Files @ 58fb633d3fa1
Branch filter:

Location: CSY/reowolf/src/runtime2/component/component.rs

58fb633d3fa1 38.1 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
WIP on figuring out protocol for port transmission
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
use std::fmt::{Display as FmtDisplay, Result as FmtResult, Formatter};

use crate::protocol::eval::{Prompt, EvalError, ValueGroup, Value, ValueId, PortId as EvalPortId};
use crate::protocol::*;
use crate::runtime2::*;
use crate::runtime2::communication::*;
use crate::runtime2::component::component_pdl::find_ports_in_value_group;

use super::{CompCtx, CompPDL, CompId};
use super::component_context::*;
use super::component_random::*;
use super::component_internet::*;
use super::control_layer::*;
use super::consensus::*;

pub enum CompScheduling {
    Immediate,
    Requeue,
    Sleep,
    Exit,
}

/// Potential error emitted by a component
pub enum CompError {
    /// Error originating from the code executor. Hence has an associated
    /// source location.
    Executor(EvalError),
    /// Error originating from a component, but not necessarily associated with
    /// a location in the source.
    Component(String), // TODO: Maybe a different embedded value in the future?
    /// Pure runtime error. Not necessarily originating from the component
    /// itself. Should be treated as a very severe runtime-compromising error.
    Runtime(RtError),
}

impl FmtDisplay for CompError {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        match self {
            CompError::Executor(v) => v.fmt(f),
            CompError::Component(v) => v.fmt(f),
            CompError::Runtime(v) => v.fmt(f),
        }
    }
}

/// Generic representation of a component (as viewed by a scheduler).
pub(crate) trait Component {
    /// Called upon the creation of the component. Note that the scheduler
    /// context is officially running another component (the component that is
    /// creating the new component).
    fn on_creation(&mut self, comp_id: CompId, sched_ctx: &SchedulerCtx);

    /// Called when a component crashes or wishes to exit. So is not called
    /// right before destruction, other components may still hold a handle to
    /// the component and send it messages!
    fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx);

    /// Called if the component is created by another component and the messages
    /// are being transferred between the two.
    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);

    /// Called if the component receives a new message. The component is
    /// responsible for deciding where that messages goes.
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);

    /// Called if the component's routine should be executed. The return value
    /// can be used to indicate when the routine should be run again.
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling;
}

/// Representation of the generic operating mode of a component. Although not
/// every state may be used by every kind of (builtin) component, this allows
/// writing standard handlers for particular events in a component's lifetime.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum CompMode {
    NonSync, // not in sync mode
    Sync, // in sync mode, can interact with other components
    SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
    BlockedGet, // blocked because we need to receive a message on a particular port
    BlockedPut, // component is blocked because the port is blocked
    BlockedSelect, // waiting on message to complete the select statement
    BlockedPutPorts,// blocked because we're waiting to send a data message containing ports
    StartExit, // temporary state: if encountered then we start the shutdown process.
    BusyExit, // temporary state: waiting for Acks for all the closed ports, potentially waiting for sync round to finish
    Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
}

impl CompMode {
    pub(crate) fn is_in_sync_block(&self) -> bool {
        use CompMode::*;

        match self {
            Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect | BlockedPutPorts => true,
            NonSync | StartExit | BusyExit | Exit => false,
        }
    }

    pub(crate) fn is_busy_exiting(&self) -> bool {
        use CompMode::*;

        match self {
            NonSync | Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect | BlockedPutPorts => false,
            StartExit | BusyExit => true,
            Exit => false,
        }
    }
}

#[derive(Debug)]
pub(crate) enum ExitReason {
    Termination, // regular termination of component
    ErrorInSync,
    ErrorNonSync,
}

impl ExitReason {
    pub(crate) fn is_in_sync(&self) -> bool {
        use ExitReason::*;

        match self {
            Termination | ErrorNonSync => false,
            ErrorInSync => true,
        }
    }

    pub(crate) fn is_error(&self) -> bool {
        use ExitReason::*;

        match self {
            Termination => false,
            ErrorInSync | ErrorNonSync => true,
        }
    }
}

