Files @ 48b0400c877f
Branch filter:

Location: CSY/reowolf/src/runtime/experimental/ecs.rs

48b0400c877f 34.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
clearer input output wiring
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
use crate::common::*;
use crate::runtime::endpoint::EndpointExt;
use crate::runtime::ProtocolS;
use std::collections::HashMap;

/// invariant: last element is not zero.
/// => all values out of bounds are implicitly absent.
/// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
#[derive(Debug, Default)]
struct BitSet(Vec<u32>);
impl BitSet {
    fn as_slice(&self) -> &[u32] {
        self.0.as_slice()
    }
    fn iter(&self) -> impl Iterator<Item = u32> + '_ {
        self.0.iter().copied()
    }
    fn is_empty(&self) -> bool {
        // relies on the invariant: no trailing zero u32's
        self.0.is_empty()
    }
    fn clear(&mut self) {
        self.0.clear();
    }
    fn set_ones_until(&mut self, mut end: usize) {
        self.0.clear();
        loop {
            if end >= 32 {
                // full 32 bits of 1
                self.0.push(!0u32);
            } else {
                if end > 0 {
                    // #end ones, with a (32-end) prefix of zeroes
                    self.0.push(!0u32 >> (32 - end));
                }
                return;
            }
        }
    }
    #[inline(always)]
    fn index_decomposed(index: usize) -> [usize; 2] {
        // [chunk_index, chunk_bit]
        [index / 32, index % 32]
    }
    fn test(&self, at: usize) -> bool {
        let [chunk_index, chunk_bit] = Self::index_decomposed(at);
        match self.0.get(chunk_index) {
            None => false,
            Some(&chunk) => (chunk & (1 << chunk_bit)) != 0,
        }
    }
    fn set(&mut self, at: usize) {
        let [chunk_index, chunk_bit] = Self::index_decomposed(at);
        if chunk_index >= self.0.len() {
            self.0.resize(chunk_index + 1, 0u32);
        }
        let chunk = unsafe {
            // SAFE! previous line ensures sufficient size
            self.0.get_unchecked_mut(chunk_index)
        };
        *chunk |= 1 << chunk_bit;
    }
    fn unset(&mut self, at: usize) {
        let [chunk_index, chunk_bit] = Self::index_decomposed(at);
        if chunk_index < self.0.len() {
            let chunk = unsafe {
                // SAFE! previous line ensures sufficient size
                self.0.get_unchecked_mut(chunk_index)
            };
            *chunk &= !(1 << chunk_bit);
            while let Some(0u32) = self.0.iter().copied().last() {
                self.0.pop();
            }
        }
    }
}

/// Converts an iterator over contiguous u32 chunks into an iterator over usize
/// e.g. input [0b111000, 0b11] gives output [3, 4, 5, 32, 33]
/// observe that the bits per chunk are ordered from least to most significant bits, yielding smaller to larger usizes.
/// works by draining the inner u32 chunk iterator one u32 at a time, then draining that chunk until its 0.
struct BitChunkIter<I: Iterator<Item = u32>> {
    chunk_iter: I,
    next_bit_index: usize,
    cached: u32,
}

impl<I: Iterator<Item = u32>> BitChunkIter<I> {
    fn new(chunk_iter: I) -> Self {
        // first chunk is always a dummy zero, as if chunk_iter yielded Some(0).
        // Consequences:
        // 1. our next_bit_index is always off by 32 (we correct for it in Self::next) (no additional overhead)
        // 2. we cache u32 and not Option<u32>, because chunk_iter.next() is only called in Self::next.
        Self { chunk_iter, next_bit_index: 0, cached: 0 }
    }
}
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
    type Item = usize;
    fn next(&mut self) -> Option<Self::Item> {
        let mut chunk = self.cached;

        // loop until either:
        // 1. there are no more Items to return, or
        // 2. chunk encodes 1+ Items, one of which we will return.
        while chunk == 0 {
            // chunk is still empty! get the next one...
            chunk = self.chunk_iter.next()?;

            // ... and jump self.next_bit_index to the next multiple of 32.
            self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
        }
        // assert(chunk > 0);

