Files @ 48b0400c877f
Branch filter:

Location: CSY/reowolf/src/runtime/setup2.rs

48b0400c877f 17.9 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
clearer input output wiring
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use crate::common::*;
use crate::runtime::*;

struct LogicalChannelInfo {
    local_port: PortId,
    peer_port: PortId,
    local_polarity: Polarity,
    endpoint_index: usize,
}
///////////////
impl Connector {
    pub fn new_simple(
        proto_description: Arc<ProtocolDescription>,
        controller_id: ControllerId,
    ) -> Self {
        let logger = Box::new(StringLogger::new(controller_id));
        let surplus_sockets = 8;
        Self::new(logger, proto_description, controller_id, surplus_sockets)
    }
    pub fn new(
        logger: Box<dyn Logger>,
        proto_description: Arc<ProtocolDescription>,
        controller_id: ControllerId,
        surplus_sockets: u16,
    ) -> Self {
        Self {
            logger,
            proto_description,
            id_manager: IdManager::new(controller_id),
            native_ports: Default::default(),
            proto_components: Default::default(),
            outp_to_inp: Default::default(),
            inp_to_route: Default::default(),
            phased: ConnectorPhased::Setup { endpoint_setups: Default::default(), surplus_sockets },
        }
    }
    pub fn add_port_pair(&mut self) -> [PortId; 2] {
        let o = self.id_manager.next_port();
        let i = self.id_manager.next_port();
        self.outp_to_inp.insert(o, i);
        self.inp_to_route.insert(i, InpRoute::NativeComponent);
        self.native_ports.insert(o);
        self.native_ports.insert(i);
        log!(self.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
        [o, i]
    }
    pub fn add_net_port(&mut self, endpoint_setup: EndpointSetup) -> Result<PortId, ()> {
        match &mut self.phased {
            ConnectorPhased::Setup { endpoint_setups, .. } => {
                let p = self.id_manager.next_port();
                self.native_ports.insert(p);
                if endpoint_setup.polarity == Getter {
                    self.inp_to_route.insert(p, InpRoute::NativeComponent);
                }
                log!(self.logger, "Added net port {:?} with info {:?} ", p, &endpoint_setup);
                endpoint_setups.push((p, endpoint_setup));
                Ok(p)
            }
            ConnectorPhased::Communication { .. } => Err(()),
        }
    }
    fn check_polarity(&self, port: &PortId) -> Polarity {
        if let ConnectorPhased::Setup { endpoint_setups, .. } = &self.phased {
            for (setup_port, EndpointSetup { polarity, .. }) in endpoint_setups.iter() {
                if setup_port == port {
                    // special case. this port's polarity isn't reflected by
                    // self.inp_to_route or self.outp_to_inp, because its still not paired to a peer
                    return *polarity;
                }
            }
        }
        if self.outp_to_inp.contains_key(port) {
            Polarity::Putter
        } else {
            assert!(self.inp_to_route.contains_key(port));
            Polarity::Getter
        }
    }
    pub fn add_component(
        &mut self,
        identifier: &[u8],
        ports: &[PortId],
    ) -> Result<(), AddComponentError> {
        use AddComponentError::*;
        let polarities = self.proto_description.component_polarities(identifier)?;
        if polarities.len() != ports.len() {
            return Err(WrongNumberOfParamaters { expected: polarities.len() });
        }
        for (&expected_polarity, port) in polarities.iter().zip(ports.iter()) {
            if !self.native_ports.contains(port) {
                return Err(UnknownPort(*port));
            }
            if expected_polarity != self.check_polarity(port) {
                return Err(WrongPortPolarity { port: *port, expected_polarity });
            }
        }
        // ok!
        let state = self.proto_description.new_main_component(identifier, ports);
        let proto_component = ProtoComponent { ports: ports.iter().copied().collect(), state };
        let proto_component_index = self.proto_components.len();
        self.proto_components.push(proto_component);
        for port in ports.iter() {
            if let Polarity::Getter = self.check_polarity(port) {
                self.inp_to_route
                    .insert(*port, InpRoute::ProtoComponent { index: proto_component_index });
            }
        }
        Ok(())
    }
    pub fn connect(&mut self, timeout: Duration) -> Result<(), ()> {
        match &mut self.phased {
            ConnectorPhased::Communication { .. } => {
                log!(self.logger, "Call to connecting in connected state");
                Err(())
            }
            ConnectorPhased::Setup { endpoint_setups, .. } => {
                log!(self.logger, "Call to connecting in setup state. Timeout {:?}", timeout);
                let deadline = Instant::now() + timeout;
                // connect all endpoints in parallel; send and receive peer ids through ports
                let mut endpoint_manager = {
                    let Self { outp_to_inp, inp_to_route, logger, .. } = self;
                    let logical_channel_callback = |lci: LogicalChannelInfo| {
                        if let Putter = lci.local_polarity {
                            outp_to_inp.insert(lci.local_port, lci.peer_port);
                            inp_to_route.insert(
                                lci.peer_port,
                                InpRoute::Endpoint { index: lci.endpoint_index },
                            );
                        }
                    };
                    new_endpoint_manager(
                        &mut **logger,
                        endpoint_setups,
                        logical_channel_callback,
                        deadline,
                    )?
                };
                log!(
                    self.logger,
                    "Successfully connected {} endpoints",
                    endpoint_manager.endpoint_exts.len()
                );
                // leader election and tree construction
                let neighborhood = init_neighborhood(
                    self.id_manager.controller_id,
                    &mut *self.logger,
                    &mut endpoint_manager,
                    deadline,
                )?;
                log!(self.logger, "Successfully created neighborhood {:?}", &neighborhood);
                // TODO session optimization goes here
                self.phased = ConnectorPhased::Communication {
                    endpoint_manager,
                    neighborhood,
                    mem_inbox: Default::default(),
                };
                Ok(())
            }
        }
    }
}