/// Component execution state: the execution mode along with some descriptive
/// fields. Fields are public for ergonomic reasons, use member functions when
/// appropriate.
pub(crate) struct CompExecState {
    pub mode: CompMode,
    pub mode_port: PortId, // valid if blocked on a port (put/get)
    pub mode_value: ValueGroup, // valid if blocked on a put
    pub exit_reason: ExitReason, // valid if in StartExit/BusyExit/Exit mode
}

impl CompExecState {
    pub(crate) fn new() -> Self {
        return Self{
            mode: CompMode::NonSync,
            mode_port: PortId::new_invalid(),
            mode_value: ValueGroup::default(),
            exit_reason: ExitReason::Termination,
        }
    }

    pub(crate) fn set_as_start_exit(&mut self, reason: ExitReason) {
        self.mode = CompMode::StartExit;
        self.exit_reason = reason;
    }

    pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
        self.mode = CompMode::BlockedGet;
        self.mode_port = port;
        debug_assert!(self.mode_value.values.is_empty());
    }

    pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
        return
            self.mode == CompMode::BlockedGet &&
            self.mode_port == port;
    }

    pub(crate) fn set_as_blocked_put(&mut self, port: PortId, value: ValueGroup) {
        self.mode = CompMode::BlockedPut;
        self.mode_port = port;
        self.mode_value = value;
    }

    pub(crate) fn is_blocked_on_put(&self, port: PortId) -> bool {
        return
            self.mode == CompMode::BlockedPut &&
            self.mode_port == port;
    }
}

// TODO: Replace when implementing port sending. Should probably be incorporated
//  into CompCtx (and rename CompCtx into CompComms)
pub(crate) type InboxMain = Vec<Option<DataMessage>>;
pub(crate) type InboxMainRef = [Option<DataMessage>];
pub(crate) type InboxBackup = Vec<DataMessage>;

/// Creates a new component based on its definition. Meaning that if it is a
/// user-defined component then we set up the PDL code state. Otherwise we
/// construct a custom component. This does NOT take care of port and message
/// management.
pub(crate) fn create_component(
    protocol: &ProtocolDescription,
    definition_id: ProcedureDefinitionId, type_id: TypeId,
    arguments: ValueGroup, num_ports: usize
) -> Box<dyn Component> {
    let definition = &protocol.heap[definition_id];
    debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);

    if definition.source.is_builtin() {
        // Builtin component
        let component: Box<dyn Component> = match definition.source {
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
            ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
            _ => unreachable!(),
        };

        return component;
    } else {
        // User-defined component
        let prompt = Prompt::new(
            &protocol.types, &protocol.heap,
            definition_id, type_id, arguments
        );
        let component = CompPDL::new(prompt, num_ports);
        return Box::new(component);
    }
}

// -----------------------------------------------------------------------------
// Generic component messaging utilities (for sending and receiving)
// -----------------------------------------------------------------------------

/// Default handling of sending a data message. In case the port is blocked then
/// the `ExecState` will become blocked as well. Note that
/// `default_handle_control_message` will ensure that the port becomes
/// unblocked if so instructed by the receiving component. The returned
/// scheduling value must be used.
#[must_use]
pub(crate) fn default_send_data_message(
    exec_state: &mut CompExecState, transmitting_port_id: PortId,
    port_instruction: PortInstruction, value: ValueGroup,
    sched_ctx: &SchedulerCtx, consensus: &mut Consensus, comp_ctx: &mut CompCtx
) -> Result<CompScheduling, (PortInstruction, String)> {
    debug_assert_eq!(exec_state.mode, CompMode::Sync);

    let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
    let port_info = comp_ctx.get_port_mut(port_handle);
    port_info.last_instruction = port_instruction;

    let port_info = comp_ctx.get_port(port_handle);
    debug_assert_eq!(port_info.kind, PortKind::Putter);

    if port_info.state.is_closed() {
        // Note: normally peer is eventually consistent, but if it has shut down
        // then we can be sure it is consistent (I think?)
        return Err((
            port_info.last_instruction,
            format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0)
        ))
    } else if port_info.state.is_blocked() {
        // Port is blocked, so we cannot send
        exec_state.set_as_blocked_put(transmitting_port_id, value);

        return Ok(CompScheduling::Sleep);
    } else {
        // Check if there are any ports that are being transmitted
        let mut ports = Vec::new();
        find_ports_in_value_group(&value, &mut ports);
        if !ports.is_empty() {


            for (value_location, port_id) in ports {
                let transmitted_port_handle = comp_ctx.get_port_handle(port_id);
                let transmitted_port = comp_ctx.get_port(transmitted_port_handle);

                if transmitted_port.state.is_set(PortStateFlag::Transmitted) {
                    // Note: We could also attach where the port has been
                    //  transferred
                    return Err((
                        port_info.last_instruction,
                        String::from("Cannot send this message, as it contains a previously transmitted port")
                    ));
                }