        // Shift the contents of chunk until the least significant bit is 1.
        // ... being sure to increment next_bit_index accordingly.
        #[inline(always)]
        fn skip_n_zeroes(chunk: &mut u32, n: usize, next_bit_index: &mut usize) {
            if *chunk & ((1 << n) - 1) == 0 {
                // n least significant bits are zero. skip n bits.
                *next_bit_index += n;
                *chunk >>= n;
            }
        }
        skip_n_zeroes(&mut chunk, 16, &mut self.next_bit_index);
        skip_n_zeroes(&mut chunk, 08, &mut self.next_bit_index);
        skip_n_zeroes(&mut chunk, 04, &mut self.next_bit_index);
        skip_n_zeroes(&mut chunk, 02, &mut self.next_bit_index);
        skip_n_zeroes(&mut chunk, 01, &mut self.next_bit_index);
        // least significant bit of chunk is 1.
        // assert(chunk & 1 == 1)

        // prepare our state for the next time Self::next is called.
        // Overwrite self.cached such that its shifted state is retained,
        // and jump over the bit whose index we are about to return.
        self.next_bit_index += 1;
        self.cached = chunk >> 1;

        // returned index is 32 smaller than self.next_bit_index because we use an
        // off-by-32 encoding to avoid having to cache an Option<u32>.
        Some(self.next_bit_index - 1 - 32)
    }
}

/// Returns an iterator over chunks of bits where ALL of the given
/// bitsets have 1.
struct AndChunkIter<'a> {
    // this value is not overwritten during iteration
    // invariant: !sets.is_empty()
    sets: &'a [&'a [u32]],

    next_chunk_index: usize,
}
impl<'a> AndChunkIter<'a> {
    fn new(sets: &'a [&'a [u32]]) -> Self {
        let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
        Self { sets, next_chunk_index: 0 }
    }
}
impl Iterator for AndChunkIter<'_> {
    type Item = u32;
    fn next(&mut self) -> Option<u32> {
        let old_chunk_index = self.next_chunk_index;
        self.next_chunk_index += 1;
        self.sets.iter().fold(Some(!0u32), move |a, b| {
            let a = a?;
            let b = *b.get(old_chunk_index)?;
            Some(a & b)
        })
    }
}

#[test]
fn test_bit_iter() {
    static SETS: &[&[u32]] = &[
        //
        &[0b101001, 0b101001],
        &[0b100001, 0b101001],
    ];
    let iter = BitChunkIter::new(AndChunkIter::new(SETS));
    let indices = iter.collect::<Vec<_>>();
    println!("indices {:?}", indices);
}

enum Entity {
    Payload(Payload),
    Machine { state: ProtocolS, component_index: usize },
}

struct PortKey(usize);
struct EntiKey(usize);
struct CompKey(usize);

struct ComponentInfo {
    port_keyset: HashSet<PortKey>,
    protocol: Arc<Protocol>,
}
#[derive(Default)]
struct Connection {
    ecs: Ecs,
    round_solution: Vec<(ChannelId, bool)>, // encodes an ASSIGNMENT
    ekey_channel_ids: Vec<ChannelId>,       // all channel Ids for local keys
    component_info: Vec<ComponentInfo>,
    endpoint_exts: Vec<EndpointExt>,
}

/// Invariant: every component is either:
///        in to_run = (to_run_r U to_run_w)
///     or in ONE of the ekeys (which means it is blocked by a get on that ekey)
///     or in sync_ended (because they reached the end of their sync block)
///     or in inconsistent (because they are inconsistent)
#[derive(Default)]
struct Ecs {
    entities: Vec<Entity>, // machines + payloads
    assignments: HashMap<(ChannelId, bool), BitSet>,
    payloads: BitSet,
    ekeys: HashMap<usize, BitSet>,
    inconsistent: BitSet,
    sync_ended: BitSet,
    to_run_r: BitSet, // read from and drained while...
    to_run_w: BitSet, // .. written to and populated. }
}
impl Debug for Ecs {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        let elen = self.entities.len();

        write!(f, "{:<30}", "payloads")?;
        print_flag_bits(f, &self.payloads, elen)?;

        write!(f, "{:<30}", "inconsistent")?;
        print_flag_bits(f, &self.inconsistent, elen)?;
        write!(f, "{:<30}", "sync_ended")?;
        print_flag_bits(f, &self.sync_ended, elen)?;
        write!(f, "{:<30}", "to_run_r")?;
        print_flag_bits(f, &self.to_run_r, elen)?;
        write!(f, "{:<30}", "to_run_w")?;
        print_flag_bits(f, &self.to_run_w, elen)?;

