Files @ 60057e2acf9e
Branch filter:

Location: CSY/reowolf/src/runtime2/component/consensus.rs

60057e2acf9e 28.9 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
WIP on error-handling implementation
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
use crate::protocol::eval::ValueGroup;
use crate::runtime2::scheduler::*;
use crate::runtime2::runtime::*;
use crate::runtime2::communication::*;

use super::component_context::*;

pub struct PortAnnotation {
    self_comp_id: CompId,
    self_port_id: PortId,
    peer_comp_id: CompId, // only valid for getter ports
    peer_port_id: PortId, // only valid for getter ports
    peer_discovered: bool, // only valid for getter ports
    mapping: Option<u32>,
    kind: PortKind,
}

impl PortAnnotation {
    fn new(comp_id: CompId, port_id: PortId, kind: PortKind) -> Self {
        return Self{
            self_comp_id: comp_id,
            self_port_id: port_id,
            peer_comp_id: CompId::new_invalid(),
            peer_port_id: PortId::new_invalid(),
            peer_discovered: false,
            mapping: None,
            kind,
        }
    }
}

#[derive(Debug, Eq, PartialEq)]
enum Mode {
    NonSync,
    SyncBusy,
    SyncAwaitingSolution,
    SelectBusy,
    SelectWait,
}

struct SolutionCombiner {
    solution: SyncPartialSolution,
    matched_channels: usize,
}

impl SolutionCombiner {
    fn new() -> Self {
        return Self {
            solution: SyncPartialSolution::default(),
            matched_channels: 0,
        }
    }

    #[inline]
    fn has_contributions(&self) -> bool {
        return !self.solution.channel_mapping.is_empty();
    }

    /// Returns a decision for the current round. If there is no decision (yet)
    /// then `RoundDecision::None` is returned.
    fn get_decision(&self) -> SyncRoundDecision {
        if self.matched_channels == self.solution.channel_mapping.len() {
            debug_assert_ne!(self.solution.decision, SyncRoundDecision::None);
            return self.solution.decision;
        }

        return SyncRoundDecision::None; // even in case of failure: wait for everyone.
    }

    fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
        debug_assert_ne!(partial.decision, SyncRoundDecision::Solution);

        if partial.decision == SyncRoundDecision::Failure {
            self.solution.decision = SyncRoundDecision::Failure;
        }

        for entry in partial.channel_mapping {
            let channel_index = if entry.getter.is_some() && entry.putter.is_some() {
                let channel_index = self.solution.channel_mapping.len();
                self.solution.channel_mapping.push(entry);

                channel_index
            } else if let Some(putter) = entry.putter {
                self.combine_with_putter_port(putter)
            } else if let Some(getter) = entry.getter {
                self.combine_with_getter_port(getter)
            } else {
                unreachable!(); // both putter and getter are None
            };

            let channel = &self.solution.channel_mapping[channel_index];
            if let Some(consistent) = Self::channel_is_consistent(channel) {
                if !consistent {
                    self.solution.decision = SyncRoundDecision::Failure;
                }
                self.matched_channels += 1;
            }
        }

        self.update_solution();
    }

    /// Combines the currently stored global solution (if any) with the newly
    /// provided local solution. Make sure to check the `has_decision` return
    /// value afterwards.
    fn combine_with_local_solution(&mut self, _comp_id: CompId, solution: SyncLocalSolution) {
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);

        // Combine partial solution with the local solution entries
        for entry in solution {
            // Match the current entry up with its peer endpoint, or add a new
            // entry.
            let channel_index = match entry {
                SyncLocalSolutionEntry::Putter(putter) => {
                    self.combine_with_putter_port(putter)
                },
                SyncLocalSolutionEntry::Getter(getter) => {
                    self.combine_with_getter_port(getter)
                }
            };

            // Check if channel is now consistent
            let channel = &self.solution.channel_mapping[channel_index];
            if let Some(consistent) = Self::channel_is_consistent(channel) {
                if !consistent {
                    self.solution.decision = SyncRoundDecision::Failure;
                }
                self.matched_channels += 1;
            }
        }

        self.update_solution();
    }

    /// Takes whatever partial solution is present in the solution combiner and
    /// returns it. The solution combiner's solution will end up being empty.
    /// This is used when a new leader is found and we need to pass along our
    /// partial results.
    fn take_partial_solution(&mut self) -> SyncPartialSolution {
        let mut partial_solution = SyncPartialSolution::default();
        std::mem::swap(&mut partial_solution, &mut self.solution);
        self.clear();

        return partial_solution;
    }

    fn clear(&mut self) {
        self.solution.channel_mapping.clear();
        self.solution.decision = SyncRoundDecision::None;
        self.matched_channels = 0;
    }