                // Prepare ack for PPC
                // Prepare PPC message
            }
        }

        // Port is not blocked, so send to the peer
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
        let peer_info = comp_ctx.get_peer(peer_handle);
        let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
        peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);

        return Ok(CompScheduling::Immediate);
    }
}

pub(crate) enum IncomingData {
    PlacedInSlot,
    SlotFull(DataMessage),
}

/// Default handling of receiving a data message. In case there is no room for
/// the message it is returned from this function. Note that this function is
/// different from PDL code performing a `get` on a port; this is the case where
/// the message first arrives at the component.
// NOTE: This is supposed to be a somewhat temporary implementation. It would be
//  nicest if the sending component can figure out it cannot send any more data.
#[must_use]
pub(crate) fn default_handle_incoming_data_message(
    exec_state: &mut CompExecState, inbox_main: &mut InboxMain,
    comp_ctx: &mut CompCtx, incoming_message: DataMessage,
    sched_ctx: &SchedulerCtx, control: &mut ControlLayer
) -> IncomingData {
    let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port);
    let port_index = comp_ctx.get_port_index(port_handle);
    comp_ctx.get_port_mut(port_handle).received_message_for_sync = true;
    let port_value_slot = &mut inbox_main[port_index];
    let target_port_id = incoming_message.data_header.target_port;

    if port_value_slot.is_none() {
        // We can put the value in the slot
        *port_value_slot = Some(incoming_message);

        // Check if we're blocked on receiving this message.
        dbg_code!({
            // Our port cannot have been blocked itself, because we're able to
            // directly insert the message into its slot.
            assert!(!comp_ctx.get_port(port_handle).state.is_blocked());
        });

        if exec_state.is_blocked_on_get(target_port_id) {
            // Return to normal operation
            exec_state.mode = CompMode::Sync;
            exec_state.mode_port = PortId::new_invalid();
            debug_assert!(exec_state.mode_value.values.is_empty());
        }

        return IncomingData::PlacedInSlot
    } else {
        // Slot is already full, so if the port was previously opened, it will
        // now become closed
        let port_info = comp_ctx.get_port_mut(port_handle);
        if port_info.state.is_open() {
            port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);

            let (peer_handle, message) =
                control.initiate_port_blocking(comp_ctx, port_handle);
            let peer = comp_ctx.get_peer(peer_handle);
            peer.handle.send_message_logged(sched_ctx, Message::Control(message), true);
        }

        return IncomingData::SlotFull(incoming_message)
    }
}

pub(crate) enum GetResult {
    Received(DataMessage),
    NoMessage,
    Error((PortInstruction, String)),
}

/// Default attempt at trying to receive from a port (i.e. through a `get`, or
/// the equivalent operation for a builtin component). `target_port` is the port
/// we're trying to receive from, and the `target_port_instruction` is the
/// instruction we're attempting on this port.
pub(crate) fn default_attempt_get(
    exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction,
    inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx,
    comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus
) -> GetResult {
    let port_handle = comp_ctx.get_port_handle(target_port);
    let port_index = comp_ctx.get_port_index(port_handle);

    let port_info = comp_ctx.get_port_mut(port_handle);
    port_info.last_instruction = target_port_instruction;
    if port_info.state.is_closed() {
        let peer_id = port_info.peer_comp_id;
        return GetResult::Error((
            target_port_instruction,
            format!("Cannot get from this port, as the peer component (id:{}) closed the port", peer_id.0)
        ));
    }

    if let Some(message) = &inbox_main[port_index] {
        if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
            // We're allowed to receive this message
            let message = inbox_main[port_index].take().unwrap();
            debug_assert_eq!(target_port, message.data_header.target_port);