        for (assignment, bitset) in self.assignments.iter() {
            write!(f, "{:<30?}", assignment)?;
            print_flag_bits(f, bitset, elen)?;
        }
        for (ekey, bitset) in self.ekeys.iter() {
            write!(f, "Ekey {:<30?}", ekey)?;
            print_flag_bits(f, bitset, elen)?;
        }
        Ok(())
    }
}
fn print_flag_bits(f: &mut Formatter, bitset: &BitSet, elen: usize) -> std::fmt::Result {
    for i in 0..elen {
        f.pad(match bitset.test(i) {
            true => "1",
            false => "0",
        })?;
    }
    write!(f, "\n")
}

struct Protocol {
    // TODO
}

struct Msg {
    assignments: Vec<(ChannelId, bool)>, // invariant: no two elements have same ChannelId value
    payload: Payload,
}

impl Connection {
    fn new_channel(&mut self) -> [PortKey; 2] {
        todo!()
    }
    fn round(&mut self) {
        // 1. at the start of the round we throw away all assignments.
        //    we are going to shift entities around, so all bitsets need to be cleared anyway.
        self.ecs.assignments.clear();
        self.ecs.payloads.clear();
        self.ecs.ekeys.clear();
        self.ecs.inconsistent.clear();
        self.ecs.to_run_r.clear();
        self.ecs.to_run_w.clear();
        self.ecs.sync_ended.clear();

        // 2. We discard all payloads; they are all stale now.
        //    All machines are contiguous in the vector
        self.ecs
            .entities
            .retain(move |entity| if let Entity::Machine { .. } = entity { true } else { false });

        // 3. initially, all the components need a chance to run in MONO mode
        self.ecs.to_run_r.set_ones_until(self.ecs.entities.len());

        // 4. INVARIANT established:
        //    for all State variants in self.entities,
        //        exactly one bit throughout the fields of csb is set.

        // 5. Run all machines in (csb.to_run_r U csb.to_run_w).
        //    Single, logical set is broken into readable / writable parts to allow concurrent reads / writes safely.
        while !self.ecs.to_run_r.is_empty() {
            for _eid in self.ecs.to_run_r.iter() {
                // TODO run and possbibly manipulate self.to_run_w
            }
            self.ecs.to_run_r.clear();
            std::mem::swap(&mut self.ecs.to_run_r, &mut self.ecs.to_run_w);
        }
        assert!(self.ecs.to_run_w.is_empty());

        #[allow(unreachable_code)] // DEBUG
        'recv_loop: loop {
            let ekey: usize = todo!();
            let msg: Msg = todo!();
            // 1. check if this message is redundant, i.e., there is already an equivalent payload with predicate >= this one.
            //    ie. starting from all payloads

            // 2. try and find a payload whose predicate is the same or more general than this one
            //    if it exists, drop the message; it is uninteresting.
            let ekey_bitset = self.ecs.ekeys.get(&ekey);
            if let Some(_eid) = ekey_bitset.map(move |ekey_bitset| {
                let mut slice_builder = vec![];
                // collect CONFLICTING assignments into slice_builder
                for &(channel_id, boolean) in msg.assignments.iter() {
                    if let Some(bitset) = self.ecs.assignments.get(&(channel_id, !boolean)) {
                        slice_builder.push(bitset.as_slice());
                    }
                }
                let chunk_iter =
                    InNoneExceptIter::new(slice_builder.as_slice(), ekey_bitset.as_slice());
                BitChunkIter::new(chunk_iter).next()
            }) {
                // _eid is a payload whose predicate is at least as general
                // drop this message!
                continue 'recv_loop;
            }