    // --- Small utilities for combining solutions

    fn combine_with_putter_port(&mut self, putter: SyncSolutionPutterPort) -> usize {
        let channel_index = self.get_channel_index_for_putter(putter.self_comp_id, putter.self_port_id);
        if let Some(channel_index) = channel_index {
            let channel = &mut self.solution.channel_mapping[channel_index];
            debug_assert!(channel.putter.is_none());
            channel.putter = Some(putter);

            return channel_index;
        } else {
            let channel_index = self.solution.channel_mapping.len();
            self.solution.channel_mapping.push(SyncSolutionChannel{
                putter: Some(putter),
                getter: None,
            });

            return channel_index;
        }
    }

    fn combine_with_getter_port(&mut self, getter: SyncSolutionGetterPort) -> usize {
        let channel_index = self.get_channel_index_for_getter(getter.peer_comp_id, getter.peer_port_id);
        if let Some(channel_index) = channel_index {
            let channel = &mut self.solution.channel_mapping[channel_index];
            debug_assert!(channel.getter.is_none());
            channel.getter = Some(getter);

            return channel_index;
        } else {
            let channel_index = self.solution.channel_mapping.len();
            self.solution.channel_mapping.push(SyncSolutionChannel{
                putter: None,
                getter: Some(getter)
            });

            return channel_index;
        }
    }

    /// Retrieve index of the channel containing a getter port that has received
    /// from the specified putter port.
    fn get_channel_index_for_putter(&self, putter_comp_id: CompId, putter_port_id: PortId) -> Option<usize> {
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
            if let Some(getter) = &channel.getter {
                if getter.peer_comp_id == putter_comp_id && getter.peer_port_id == putter_port_id {
                    return Some(channel_index);
                }
            }
        }

        return None;
    }

    /// Retrieve index of the channel for a getter port. To find this channel
    /// the **peer** component/port IDs of the getter port are used.
    fn get_channel_index_for_getter(&self, peer_comp_id: CompId, peer_port_id: PortId) -> Option<usize> {
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
            if let Some(putter) = &channel.putter {
                if putter.self_comp_id == peer_comp_id && putter.self_port_id == peer_port_id {
                    return Some(channel_index);
                }
            }
        }

        return None;
    }

    fn channel_is_consistent(channel: &SyncSolutionChannel) -> Option<bool> {
        if channel.putter.is_none() || channel.getter.is_none() {
            return None;
        }

        let putter = channel.putter.as_ref().unwrap();
        let getter = channel.getter.as_ref().unwrap();
        return Some(putter.mapping == getter.mapping);
    }

    /// Determines the global solution if all components have contributed their
    /// local solutions.
    fn update_solution(&mut self) {
        if self.matched_channels == self.solution.channel_mapping.len() {
            if self.solution.decision != SyncRoundDecision::Failure {
                self.solution.decision = SyncRoundDecision::Solution;
            }
        }
    }
}

/// Tracking consensus state
pub struct Consensus {
    // General state of consensus manager
    mapping_counter: u32,
    mode: Mode,
    // State associated with sync round
    round_index: u32,
    highest_id: CompId,
    ports: Vec<PortAnnotation>,
    // State associated with arriving at a solution and being a (temporary)
    // leader in the consensus round
    solution: SolutionCombiner,
}

impl Consensus {
    pub(crate) fn new() -> Self {
        return Self{
            round_index: 0,
            highest_id: CompId::new_invalid(),
            ports: Vec::new(),
            mapping_counter: 0,
            mode: Mode::NonSync,
            solution: SolutionCombiner::new(),
        }
    }

    // -------------------------------------------------------------------------
    // Managing sync state
    // -------------------------------------------------------------------------

    /// Notifies the consensus management that the PDL code has reached the
    /// start of a sync block.
    pub(crate) fn notify_sync_start(&mut self, comp_ctx: &CompCtx) {
        debug_assert_eq!(self.mode, Mode::NonSync);
        self.highest_id = comp_ctx.id;
        self.mapping_counter = 0;
        self.mode = Mode::SyncBusy;