            // Note: we can still run into an unrecoverable error when actually
            // receiving this message
            match default_handle_received_data_message(
                target_port, target_port_instruction, inbox_main, inbox_backup,
                comp_ctx, sched_ctx, control,
            ) {
                Ok(()) => return GetResult::Received(message),
                Err(location_and_message) => return GetResult::Error(location_and_message)
            }
        } else {
            // We're not allowed to receive this message. This means that the
            // receiver is attempting to receive something out of order with
            // respect to the sender.
            return GetResult::Error((target_port_instruction, String::from(
                "Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s"
            )));
        }
    } else {
        // We don't have a message waiting for us and the port is not blocked.
        // So enter the BlockedGet state
        exec_state.set_as_blocked_get(target_port);
        return GetResult::NoMessage;
    }
}

/// Default handling that has been received through a `get`. Will check if any
/// more messages are waiting, and if the corresponding port was blocked because
/// of full buffers (hence, will use the control layer to make sure the peer
/// will become unblocked).
pub(crate) fn default_handle_received_data_message(
    targeted_port: PortId, port_instruction: PortInstruction,
    inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup,
    comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer
) -> Result<(), (PortInstruction, String)> {
    let port_handle = comp_ctx.get_port_handle(targeted_port);
    let port_index = comp_ctx.get_port_index(port_handle);
    let slot = &mut inbox_main[port_index];
    debug_assert!(slot.is_none()); // because we've just received from it

    // Modify last-known location where port instruction was retrieved
    let port_info = comp_ctx.get_port(port_handle);
    debug_assert_ne!(port_info.last_instruction, PortInstruction::None); // set by caller
    debug_assert!(port_info.state.is_open()); // checked by caller

    // Check if there are any more messages in the backup buffer
    for message_index in 0..inbox_backup.len() {
        let message = &inbox_backup[message_index];
        if message.data_header.target_port == targeted_port {
            // One more message, place it in the slot
            let message = inbox_backup.remove(message_index);
            debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we're removing another message from the backup
            *slot = Some(message);

            return Ok(());
        }
    }

    // Did not have any more messages, so if we were blocked, then we need to
    // unblock the port now (and inform the peer of this unblocking)
    if port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers) {
        let port_info = comp_ctx.get_port_mut(port_handle);
        port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);

        let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle);
        let peer_info = comp_ctx.get_peer(peer_handle);
        peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
    }

    return Ok(());
}

/// Handles control messages in the default way. Note that this function may
/// take a lot of actions in the name of the caller: pending messages may be
/// sent, ports may become blocked/unblocked, etc. So the execution
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
/// state may all change.
pub(crate) fn default_handle_control_message(
    exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
    message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) -> Result<(), (PortInstruction, String)> {
    match message.content {
        ControlMessageContent::Ack => {
            default_handle_ack(control, message.id, sched_ctx, comp_ctx);
        },
        ControlMessageContent::BlockPort => {
            // One of our messages was accepted, but the port should be
            // blocked.
            let port_to_block = message.target_port_id.unwrap();
            let port_handle = comp_ctx.get_port_handle(port_to_block);
            let port_info = comp_ctx.get_port_mut(port_handle);
            debug_assert_eq!(port_info.kind, PortKind::Putter);
            port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
        },
        ControlMessageContent::ClosePort(content) => {
            // Request to close the port. We immediately comply and remove
            // the component handle as well
            let port_to_close = message.target_port_id.unwrap();
            let port_handle = comp_ctx.get_port_handle(port_to_close);

            // We're closing the port, so we will always update the peer of the
            // port (in case of error messages)
            let port_info = comp_ctx.get_port_mut(port_handle);
            port_info.peer_comp_id = message.sender_comp_id;
            port_info.close_at_sync_end = true; // might be redundant (we might set it closed now)

            let peer_comp_id = port_info.peer_comp_id;
            let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);

            // One exception to sending an `Ack` is if we just closed the
            // port ourselves, meaning that the `ClosePort` messages got
            // sent to one another.
            if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
                // The two components (sender and this component) are closing
                // the channel at the same time. So we don't care about the
                // content of the `ClosePort` message.
                default_handle_ack(control, control_id, sched_ctx, comp_ctx);
            } else {
                // Respond to the message
                let port_info = comp_ctx.get_port(port_handle);
                let last_instruction = port_info.last_instruction;
                let port_has_had_message = port_info.received_message_for_sync;
                default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
                comp_ctx.change_port_peer(sched_ctx, port_handle, None);

                // Handle any possible error conditions (which boil down to: the
                // port has been used, but the peer has died). If not in sync
                // mode then we close the port immediately.