fn new_endpoint_manager(
    logger: &mut dyn Logger,
    endpoint_setups: &[(PortId, EndpointSetup)],
    mut logical_channel_callback: impl FnMut(LogicalChannelInfo),
    deadline: Instant,
) -> Result<EndpointManager, ()> {
    ////////////////////////////////////////////
    const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
    struct Todo {
        todo_endpoint: TodoEndpoint,
        endpoint_setup: EndpointSetup,
        local_port: PortId,
        sent_local_port: bool,          // true <-> I've sent my local port
        recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
    }
    enum TodoEndpoint {
        Listener(TcpListener),
        Endpoint(Endpoint),
    }
    fn init_todo(
        token: Token,
        local_port: PortId,
        endpoint_setup: &EndpointSetup,
        poll: &mut Poll,
    ) -> Result<Todo, ()> {
        let todo_endpoint = if endpoint_setup.is_active {
            let mut stream = TcpStream::connect(endpoint_setup.sock_addr).map_err(drop)?;
            poll.registry().register(&mut stream, token, BOTH).unwrap();
            TodoEndpoint::Endpoint(Endpoint { stream, inbox: vec![] })
        } else {
            let mut listener = TcpListener::bind(endpoint_setup.sock_addr).map_err(drop)?;
            poll.registry().register(&mut listener, token, BOTH).unwrap();
            TodoEndpoint::Listener(listener)
        };
        Ok(Todo {
            todo_endpoint,
            endpoint_setup: endpoint_setup.clone(),
            local_port,
            sent_local_port: false,
            recv_peer_port: None,
        })
    };
    ////////////////////////////////////////////

    // 1. Start to construct EndpointManager
    let mut poll = Poll::new().map_err(drop)?;
    let mut events = Events::with_capacity(64);
    let mut undrained_endpoints = IndexSet::<usize>::default();

    // 2. create a registered (TcpListener/Endpoint) for passive / active respectively
    let mut todos = endpoint_setups
        .iter()
        .enumerate()
        .map(|(index, (local_port, endpoint_setup))| {
            init_todo(Token(index), *local_port, endpoint_setup, &mut poll)
        })
        .collect::<Result<Vec<Todo>, _>>()?;