            // 3. insert this payload as an entity, overwriting an existing LESS GENERAL payload if it exists.
            let payload_eid: usize = if let Some(eid) = ekey_bitset.and_then(move |ekey_bitset| {
                let mut slice_builder = vec![];
                slice_builder.push(ekey_bitset.as_slice());
                for assignment in msg.assignments.iter() {
                    if let Some(bitset) = self.ecs.assignments.get(assignment) {
                        slice_builder.push(bitset.as_slice());
                    }
                }
                let chunk_iter = AndChunkIter::new(slice_builder.as_slice());
                BitChunkIter::new(chunk_iter).next()
            }) {
                // overwrite this entity index.
                eid
            } else {
                // nothing to overwrite. add a new payload entity.
                let eid = self.ecs.entities.len();
                self.ecs.entities.push(Entity::Payload(msg.payload));
                for &assignment in msg.assignments.iter() {
                    let mut bitset = self.ecs.assignments.entry(assignment).or_default();
                    bitset.set(eid);
                }
                self.ecs.payloads.set(eid);
                eid
            };

            self.feed_msg(payload_eid, ekey);
            // TODO run all in self.ecs.to_run_w
        }
    }

    fn run_poly_p(&mut self, machine_eid: usize) {
        match self.ecs.entities.get_mut(machine_eid) {
            Some(Entity::Machine { component_index, state }) => {
                // TODO run the machine
                use PolyBlocker as Pb;
                let blocker: Pb = todo!();
                match blocker {
                    Pb::Inconsistent => self.ecs.inconsistent.set(machine_eid),
                    Pb::CouldntCheckFiring(key) => {
                        // 1. clone the machine
                        let state_true = state.clone();
                        let machine_eid_true = self.ecs.entities.len();
                        self.ecs.entities.push(Entity::Machine {
                            state: state_true,
                            component_index: *component_index,
                        });
                        // 2. copy the assignments of the existing machine to the new one
                        for bitset in self.ecs.assignments.values() {
                            if bitset.test(machine_eid) {
                                bitset.set(machine_eid_true);
                            }
                        }
                        // 3. give the old machine FALSE and the new machine TRUE
                        let channel_id =
                            self.endpoint_exts.get(key.to_raw() as usize).unwrap().info.channel_id;
                        self.ecs
                            .assignments
                            .entry((channel_id, false))
                            .or_default()
                            .set(machine_eid);
                        self.ecs
                            .assignments
                            .entry((channel_id, true))
                            .or_default()
                            .set(machine_eid_true);
                        self.run_poly_p(machine_eid);
                        self.run_poly_p(machine_eid_true);
                    }
                    _ => todo!(),
                }

                // 1. make the assignment of this machine concrete WRT its ports
                let component_info = self.component_info.get(*component_index).unwrap();
                for &ekey in component_info.port_keyset.iter() {
                    let channel_id = self.endpoint_exts.get(ekey.0).unwrap().info.channel_id;
                    let test = self
                        .ecs
                        .assignments
                        .get(&(channel_id, true))
                        .map(move |bitset| bitset.test(machine_eid))
                        .unwrap_or(false);
                    if !test {
                        // TRUE assignment wasn't set
                        // so set FALSE assignment (no effect if already set)
                        self.ecs
                            .assignments
                            .entry((channel_id, false))
                            .or_default()
                            .set(machine_eid);
                    }
                }
                // 2. this machine becomes solved
                self.ecs.sync_ended.set(machine_eid);
                self.generate_new_solutions(machine_eid);
                // TODO run this machine to a poly blocker
                // potentially mark as inconsistent, blocked on some key, or solved
                // if solved
            }
            _ => unreachable!(),
        }
    }

    fn generate_new_solutions(&mut self, newly_solved_machine_eid: usize) {
        // this vector will be used to store assignments from self.ekey_channel_ids to elements in {true, false}
        let mut solution_prefix = vec![];
        self.generate_new_solutions_rec(newly_solved_machine_eid, &mut solution_prefix);
        // let all_channel_ids =
        // let mut slice_builder = vec![];
    }
    fn generate_new_solutions_rec(
        &mut self,
        newly_solved_machine_eid: usize,
        solution_prefix: &mut Vec<bool>,
    ) {
        let eid = newly_solved_machine_eid;
        let n = solution_prefix.len();
        if let Some(&channel_id) = self.ekey_channel_ids.get(n) {
            if let Some(assignment) = self.machine_assignment_for(eid, channel_id) {
                // this machine already gives an assignment
                solution_prefix.push(assignment);
                self.generate_new_solutions_rec(eid, solution_prefix);
                solution_prefix.pop();
            } else {
                // this machine does not give an assignment. try both branches!
                solution_prefix.push(false);
                self.generate_new_solutions_rec(eid, solution_prefix);
                solution_prefix.pop();
                solution_prefix.push(true);
                self.generate_new_solutions_rec(eid, solution_prefix);
                solution_prefix.pop();
            }
        } else {
            println!("SOLUTION:");
            for (channel_id, assignment) in self.ekey_channel_ids.iter().zip(solution_prefix.iter())
            {
                println!("{:?} => {:?}", channel_id, assignment);
            }
            // SOLUTION COMPLETE!
            return;
        }
    }