                // Note that `port_was_used` does not mean that any messages
                // were actually received. It might also mean that e.g. the
                // component attempted a `get`, but there were no messages, so
                // now it is in the `BlockedGet` state.
                let port_was_used = last_instruction != PortInstruction::None;

                if exec_state.mode.is_in_sync_block() {
                    let closed_during_sync_round = content.closed_in_sync_round && port_was_used;
                    let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message;

                    if closed_during_sync_round || closed_before_sync_round {
                        return Err((
                            last_instruction,
                            format!("Peer component (id:{}) shut down, so communication cannot (have) succeed(ed)", peer_comp_id.0)
                        ));
                    }
                } else {
                    let port_info = comp_ctx.get_port_mut(port_handle);
                    port_info.state.set(PortStateFlag::Closed);
                }
            }
        },
        ControlMessageContent::UnblockPort => {
            // We were previously blocked (or already closed)
            let port_to_unblock = message.target_port_id.unwrap();
            let port_handle = comp_ctx.get_port_handle(port_to_unblock);
            let port_info = comp_ctx.get_port_mut(port_handle);

            debug_assert_eq!(port_info.kind, PortKind::Putter);
            debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers));

            port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
            default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
        },
        ControlMessageContent::PortPeerChangedBlock => {
            // The peer of our port has just changed. So we are asked to
            // temporarily block the port (while our original recipient is
            // potentially rerouting some of the in-flight messages) and
            // Ack. Then we wait for the `unblock` call.
            let port_to_change = message.target_port_id.unwrap();
            let port_handle = comp_ctx.get_port_handle(port_to_change);

            let port_info = comp_ctx.get_port_mut(port_handle);
            let peer_comp_id = port_info.peer_comp_id;
            port_info.state.set(PortStateFlag::BlockedDueToPeerChange);
            let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);

            default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
        },
        ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
            let port_to_change = message.target_port_id.unwrap();
            let port_handle = comp_ctx.get_port_handle(port_to_change);
            let port_info = comp_ctx.get_port(port_handle);
            debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToPeerChange));
            let old_peer_id = port_info.peer_comp_id;

            let port_info = comp_ctx.get_port_mut(port_handle);
            port_info.peer_port_id = new_port_id;

            port_info.state.clear(PortStateFlag::BlockedDueToPeerChange);
            comp_ctx.change_port_peer(sched_ctx, port_handle, Some(new_comp_id));
            default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
        }
    }

    return Ok(());
}

/// Handles a component entering the synchronous block. Will ensure that the
/// `Consensus` and the `ComponentCtx` are initialized properly.
pub(crate) fn default_handle_sync_start(
    exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef,
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) {
    sched_ctx.info("Component starting sync mode");

    // If any messages are present for this sync round, set the appropriate flag
    // and notify the consensus handler of the present messages
    consensus.notify_sync_start(comp_ctx);
    for (port_index, message) in inbox_main.iter().enumerate() {
        if let Some(message) = message {
            consensus.handle_incoming_data_message(comp_ctx, message);
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
            port_info.received_message_for_sync = true;
        }
    }

    // Modify execution state
    debug_assert_eq!(exec_state.mode, CompMode::NonSync);
    exec_state.mode = CompMode::Sync;
}

/// Handles a component that has reached the end of the sync block. This does
/// not necessarily mean that the component will go into the `NonSync` mode, as
/// it might have to wait for the leader to finish the round for everyone (see
/// `default_handle_sync_decision`)
pub(crate) fn default_handle_sync_end(
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
    consensus: &mut Consensus
) {
    sched_ctx.info("Component ending sync mode (but possibly waiting for a solution)");
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
    let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx);
    exec_state.mode = CompMode::SyncEnd;
    default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
}