        // Make the internally stored port annotation array consistent with the
        // ports that the component currently owns. They should match by index
        // (i.e. annotation at index `i` corresponds to port `i` in `comp_ctx`).
        let mut needs_setting_ports = false;
        if comp_ctx.num_ports() != self.ports.len() {
            needs_setting_ports = true;
        } else {
            for (idx, port) in comp_ctx.iter_ports().enumerate() {
                let comp_port_id = port.self_id;
                let cons_port_id = self.ports[idx].self_port_id;
                if comp_port_id != cons_port_id {
                    needs_setting_ports = true;
                    break;
                }
            }
        }

        if needs_setting_ports {
            // Reset all ports
            self.ports.clear();
            self.ports.reserve(comp_ctx.num_ports());
            for port in comp_ctx.iter_ports() {
                self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id, port.kind));
            }
        } else {
            // Make sure that we consider all peers as undiscovered again
            for annotation in self.ports.iter_mut() {
                annotation.peer_discovered = false;
            }
        }
    }

    /// Notifies the consensus management that the PDL code has reached the end
    /// of a sync block. A local solution will be submitted, after which we wait
    /// until the participants in the round (hopefully) reach a conclusion.
    pub(crate) fn notify_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
        debug_assert_eq!(self.mode, Mode::SyncBusy);
        self.mode = Mode::SyncAwaitingSolution;

        // Submit our port mapping as a solution
        let mut local_solution = Vec::with_capacity(self.ports.len());
        for port in &self.ports {
            if let Some(mapping) = port.mapping {
                let port_handle = comp_ctx.get_port_handle(port.self_port_id);
                let port_info = comp_ctx.get_port(port_handle);
                let new_entry = match port_info.kind {
                    PortKind::Putter => SyncLocalSolutionEntry::Putter(SyncSolutionPutterPort{
                        self_comp_id: comp_ctx.id,
                        self_port_id: port_info.self_id,
                        mapping
                    }),
                    PortKind::Getter => SyncLocalSolutionEntry::Getter(SyncSolutionGetterPort{
                        self_comp_id: comp_ctx.id,
                        self_port_id: port_info.self_id,
                        peer_comp_id: port.peer_comp_id,
                        peer_port_id: port.peer_port_id,
                        mapping
                    })
                };
                local_solution.push(new_entry);
            }
        }

        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
        return decision;
    }

    /// Notifies that a decision has been reached. Note that the caller should
    /// still take the appropriate actions based on the decision it is supplying
    /// to the consensus layer.
    pub(crate) fn notify_sync_decision(&mut self, _decision: SyncRoundDecision) {
        // Reset everything for the next round
        debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
        self.mode = Mode::NonSync;
        self.round_index = self.round_index.wrapping_add(1);

        for port in self.ports.iter_mut() {
            port.mapping = None;
        }

        self.solution.clear();
    }

    // -------------------------------------------------------------------------
    // Handling inbound and outbound messages
    // -------------------------------------------------------------------------

    /// Prepares a set of values to be sent of a channel.
    pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
        debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == port_info.self_id));
        let data_header = self.create_data_header_and_update_mapping(port_info);
        let sync_header = self.create_sync_header(comp_ctx);

        return DataMessage{ data_header, sync_header, content };
    }

    /// Handles the arrival of a new data message (needs to be called for every
    /// new data message, even though it might not end up being received). This
    /// is used to determine peers of `get`ter ports.
    // TODO: The use of this function is rather ugly. Find a more robust
    //  scheme about owners of `get`ter ports not knowing about their peers.
    //  (also, figure out why this was written again, I forgot).
    pub(crate) fn handle_incoming_data_message(&mut self, comp_ctx: &CompCtx, message: &DataMessage) {
        let target_handle = comp_ctx.get_port_handle(message.data_header.target_port);
        let target_index = comp_ctx.get_port_index(target_handle);
        let annotation = &mut self.ports[target_index];
        debug_assert!(
            !annotation.peer_discovered || (
                annotation.peer_comp_id == message.sync_header.sending_id &&
                annotation.peer_port_id == message.data_header.source_port
            )
        );
        annotation.peer_comp_id = message.sync_header.sending_id;
        annotation.peer_port_id = message.data_header.source_port;
        annotation.peer_discovered = true;
    }

    /// Checks if the data message can be received (due to port annotations), if
    /// it can then `true` is returned and the caller is responsible for handing
    /// the message of to the PDL code. Otherwise the message cannot be
    /// received.
    pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
        debug_assert_eq!(self.mode, Mode::SyncBusy);
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == message.data_header.target_port));