    fn machine_assignment_for(&self, machine_eid: usize, channel_id: ChannelId) -> Option<bool> {
        let test = move |bitset: &BitSet| bitset.test(machine_eid);
        self.ecs
            .assignments
            .get(&(channel_id, true))
            .map(test)
            .or_else(move || self.ecs.assignments.get(&(channel_id, false)).map(test))
    }

    fn feed_msg(&mut self, payload_eid: usize, ekey: usize) {
        // 1. identify the component who:
        //    * is blocked on this ekey,
        //    * and has a predicate at least as strict as that of this payload
        let mut slice_builder = vec![];
        let ekey_bitset =
            self.ecs.ekeys.get_mut(&ekey).expect("Payload sets this => cannot be empty");
        slice_builder.push(ekey_bitset.as_slice());
        for bitset in self.ecs.assignments.values() {
            // it doesn't matter which assignment! just that this payload sets it too
            if bitset.test(payload_eid) {
                slice_builder.push(bitset.as_slice());
            }
        }
        let chunk_iter =
            InAllExceptIter::new(slice_builder.as_slice(), self.ecs.payloads.as_slice());
        let mut iter = BitChunkIter::new(chunk_iter);
        if let Some(machine_eid) = iter.next() {
            // TODO is it possible for there to be 2+ iterations? I'm thinking No
            // RUN THIS MACHINE
            ekey_bitset.unset(machine_eid);
            self.ecs.to_run_w.set(machine_eid);
        }
    }
}

struct InAllExceptIter<'a> {
    next_chunk_index: usize,
    in_all: &'a [&'a [u32]],
    except: &'a [u32],
}
impl<'a> InAllExceptIter<'a> {
    fn new(in_all: &'a [&'a [u32]], except: &'a [u32]) -> Self {
        Self { in_all, except, next_chunk_index: 0 }
    }
}
impl<'a> Iterator for InAllExceptIter<'a> {
    type Item = u32;
    fn next(&mut self) -> Option<Self::Item> {
        let i = self.next_chunk_index;
        self.next_chunk_index += 1;
        let init = self.except.get(i).map(move |&x| !x).or(Some(1));
        self.in_all.iter().fold(init, move |folding, slice| {
            let a = folding?;
            let b = slice.get(i).copied().unwrap_or(0);
            Some(a & !b)
        })
    }
}

struct InNoneExceptIter<'a> {
    next_chunk_index: usize,
    in_none: &'a [&'a [u32]],
    except: &'a [u32],
}
impl<'a> InNoneExceptIter<'a> {
    fn new(in_none: &'a [&'a [u32]], except: &'a [u32]) -> Self {
        Self { in_none, except, next_chunk_index: 0 }
    }
}
impl<'a> Iterator for InNoneExceptIter<'a> {
    type Item = u32;
    fn next(&mut self) -> Option<Self::Item> {
        let i = self.next_chunk_index;
        self.next_chunk_index += 1;
        let init = self.except.get(i).copied()?;
        Some(self.in_none.iter().fold(init, move |folding, slice| {
            let a = folding;
            let b = slice.get(i).copied().unwrap_or(0);
            a & !b
        }))
    }
}

/*
The idea is we have a set of component machines that fork whenever they reflect on the oracle to make concrete their predicates.
their speculative execution procedure BLOCKS whenever they reflect on the contents of a message that has not yet arrived.
the promise is, therefore, never to forget about these blocked machines.
the only event that unblocks a machine

operations needed:
1. FORK
given a component and a predicate,
create and retain a clone of the component, and the predicate, with one additional assignment