    // 3. Using poll to drive progress:
    //    - accept an incoming connection for each TcpListener (turning them into endpoints too)
    //    - for each endpoint, send the local PortId
    //    - for each endpoint, recv the peer's PortId, and
    let mut setup_incomplete: HashSet<usize> = (0..todos.len()).collect();
    while !setup_incomplete.is_empty() {
        let remaining = deadline.checked_duration_since(Instant::now()).ok_or(())?;
        poll.poll(&mut events, Some(remaining)).map_err(drop)?;
        for event in events.iter() {
            let token = event.token();
            let Token(index) = token;
            let todo: &mut Todo = &mut todos[index];
            if let TodoEndpoint::Listener(listener) = &mut todo.todo_endpoint {
                let (mut stream, peer_addr) = listener.accept().map_err(drop)?;
                poll.registry().deregister(listener).unwrap();
                poll.registry().register(&mut stream, token, BOTH).unwrap();
                log!(logger, "Endpoint({}) accepted a connection from {:?}", index, peer_addr);
                let endpoint = Endpoint { stream, inbox: vec![] };
                todo.todo_endpoint = TodoEndpoint::Endpoint(endpoint);
            }
            match todo {
                Todo {
                    todo_endpoint: TodoEndpoint::Endpoint(endpoint),
                    local_port,
                    endpoint_setup,
                    sent_local_port,
                    recv_peer_port,
                } => {
                    if !setup_incomplete.contains(&index) {
                        continue;
                    }
                    if event.is_writable() && !*sent_local_port {
                        let msg =
                            MyPortInfo { polarity: endpoint_setup.polarity, port: *local_port };
                        endpoint.send(&msg)?;
                        log!(logger, "endpoint[{}] sent peer info {:?}", index, &msg);
                        *sent_local_port = true;
                    }
                    if event.is_readable() && recv_peer_port.is_none() {
                        undrained_endpoints.insert(index);
                        if let Some(peer_port_info) =
                            endpoint.try_recv::<MyPortInfo>().map_err(drop)?
                        {
                            log!(logger, "endpoint[{}] got peer info {:?}", index, peer_port_info);
                            assert!(peer_port_info.polarity != endpoint_setup.polarity);
                            *recv_peer_port = Some(peer_port_info.port);
                            let lci = LogicalChannelInfo {
                                local_port: *local_port,
                                peer_port: peer_port_info.port,
                                local_polarity: endpoint_setup.polarity,
                                endpoint_index: index,
                            };
                            logical_channel_callback(lci);
                        }
                    }
                    if *sent_local_port && recv_peer_port.is_some() {
                        setup_incomplete.remove(&index);
                        log!(logger, "endpoint[{}] is finished!", index);
                    }
                }
                Todo { todo_endpoint: TodoEndpoint::Listener(_), .. } => unreachable!(),
            }
        }
        events.clear();
    }
    let endpoint_exts = todos
        .into_iter()
        .map(|Todo { todo_endpoint, recv_peer_port, .. }| EndpointExt {
            endpoint: match todo_endpoint {
                TodoEndpoint::Endpoint(endpoint) => endpoint,
                TodoEndpoint::Listener(..) => unreachable!(),
            },
            inp_for_emerging_msgs: recv_peer_port.unwrap(),
        })
        .collect();
    Ok(EndpointManager {
        poll,
        events,
        undrained_endpoints,
        delayed_messages: Default::default(),
        undelayed_messages: Default::default(),
        endpoint_exts,
    })
}

fn init_neighborhood(
    controller_id: ControllerId,
    logger: &mut dyn Logger,
    em: &mut EndpointManager,
    deadline: Instant,
) -> Result<Neighborhood, ()> {
    ////////////////////////////////////////////
    use Msg::SetupMsg as S;
    use SetupMsg::*;
    ////////////////////////////////////////////

    log!(logger, "beginning neighborhood construction");
    // 1. broadcast my ID as the first echo. await reply from all neighbors
    let echo = S(LeaderEcho { maybe_leader: controller_id });
    let mut awaiting = HashSet::with_capacity(em.endpoint_exts.len());
    for (index, ee) in em.endpoint_exts.iter_mut().enumerate() {
        log!(logger, "{:?}'s initial echo to {:?}, {:?}", controller_id, index, &echo);
        ee.endpoint.send(&echo)?;
        awaiting.insert(index);
    }