        // Make sure the expected mapping matches the currently stored mapping
        for (peer_port_kind, expected_annotation) in &message.data_header.expected_mapping {
            // Determine our annotation, in order to do so we need to find the
            // port matching the peer ports
            let mut self_annotation = None;
            let mut self_annotation_found = false;
            match peer_port_kind {
                PortAnnotationKind::Putter(peer_port) => {
                    for self_port in &self.ports {
                        if self_port.kind == PortKind::Getter &&
                            self_port.peer_discovered &&
                            self_port.peer_comp_id == peer_port.self_comp_id &&
                            self_port.peer_port_id == peer_port.self_port_id
                        {
                            self_annotation = self_port.mapping;
                            self_annotation_found = true;
                            break;
                        }
                    }
                },
                PortAnnotationKind::Getter(peer_port) => {
                    if peer_port.peer_comp_id == comp_ctx.id {
                        // Peer indicates that we talked to it
                        let self_port_handle = comp_ctx.get_port_handle(peer_port.peer_port_id);
                        let self_port_index = comp_ctx.get_port_index(self_port_handle);
                        self_annotation = self.ports[self_port_index].mapping;
                        self_annotation_found = true;
                    }
                }
            }

            if !self_annotation_found {
                continue
            }

            if self_annotation != *expected_annotation {
                return false;
            }
        }

        // Expected mapping matches current mapping, so we will receive the message
        self.set_annotation(message.sync_header.sending_id, &message.data_header);

        // Handle the sync header embedded within the data message
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);

        return true;
    }

    /// Receives the sync message and updates the consensus state appropriately.
    pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> SyncRoundDecision {
        // Whatever happens: handle the sync header (possibly changing the
        // currently registered leader)
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);

        match message.content {
            SyncMessageContent::NotificationOfLeader => {
                return SyncRoundDecision::None;
            },
            SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution);
            },
            SyncMessageContent::PartialSolution(partial_solution) => {
                return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
            },
            SyncMessageContent::GlobalSolution => {
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
                return SyncRoundDecision::Solution;
            },
            SyncMessageContent::GlobalFailure => {
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
                return SyncRoundDecision::Failure;
            }
        }
    }

    fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
        if header.highest_id.0 > self.highest_id.0 {
            // Sender knows of someone with a higher ID. So store highest ID,
            // notify all peers, and forward local solutions
            self.highest_id = header.highest_id;
            for peer in comp_ctx.iter_peers() {
                if peer.id == header.sending_id {
                    continue; // do not send to sender: it has the higher ID
                }

                // also: only send if we received a message in this round
                let mut performed_communication = false; // TODO: Revise, temporary fix
                for port in self.ports.iter() {
                    if port.peer_comp_id == peer.id && port.mapping.is_some() {
                        performed_communication = true;
                        break;
                    }
                }

                if !performed_communication {
                    continue;
                }

                let message = SyncMessage{
                    sync_header: self.create_sync_header(comp_ctx),
                    content: SyncMessageContent::NotificationOfLeader,
                };
                peer.handle.send_message(&sched_ctx.runtime, Message::Sync(message), true);
            }

            self.forward_partial_solution(sched_ctx, comp_ctx);
        } else if header.highest_id.0 < self.highest_id.0 {
            // Sender has a lower ID, so notify it of our higher one
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::NotificationOfLeader,
            };
            let peer_handle = comp_ctx.get_peer_handle(header.sending_id);
            let peer_info = comp_ctx.get_peer(peer_handle);
            peer_info.handle.send_message(&sched_ctx.runtime, Message::Sync(message), true);
        } // else: exactly equal
    }

    fn set_annotation(&mut self, source_comp_id: CompId, data_header: &MessageDataHeader) {
        for annotation in self.ports.iter_mut() {
            if annotation.self_port_id == data_header.target_port {
                // Message should have already passed the `handle_new_data_message` function, so we
                // should have already annotated the peer of the port.
                debug_assert!(
                    annotation.peer_discovered &&
                    annotation.peer_comp_id == source_comp_id &&
                    annotation.peer_port_id == data_header.source_port
                );
                annotation.mapping = Some(data_header.new_mapping);
            }
        }
    }

    // -------------------------------------------------------------------------
    // Leader-related methods
    // -------------------------------------------------------------------------

    fn forward_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
        debug_assert_ne!(self.highest_id, comp_ctx.id); // not leader

        // Make sure that we have something to send
        if !self.solution.has_contributions() {
            return;
        }