2. GET
when running a machine with {state S, predicate P}, it may try to get a message at K.
IF there exists a payload at K with predicate P2 s.t. P2 >= P, feed S the message and continue.
ELSE list (S,P,K) as BLOCKED and...
for all payloads X at K with predicate P2 s.t. P2 < P, fork S to create S2. store it with predicate P2 and feed it X and continue

2. RECV
when receiving a payload at key K with predicate P,
IF there exists a payload at K with predicate P2 where P2 >= P, discard the new one and continue.
ELSE if there exists a payload at K with predicate P2 where P2 < P, assert their contents are identical, overwrite P2 with P try feed this payload to any BLOCKED machines
ELSE insert this payload with P and K as a new payload, and feed it to any compatible machines blocked on K



====================
EXTREME approach:
1. entities: {states} U {payloads}
2. ecs: {}

==================
*/

impl Debug for FlagMatrix {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        for r in 0..self.dims[0] {
            write!(f, "|")?;
            for c in 0..self.dims[1] {
                write!(
                    f,
                    "{}",
                    match self.test([r, c]) {
                        false => '0',
                        true => '1',
                    }
                )?;
            }
            write!(f, "|\n")?;
        }
        Ok(())
    }
}

// invariant: all bits outside of 0..columns and 0..rows BUT in the allocated space are ZERO
struct FlagMatrix {
    bytes: *mut u32,
    u32s_total: usize,
    u32s_per_row: usize,
    dims: [usize; 2],
}
#[inline(always)]
fn ceiling_to_mul_32(value: usize) -> usize {
    (value + 31) & !31
}
impl Drop for FlagMatrix {
    fn drop(&mut self) {
        let layout = Self::layout_for(self.u32s_total);
        unsafe {
            // ?
            std::alloc::dealloc(self.bytes as *mut u8, layout);
        }
    }
}
impl FlagMatrix {
    fn get_dims(&self) -> &[usize; 2] {
        &self.dims
    }

    fn set_entire_row(&mut self, row: usize) {
        assert!(row < self.dims[0]);
        let mut cols_left = self.dims[1];
        unsafe {
            let mut ptr = self.bytes.add(self.offset_of_chunk_unchecked([row, 0]));
            while cols_left >= 32 {
                *ptr = !0u32;
                cols_left -= 32;
                ptr = ptr.add(1);
            }
            if cols_left > 0 {
                // jagged chunk!
                *ptr |= (!0) >> (32 - cols_left);
            }
        }
    }
    fn unset_entire_row(&mut self, row: usize) {
        assert!(row < self.dims[0]);
        let mut cols_left = self.dims[1];
        unsafe {
            let mut ptr = self.bytes.add(self.offset_of_chunk_unchecked([row, 0]));
            while cols_left > 0 {
                *ptr = 0u32;
                cols_left -= 32;
                ptr = ptr.add(1);
            }
        }
    }

    fn reshape(&mut self, new_dims: [usize; 2]) {
        dbg!(self.u32s_total, self.u32s_per_row);

        // 1. calc new u32s_per_row
        let new_u32s_per_row = match ceiling_to_mul_32(new_dims[1]) / 32 {
            min if min > self.u32s_per_row => Some(min * 2),
            _ => None,
        };

        // 2. calc new u32s_total
        let new_u32s_total = match new_u32s_per_row.unwrap_or(self.u32s_per_row) * new_dims[0] {
            min if min > self.u32s_total => Some(min * 2),
            _ => None,
        };

        // 3. set any bits no longer in columns to zero
        let new_last_chunk_zero_prefix = new_dims[1] % 32;
        if new_dims[1] < self.dims[1] {
            let old_min_u32_per_row = ceiling_to_mul_32(new_dims[1]) / 32;
            let new_min_u32_per_row = ceiling_to_mul_32(self.dims[1]) / 32;
            let common_rows = self.dims[0].min(new_dims[0]);
            if old_min_u32_per_row < new_min_u32_per_row {
                // zero chunks made entirely of removed columns
                for row in 0..common_rows {
                    unsafe {
                        self.bytes
                            .add(self.offset_of_chunk_unchecked([row, old_min_u32_per_row]))
                            .write_bytes(0u8, new_min_u32_per_row - old_min_u32_per_row);
                    }
                }
            }
            if new_last_chunk_zero_prefix > 0 {
                // wipe out new_last_chunk_zero_prefix-most significant bits of all new last column chunks
                let mask: u32 = !0u32 >> new_last_chunk_zero_prefix;
                for row in 0..common_rows {
                    let o_of = self.offset_of_chunk_unchecked([row, new_min_u32_per_row - 1]);
                    unsafe { *self.bytes.add(o_of) &= mask };
                }
            }
        }