/// Handles a component initiating the exiting procedure, and closing all of its
/// ports. Should only be called once per component (which is ensured by
/// checking and modifying the mode in the execution state).
#[must_use]
pub(crate) fn default_handle_start_exit(
    exec_state: &mut CompExecState, control: &mut ControlLayer,
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) -> CompScheduling {
    debug_assert_eq!(exec_state.mode, CompMode::StartExit);
    sched_ctx.info(&format!("Component starting exit (reason: {:?})", exec_state.exit_reason));
    exec_state.mode = CompMode::BusyExit;
    let exit_inside_sync = exec_state.exit_reason.is_in_sync();

    // If exiting while inside sync mode, report to the leader of the current
    // round that we've failed.
    if exit_inside_sync {
        let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx);
        default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
    }

    // Iterating over ports by index to work around borrowing rules
    for port_index in 0..comp_ctx.num_ports() {
        let port = comp_ctx.get_port_by_index_mut(port_index);
        if port.state.is_closed() || port.close_at_sync_end {
            // Already closed, or in the process of being closed
            continue;
        }

        // Mark as closed
        let port_id = port.self_id;
        port.state.set(PortStateFlag::Closed);

        // Notify peer of closing
        let port_handle = comp_ctx.get_port_handle(port_id);
        let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
        let peer_info = comp_ctx.get_peer(peer);
        peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
    }

    return CompScheduling::Immediate; // to check if we can shut down immediately
}

/// Handles a component waiting until all peers are notified that it is quitting
/// (i.e. after calling `default_handle_start_exit`).
#[must_use]
pub(crate) fn default_handle_busy_exit(
    exec_state: &mut CompExecState, control: &ControlLayer,
    sched_ctx: &SchedulerCtx
) -> CompScheduling {
    debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
    if control.has_acks_remaining() {
        sched_ctx.info("Component busy exiting, still has `Ack`s remaining");
        return CompScheduling::Sleep;
    } else {
        sched_ctx.info("Component busy exiting, now shutting down");
        exec_state.mode = CompMode::Exit;
        return CompScheduling::Exit;
    }
}

/// Handles a potential synchronous round decision. If there was a decision then
/// the `Some(success)` value indicates whether the round succeeded or not.
/// Might also end up changing the `ExecState`.
///
/// Might be called in two cases:
/// 1. The component is in regular execution mode, at the end of a sync round,
///     and is waiting for a solution to the round.
/// 2. The component has encountered an error during a sync round and is
///     exiting, hence is waiting for a "Failure" message from the leader.
pub(crate) fn default_handle_sync_decision(
    sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx,
    decision: SyncRoundDecision, consensus: &mut Consensus
) -> Option<bool> {
    let success = match decision {
        SyncRoundDecision::None => return None,
        SyncRoundDecision::Solution => true,
        SyncRoundDecision::Failure => false,
    };

    debug_assert!(
        exec_state.mode == CompMode::SyncEnd || (
            exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error()
        ) || (
            exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure
        )
    );

    sched_ctx.info(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode));
    consensus.notify_sync_decision(decision);
    if success {
        // We cannot get a success message if the component has encountered an
        // error.
        for port_index in 0..comp_ctx.num_ports() {
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
            if port_info.close_at_sync_end {
                port_info.state.set(PortStateFlag::Closed);
            }
        }
        debug_assert_eq!(exec_state.mode, CompMode::SyncEnd);
        exec_state.mode = CompMode::NonSync;
        return Some(true);
    } else {
        // We may get failure both in all possible cases. But we should only
        // modify the execution state if we're not already in exit mode
        if !exec_state.mode.is_busy_exiting() {
            sched_ctx.error("failed synchronous round, initiating exit");
            exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
        }
        return Some(false);
    }
}

/// Performs the default action of printing the provided error, and then putting
/// the component in the state where it will shut down. Only to be used for
/// builtin components: their error message construction is simpler (and more
/// common) as they don't have any source code.
pub(crate) fn default_handle_error_for_builtin(
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx,
    location_and_message: (PortInstruction, String)
) {
    let (_location, message) = location_and_message;
    sched_ctx.error(&message);

    let exit_reason = if exec_state.mode.is_in_sync_block() {
        ExitReason::ErrorInSync
    } else {
        ExitReason::ErrorNonSync
    };

    exec_state.set_as_start_exit(exit_reason);
}

#[inline]
pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling {
    debug_assert_eq!(_exec_state.mode, CompMode::Exit);
    return CompScheduling::Exit;
}

