
//         // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
//         let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
//         let [mut s, mut o] = [s_it.next(), o_it.next()];
//         // lists of assignments in self but not other and vice versa.
//         let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
//         loop {
//             match [s, o] {
//                 [None, None] => break,
//                 [None, Some(x)] => {
//                     o_not_s.push(x);
//                     o_not_s.extend(o_it);
//                     break;
//                 }
//                 [Some(x), None] => {
//                     s_not_o.push(x);
//                     s_not_o.extend(s_it);
//                     break;
//                 }
//                 [Some((sid, sb)), Some((oid, ob))] => {
//                     if sid < oid {
//                         // o is missing this element
//                         s_not_o.push((sid, sb));
//                         s = s_it.next();
//                     } else if sid > oid {
//                         // s is missing this element
//                         o_not_s.push((oid, ob));
//                         o = o_it.next();
//                     } else if sb != ob {
//                         assert_eq!(sid, oid);
//                         // both predicates assign the variable but differ on the value
//                         return Nonexistant;
//                     } else {
//                         // both predicates assign the variable to the same value
//                         s = s_it.next();
//                         o = o_it.next();
//                     }
//                 }
//             }
//         }
//         // Observed zero inconsistencies. A unified predicate exists...
//         match [s_not_o.is_empty(), o_not_s.is_empty()] {
//             [true, true] => Equivalent,       // ... equivalent to both.
//             [false, true] => FormerNotLatter, // ... equivalent to self.
//             [true, false] => LatterNotFormer, // ... equivalent to other.
//             [false, false] => {
//                 // ... which is the union of the predicates' assignments but
//                 //     is equivalent to neither self nor other.
//                 let mut new = self.clone();
//                 for (&id, &b) in o_not_s {
//                     new.assigned.insert(id, b);
//                 }
//                 New(new)
//             }
//         }
//     }

//     pub fn iter_matching(&self, value: bool) -> impl Iterator<Item = ChannelId> + '_ {
//         self.assigned
//             .iter()
//             .filter_map(move |(&channel_id, &b)| if b == value { Some(channel_id) } else { None })
//     }

//     pub fn batch_assign_nones(
//         &mut self,
//         channel_ids: impl Iterator<Item = ChannelId>,
//         value: bool,
//     ) {
//         for channel_id in channel_ids {
//             self.assigned.entry(channel_id).or_insert(value);
//         }
//     }
//     pub fn replace_assignment(&mut self, channel_id: ChannelId, value: bool) -> Option<bool> {
//         self.assigned.insert(channel_id, value)
//     }
//     pub fn union_with(&self, other: &Self) -> Option<Self> {
//         let mut res = self.clone();
//         for (&channel_id, &assignment_1) in other.assigned.iter() {
//             match res.assigned.insert(channel_id, assignment_1) {
//                 Some(assignment_2) if assignment_1 != assignment_2 => return None,
//                 _ => {}
//             }
//         }
//         Some(res)
//     }
//     pub fn query(&self, x: ChannelId) -> Option<bool> {
//         self.assigned.get(&x).copied()
//     }
//     pub fn new_trivial() -> Self {
//         Self { assigned: Default::default() }
//     }
// }

// #[test]
// fn pred_sat() {
//     use maplit::btreemap;
//     let mut c = ChannelIdStream::new(0);
//     let ch = std::iter::repeat_with(move || c.next()).take(5).collect::<Vec<_>>();
//     let p = Predicate::new_trivial();
//     let p_0t = Predicate { assigned: btreemap! { ch[0] => true } };
//     let p_0f = Predicate { assigned: btreemap! { ch[0] => false } };
//     let p_0f_3f = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => false } };
//     let p_0f_3t = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => true } };

//     assert!(p.satisfies(&p));
//     assert!(p_0t.satisfies(&p_0t));
//     assert!(p_0f.satisfies(&p_0f));
//     assert!(p_0f_3f.satisfies(&p_0f_3f));
//     assert!(p_0f_3t.satisfies(&p_0f_3t));

//     assert!(p_0t.satisfies(&p));
//     assert!(p_0f.satisfies(&p));
//     assert!(p_0f_3f.satisfies(&p_0f));
//     assert!(p_0f_3t.satisfies(&p_0f));

//     assert!(!p.satisfies(&p_0t));
//     assert!(!p.satisfies(&p_0f));
//     assert!(!p_0f.satisfies(&p_0t));
//     assert!(!p_0t.satisfies(&p_0f));
//     assert!(!p_0f_3f.satisfies(&p_0f_3t));
//     assert!(!p_0f_3t.satisfies(&p_0f_3f));
//     assert!(!p_0t.satisfies(&p_0f_3f));
//     assert!(!p_0f.satisfies(&p_0f_3f));
//     assert!(!p_0t.satisfies(&p_0f_3t));
//     assert!(!p_0f.satisfies(&p_0f_3t));
// }

// #[test]
// fn pred_common_sat() {
//     use maplit::btreemap;
//     use CommonSatResult::*;

//     let mut c = ChannelIdStream::new(0);
//     let ch = std::iter::repeat_with(move || c.next()).take(5).collect::<Vec<_>>();
//     let p = Predicate::new_trivial();
//     let p_0t = Predicate { assigned: btreemap! { ch[0] => true } };
//     let p_0f = Predicate { assigned: btreemap! { ch[0] => false } };
//     let p_3f = Predicate { assigned: btreemap! { ch[3] => false } };
//     let p_0f_3f = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => false } };
//     let p_0f_3t = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => true } };

//     assert_eq![p.common_satisfier(&p), Equivalent];
//     assert_eq![p_0t.common_satisfier(&p_0t), Equivalent];

//     assert_eq![p.common_satisfier(&p_0t), LatterNotFormer];
//     assert_eq![p_0t.common_satisfier(&p), FormerNotLatter];

//     assert_eq![p_0t.common_satisfier(&p_0f), Nonexistant];
//     assert_eq![p_0f_3t.common_satisfier(&p_0f_3f), Nonexistant];
//     assert_eq![p_0f_3t.common_satisfier(&p_3f), Nonexistant];
//     assert_eq![p_3f.common_satisfier(&p_0f_3t), Nonexistant];

//     assert_eq![p_0f.common_satisfier(&p_3f), New(p_0f_3f)];
// }