        // 4. if we won't do a new allocation, zero any bit no longer in rows
        if new_dims[0] < self.dims[0] && new_u32s_total.is_none() {
            // zero all bytes from beginning of first removed row,
            // to end of last removed row
            unsafe {
                self.bytes
                    .add(self.offset_of_chunk_unchecked([new_dims[0], 0]))
                    .write_bytes(0u8, self.u32s_per_row * (self.dims[0] - new_dims[0]));
            }
        }

        dbg!(new_u32s_per_row, new_u32s_total);
        match [new_u32s_per_row, new_u32s_total] {
            [None, None] => { /* do nothing */ }
            [None, Some(new_u32s_total)] => {
                // realloc only! column alignment is still OK
                // assert!(new_u32s_total > self.u32s_total);
                let old_layout = Self::layout_for(self.u32s_total);
                let new_layout = Self::layout_for(new_u32s_total);
                let new_bytes = unsafe {
                    let new_bytes = std::alloc::alloc(new_layout) as *mut u32;
                    // copy the previous total
                    self.bytes.copy_to_nonoverlapping(new_bytes, self.u32s_total);
                    // and zero the remainder
                    new_bytes
                        .add(self.u32s_total)
                        .write_bytes(0u8, new_u32s_total - self.u32s_total);
                    // drop the previous buffer
                    std::alloc::dealloc(self.bytes as *mut u8, old_layout);
                    new_bytes
                };
                self.bytes = new_bytes;
                println!("AFTER {:?}", self.bytes);
                self.u32s_total = new_u32s_total;
            }
            [Some(new_u32s_per_row), None] => {
                // shift only!
                // assert!(new_u32s_per_row > self.u32s_per_row);
                for r in (0..self.dims[0]).rev() {
                    // iterate in REVERSE order because new row[n] may overwrite old row[n+m]
                    unsafe {
                        let src = self.bytes.add(r * self.u32s_per_row);
                        let dest = self.bytes.add(r * new_u32s_per_row);
                        // copy the used prefix
                        src.copy_to(dest, self.u32s_per_row);
                        // and zero the remainder
                        dest.add(self.u32s_per_row)
                            .write_bytes(0u8, new_u32s_per_row - self.u32s_per_row);
                    }
                }
                self.u32s_per_row = new_u32s_per_row;
            }
            [Some(new_u32s_per_row), Some(new_u32s_total)] => {
                // alloc AND shift!
                // assert!(new_u32s_total > self.u32s_total);
                // assert!(new_u32s_per_row > self.u32s_per_row);
                let old_layout = Self::layout_for(self.u32s_total);
                let new_layout = Self::layout_for(new_u32s_total);
                let new_bytes = unsafe { std::alloc::alloc(new_layout) as *mut u32 };
                for r in 0..self.dims[0] {
                    // iterate forwards over rows!
                    unsafe {
                        let src = self.bytes.add(r * self.u32s_per_row);
                        let dest = new_bytes.add(r * new_u32s_per_row);
                        // copy the used prefix
                        src.copy_to_nonoverlapping(dest, self.u32s_per_row);
                        // and zero the remainder
                        dest.add(self.u32s_per_row)
                            .write_bytes(0u8, new_u32s_per_row - self.u32s_per_row);
                    }
                }
                let fresh_rows_at = self.dims[0] * new_u32s_per_row;
                unsafe {
                    new_bytes.add(fresh_rows_at).write_bytes(0u8, new_u32s_total - fresh_rows_at);
                }
                unsafe { std::alloc::dealloc(self.bytes as *mut u8, old_layout) };
                self.u32s_per_row = new_u32s_per_row;
                self.bytes = new_bytes;
                self.u32s_total = new_u32s_total;
            }
        }
        self.dims = new_dims;
    }