// -----------------------------------------------------------------------------
// Internal messaging/state utilities
// -----------------------------------------------------------------------------

/// Handles an `Ack` for the control layer.
fn default_handle_ack(
    control: &mut ControlLayer, control_id: ControlId,
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) {
    // Since an `Ack` may cause another one, handle them in a loop
    let mut to_ack = control_id;
    loop {
        let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx);
        match action {
            AckAction::SendMessage(target_comp, message) => {
                // FIX @NoDirectHandle
                let mut handle = sched_ctx.runtime.get_component_public(target_comp);
                handle.send_message_logged(sched_ctx, Message::Control(message), true);
                let _should_remove = handle.decrement_users();
                debug_assert!(_should_remove.is_none());
            },
            AckAction::ScheduleComponent(to_schedule) => {
                // FIX @NoDirectHandle
                let mut handle = sched_ctx.runtime.get_component_public(to_schedule);

                // Note that the component is intentionally not
                // sleeping, so we just wake it up
                debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
                let key = unsafe { to_schedule.upgrade() };
                sched_ctx.runtime.enqueue_work(key);
                let _should_remove = handle.decrement_users();
                debug_assert!(_should_remove.is_none());
            },
            AckAction::None => {}
        }

        match new_to_ack {
            Some(new_to_ack) => to_ack = new_to_ack,
            None => break,
        }
    }
}

/// Little helper for sending the most common kind of `Ack`
fn default_send_ack(
    causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle,
    sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx
) {
    let peer_info = comp_ctx.get_peer(peer_handle);
    peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
        id: causer_of_ack_id,
        sender_comp_id: comp_ctx.id,
        target_port_id: None,
        content: ControlMessageContent::Ack
    }), true);
}

/// Handles the unblocking of a putter port. In case there is a pending message
/// on that port then it will be sent.
fn default_handle_recently_unblocked_port(
    exec_state: &mut CompExecState, consensus: &mut Consensus,
    port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
) {
    let port_info = comp_ctx.get_port_mut(port_handle);
    let port_id = port_info.self_id;
    debug_assert!(!port_info.state.is_blocked()); // should have been done by the caller

    if exec_state.is_blocked_on_put(port_id) {
        // Return to the regular execution mode
        exec_state.mode = CompMode::Sync;
        exec_state.mode_port = PortId::new_invalid();

        // Annotate the message that we're going to send
        let port_info = comp_ctx.get_port(port_handle); // for immutable access
        debug_assert_eq!(port_info.kind, PortKind::Putter);
        let to_send = exec_state.mode_value.take();
        let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send);

        // Retrieve peer to send the message
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
        let peer_info = comp_ctx.get_peer(peer_handle);
        peer_info.handle.send_message_logged(sched_ctx, Message::Data(to_send), true);

        exec_state.mode = CompMode::Sync; // because we're blocked on a `put`, we must've started in the sync state.
        exec_state.mode_port = PortId::new_invalid();
    }
}

#[inline]
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
    return PortId(port_id.id);
}

#[inline]
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
    return EvalPortId{ id: port_id.0 };
}

/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<(ValueId, PortId)>) {
    // Helper to check a value for a port and recurse if needed.
    fn find_port_in_value(group: &ValueGroup, value: &Value, value_location: ValueId, ports: &mut Vec<(ValueId, PortId)>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                let cur_port = PortId(port_id.id);
                for prev_port in ports.iter() {
                    if *prev_port == cur_port.1 {
                        // Already added
                        return;
                    }
                }

                ports.push((value_location, cur_port));
            },
            Value::Array(heap_pos) |
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for (value_index, embedded_value) in heap_region.iter().enumerate() {
                    let value_location = ValueId::Heap(*heap_pos, value_index as u32);
                    find_port_in_value(group, embedded_value, value_location, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }

    // Clear the ports, then scan all the available values
    ports.clear();
    for (value_index, value) in &value_group.values.iter().enumerate() {
        find_port_in_value(value_group, value, ValueId::Stack(value_index as u32), ports);
    }
}