        // Swap the container with the partial solution and then send it along
        let partial_solution = self.solution.take_partial_solution();
        self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(SyncMessage{
            sync_header: self.create_sync_header(comp_ctx),
            content: SyncMessageContent::PartialSolution(partial_solution),
        }));
    }

    fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution) -> SyncRoundDecision {
        if self.highest_id == comp_ctx.id {
            // We are the leader
            self.solution.combine_with_local_solution(solution_sender_id, solution);
            let round_decision = self.solution.get_decision();
            if round_decision != SyncRoundDecision::None {
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
            }
            return round_decision;
        } else {
            // Forward the solution
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::LocalSolution(solution_sender_id, solution),
            };
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
            return SyncRoundDecision::None;
        }
    }

    fn handle_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, solution: SyncPartialSolution) -> SyncRoundDecision {
        if self.highest_id == comp_ctx.id {
            // We are the leader, combine existing and new solution
            self.solution.combine_with_partial_solution(solution);
            let round_decision = self.solution.get_decision();
            if round_decision != SyncRoundDecision::None {
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
            }
            return round_decision;
        } else {
            // Forward the partial solution
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::PartialSolution(solution),
            };
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
            return SyncRoundDecision::None;
        }
    }

    fn broadcast_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, decision: SyncRoundDecision) {
        debug_assert_eq!(self.highest_id, comp_ctx.id);

        let is_success = match decision {
            SyncRoundDecision::None => unreachable!(),
            SyncRoundDecision::Solution => true,
            SyncRoundDecision::Failure => false,
        };

        let mut peers = Vec::with_capacity(self.solution.solution.channel_mapping.len()); // TODO: @Performance

        for channel in self.solution.solution.channel_mapping.iter() {
            let getter = channel.getter.as_ref().unwrap();
            if getter.self_comp_id != comp_ctx.id && !peers.contains(&getter.self_comp_id) {
                peers.push(getter.self_comp_id);
            }
            if getter.peer_comp_id != comp_ctx.id && !peers.contains(&getter.peer_comp_id) {
                peers.push(getter.peer_comp_id);
            }
        }

        for peer in peers {
            let mut handle = sched_ctx.runtime.get_component_public(peer);
            let message = Message::Sync(SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: if is_success { SyncMessageContent::GlobalSolution } else { SyncMessageContent::GlobalFailure },
            });
            handle.send_message(&sched_ctx.runtime, message, true);
            let _should_remove = handle.decrement_users();
            debug_assert!(_should_remove.is_none());
        }
    }

    fn send_to_leader(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: Message) {
        debug_assert_ne!(self.highest_id, comp_ctx.id); // we're not the leader, // TODO: @NoDirectHandle
        let mut leader_info = sched_ctx.runtime.get_component_public(self.highest_id);
        leader_info.send_message(&sched_ctx.runtime, message, true);
        let should_remove = leader_info.decrement_users();
        if let Some(key) = should_remove {
            sched_ctx.runtime.destroy_component(key);
        }
    }

    // -------------------------------------------------------------------------
    // Creating message headers
    // -------------------------------------------------------------------------

    fn create_data_header_and_update_mapping(&mut self, port_info: &Port) -> MessageDataHeader {
        let mut expected_mapping = Vec::with_capacity(self.ports.len());
        let mut port_index = usize::MAX;
        for (index, port) in self.ports.iter().enumerate() {
            if port.self_port_id == port_info.self_id {
                port_index = index; // remember for later updating
            }

            // Add all of the
            let annotation_kind = match port.kind {
                PortKind::Putter => {
                    PortAnnotationKind::Putter(PortAnnotationPutter{
                        self_comp_id: port.self_comp_id,
                        self_port_id: port.self_port_id
                    })
                },
                PortKind::Getter => {
                    if !port.peer_discovered {
                        continue;
                    }

                    PortAnnotationKind::Getter(PortAnnotationGetter{
                        self_comp_id: port.self_comp_id,
                        self_port_id: port.self_port_id,
                        peer_comp_id: port.peer_comp_id,
                        peer_port_id: port.peer_port_id,
                    })
                }
            };
            expected_mapping.push((annotation_kind, port.mapping));
        }

        let new_mapping = self.take_mapping();
        self.ports[port_index].mapping = Some(new_mapping);
        debug_assert_eq!(port_info.kind, PortKind::Putter);
        return MessageDataHeader{
            expected_mapping,
            new_mapping,
            source_port: port_info.self_id,
            target_port: port_info.peer_port_id,
        };
    }

    #[inline]
    fn create_sync_header(&self, comp_ctx: &CompCtx) -> MessageSyncHeader {
        return MessageSyncHeader{
            sync_round: self.round_index,
            sending_id: comp_ctx.id,
            highest_id: self.highest_id,
        };
    }

    #[inline]
    fn take_mapping(&mut self) -> u32 {
        let mapping = self.mapping_counter;
        self.mapping_counter = self.mapping_counter.wrapping_add(1);
        return mapping;
    }
}