    fn layout_for(u32s_total: usize) -> std::alloc::Layout {
        unsafe {
            // this layout is ALWAYS valid:
            // 1. size is always nonzero
            // 2. size is always a multiple of 4 and 4-aligned
            std::alloc::Layout::from_size_align_unchecked(4 * u32s_total.max(1), 4)
        }
    }
    fn new(dims: [usize; 2], extra_dim_space: [usize; 2]) -> Self {
        let u32s_per_row = ceiling_to_mul_32(dims[1] + extra_dim_space[1]) / 32;
        let u32s_total = u32s_per_row * (dims[0] + extra_dim_space[0]);
        let layout = Self::layout_for(u32s_total);
        let bytes = unsafe {
            // allocate
            let bytes = std::alloc::alloc(layout) as *mut u32;
            // and zero
            bytes.write_bytes(0u8, u32s_total);
            bytes
        };
        Self { bytes, u32s_total, u32s_per_row, dims }
    }
    fn assert_within_bounds(&self, at: [usize; 2]) {
        assert!(at[0] < self.dims[0]);
        assert!(at[1] < self.dims[1]);
    }
    #[inline(always)]
    fn offset_of_chunk_unchecked(&self, at: [usize; 2]) -> usize {
        (self.u32s_per_row * at[0]) + at[1] / 32
    }
    #[inline(always)]
    fn offsets_unchecked(&self, at: [usize; 2]) -> [usize; 2] {
        let of_chunk = self.offset_of_chunk_unchecked(at);
        let in_chunk = at[1] % 32;
        [of_chunk, in_chunk]
    }
    fn set(&mut self, at: [usize; 2]) {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.bytes.add(o_of) |= 1 << o_in };
    }
    fn unset(&mut self, at: [usize; 2]) {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.bytes.add(o_of) &= !(1 << o_in) };
    }
    fn test(&self, at: [usize; 2]) -> bool {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.bytes.add(o_of) & (1 << o_in) != 0 }
    }
    unsafe fn copy_chunk_unchecked(&self, row: usize, col_chunk_index: usize) -> u32 {
        let o_of = (self.u32s_per_row * row) + col_chunk_index;
        *self.bytes.add(o_of)
    }

    /// return an efficient interator over column indices c in the range 0..self.dims[1]
    /// where self.test([t_row, c]) && f_rows.iter().all(|&f_row| !self.test([f_row, c]))
    fn col_iter_t1fn<'a, 'b: 'a>(
        &'a self,
        t_row: usize,
        f_rows: &'b [usize],
    ) -> impl Iterator<Item = usize> + 'a {
        // 1. ensure all ROWS indices are in range.
        assert!(t_row < self.dims[0]);
        for &f_row in f_rows.iter() {
            assert!(f_row < self.dims[0]);
        }

        // 2. construct an unsafe iterator over chunks
        // column_chunk_range ensures all col_chunk_index values are in range.
        let column_chunk_range = 0..ceiling_to_mul_32(self.dims[1]) / 32;
        let chunk_iter = column_chunk_range.map(move |col_chunk_index| {
            // SAFETY: all rows and columns have already been bounds-checked.
            let t_chunk = unsafe { self.copy_chunk_unchecked(t_row, col_chunk_index) };
            f_rows.iter().fold(t_chunk, |chunk, &f_row| {
                let f_chunk = unsafe { self.copy_chunk_unchecked(f_row, col_chunk_index) };
                chunk & !f_chunk
            })
        });

        // 3. yield columns indices from the chunk iterator
        BitChunkIter::new(chunk_iter)
    }
}

// trait RwMatrixBits {
//     fn set(&mut self, at: [usize;2]);
//     fn unset(&mut self, at: [usize;2]);
//     fn set_entire_row(&mut self, row: usize);
//     fn unset_entire_row(&mut self, row: usize);
// }

// struct MatrixRefW<'a> {
//     _inner: usize,
// }
// impl<'a> MatrixRefW<'a> {

// }

#[test]
fn matrix() {
    let mut m = FlagMatrix::new([6, 6], [0, 0]);
    for i in 0..5 {
        m.set([0, i]);
        m.set([i, i]);
    }
    m.set_entire_row(5);
    println!("{:?}", &m);
    m.reshape([6, 40]);
    let iter = m.col_iter_t1fn(0, &[1, 2, 3]);
    for c in iter {
        println!("{:?}", c);
    }
    println!("{:?}", &m);
}