    // 2. Receive incoming replies. whenever a higher-id echo arrives,
    //    adopt it as leader, sender as parent, and reset the await set.
    let mut parent: Option<usize> = None;
    let mut my_leader = controller_id;
    em.undelay_all();
    'echo_loop: while !awaiting.is_empty() || parent.is_some() {
        let (index, msg) = em.try_recv_any(deadline).map_err(drop)?;
        log!(logger, "GOT from index {:?} msg {:?}", &index, &msg);
        match msg {
            S(LeaderAnnounce { leader }) => {
                // someone else completed the echo and became leader first!
                // the sender is my parent
                parent = Some(index);
                my_leader = leader;
                awaiting.clear();
                break 'echo_loop;
            }
            S(LeaderEcho { maybe_leader }) => {
                use Ordering::*;
                match maybe_leader.cmp(&my_leader) {
                    Less => { /* ignore */ }
                    Equal => {
                        awaiting.remove(&index);
                        if awaiting.is_empty() {
                            if let Some(p) = parent {
                                // return the echo to my parent
                                em.send_to(p, &S(LeaderEcho { maybe_leader }))?;
                            } else {
                                // DECIDE!
                                break 'echo_loop;
                            }
                        }
                    }
                    Greater => {
                        // join new echo
                        log!(logger, "Setting leader to index {:?}", index);
                        parent = Some(index);
                        my_leader = maybe_leader;
                        let echo = S(LeaderEcho { maybe_leader: my_leader });
                        awaiting.clear();
                        if em.endpoint_exts.len() == 1 {
                            // immediately reply to parent
                            log!(logger, "replying echo to parent {:?} immediately", index);
                            em.send_to(index, &echo)?;
                        } else {
                            for (index2, ee) in em.endpoint_exts.iter_mut().enumerate() {
                                if index2 == index {
                                    continue;
                                }
                                log!(logger, "repeating echo {:?} to {:?}", &echo, index2);
                                ee.endpoint.send(&echo)?;
                                awaiting.insert(index2);
                            }
                        }
                    }
                }
            }
            inappropriate_msg => em.delayed_messages.push((index, inappropriate_msg)),
        }
    }
    match parent {
        None => assert_eq!(
            my_leader, controller_id,
            "I've got no parent, but I consider {:?} the leader?",
            my_leader
        ),
        Some(parent) => assert_ne!(
            my_leader, controller_id,
            "I have {:?} as parent, but I consider myself ({:?}) the leader?",
            parent, controller_id
        ),
    }
    log!(logger, "DONE WITH ECHO! Leader has cid={:?}", my_leader);

    // 3. broadcast leader announcement (except to parent: confirm they are your parent)
    //    in this loop, every node sends 1 message to each neighbor
    //    await 1 message from all non-parents.
    let msg_for_non_parents = S(LeaderAnnounce { leader: my_leader });
    for (index, ee) in em.endpoint_exts.iter_mut().enumerate() {
        let msg = if Some(index) == parent {
            &S(YouAreMyParent)
        } else {
            awaiting.insert(index);
            &msg_for_non_parents
        };
        log!(logger, "ANNOUNCING to {:?} {:?}", index, msg);
        ee.endpoint.send(msg)?;
    }
    let mut children = Vec::default();
    em.undelay_all();
    while !awaiting.is_empty() {
        let (index, msg) = em.try_recv_any(deadline).map_err(drop)?;
        match msg {
            S(YouAreMyParent) => {
                assert!(awaiting.remove(&index));
                children.push(index);
            }
            S(SetupMsg::LeaderAnnounce { leader }) => {
                assert!(awaiting.remove(&index));
                assert!(leader == my_leader);
                assert!(Some(index) != parent);
                // they wouldn't send me this if they considered me their parent
            }
            inappropriate_msg => em.delayed_messages.push((index, inappropriate_msg)),
        }
    }
    children.sort();
    children.dedup();
    Ok(Neighborhood { parent, children })
}