Files @ 6810fd00a570
Branch filter:

Location: CSY/reowolf/src/protocol/eval/mod.rs

6810fd00a570 32.9 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
initial (unused) ast executor
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/// eval
///
/// Evaluator of the generated AST. Note that we use some misappropriated terms
/// to describe where values live and what they do. This is a temporary
/// implementation of an evaluator until some kind of appropriate bytecode or
/// machine code is generated.
///
/// Code is always executed within a "frame". For Reowolf the first frame is
/// usually an executed component. All subsequent frames are function calls.
/// Simple values live on the "stack". Each variable/parameter has a place on
/// the stack where its values are stored. If the value is not a primitive, then
/// its value will be stored in the "heap". Expressions are treated differently
/// and use a separate "stack" for their evaluation.
///
/// Since this is a value-based language, most values are copied. One has to be
/// careful with values that reside in the "heap" and make sure that copies are
/// properly removed from the heap..
///
/// Just to reiterate: this is a temporary implementation. A proper
/// implementation would fully fill out the type table with alignment/size/
/// offset information and lay out bytecode.

mod value;

use std::collections::VecDeque;

use super::value::*;
use crate::PortId;
use crate::protocol::ast::*;
use crate::protocol::*;

struct HeapAllocation {
    values: Vec<Value>,
}

struct Store {
    // The stack where variables/parameters are stored. Note that this is a
    // non-shrinking stack. So it may be filled with garbage.
    stack: Vec<Value>,
    // Represents the place in the stack where we find the `PrevStackBoundary`
    // value containing the previous stack boundary. This is so we can pop from
    // the stack after function calls.
    cur_stack_boundary: usize,
    // A rather ridiculous simulated heap, but this allows us to "allocate"
    // things that occupy more then one stack slot.
    heap_regions: Vec<HeapAllocation>,
    free_regions: VecDeque<HeapPos>,
}

impl Store {
    fn new() -> Self {
        let mut store = Self{
            stack: Vec::with_capacity(64),
            cur_stack_boundary: 0,
            heap_regions: Vec::new(),
            free_regions: VecDeque::new(),
        };

        store.stack.push(Value::PrevStackBoundary(-1));
        store
    }

    /// Resizes(!) the stack to fit the required number of values. Any
    /// unallocated slots are initialized to `Unassigned`. The specified stack
    /// index is exclusive.
    fn reserve_stack(&mut self, unique_stack_idx: usize) {
        let new_size = self.cur_stack_boundary + unique_stack_idx + 1;
        if new_size > self.stack.len() {
            self.stack.resize(new_size, Value::Unassigned);
        }
    }

    /// Clears values on the stack and removes their heap allocations when
    /// applicable. The specified index itself will also be cleared (so if you
    /// specify 0 all values in the frame will be destroyed)
    fn clear_stack(&mut self, unique_stack_idx: usize) {
        let new_size = self.cur_stack_boundary + unique_stack_idx + 1;
        for idx in new_size..self.stack.len() {
            self.drop_value(&self.stack[idx]);
            self.stack[idx] = Value::Unassigned;
        }
    }

    /// Reads a value from a specific address. The value is always copied, hence
    /// if the value ends up not being written, one should call `drop_value` on
    /// it.
    fn read_copy(&mut self, address: ValueId) -> Value {
        match value {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return self.clone_value(&self.stack[cur_pos]);
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return self.clone_value(&self.heap_regions[heap_pos as usize].values[region_idx as usize])
            }
        }
    }

    /// Returns an immutable reference to the value pointed to by an address
    fn read_ref(&mut self, address: ValueId) -> &Value {
        match value {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return &self.stack[cur_pos];
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return &self.heap_regions[heap_pos as usize].values[region_idx as usize];
            }
        }
    }

    /// Returns a mutable reference to the value pointed to by an address
    fn read_mut_ref(&mut self, address: ValueId) -> &mut Value {
        match value {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                return &mut self.stack[cur_pos];
            },
            ValueId::Heap(heap_pos, region_idx) => {
                return &mut self.heap_regions[heap_pos as usize].values[region_idx as usize];
            }
        }
    }

    /// Writes a value
    fn write(&mut self, address: ValueId, value: Value) {
        match address {
            ValueId::Stack(pos) => {
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
                self.drop_value(&self.stack[cur_pos]);
                self.stack[cur_pos] = value;
            },
            ValueId::Heap(heap_pos, region_idx) => {
                let heap_pos = heap_pos as usize;
                let region_idx = region_idx as usize;
                self.drop_value(&self.heap_regions[heap_pos].values[region_idx]);
                self.heap_regions[heap_pos].values[region_idx] = value
            }
        }
    }

    fn clone_value(&mut self, value: &Value) -> Value {
        // Quickly check if the value is not on the heap
        let source_heap_pos = value.get_heap_pos();
        if source_heap_pos.is_none() {
            // We can do a trivial copy
            return value.clone();
        }

        // Value does live on heap, copy it
        let source_heap_pos = source_heap_pos.unwrap() as usize;
        let target_heap_pos = self.alloc_heap();
        let target_heap_pos_usize = target_heap_pos as usize;

        let num_values = self.heap_regions[source_heap_pos].values.len();
        for value_idx in 0..num_values {
            let cloned = self.clone_value(&self.heap_regions[source_heap_pos].values[value_idx]);
            self.heap_regions[target_heap_pos_usize].values.push(cloned);
        }

        match value {
            Value::Message(_) => Value::Message(target_heap_pos),
            Value::Array(_) => Value::Array(target_heap_pos),
            Value::Union(tag, _) => Value::Union(*tag, target_heap_pos),
            Value::Struct(_) => Value::Struct(target_heap_pos),
            _ => unreachable!("performed clone_value on heap, but {:?} is not a heap value", value),
        }
    }

    fn drop_value(&mut self, value: &Value) {
        if let Some(heap_pos) = value.get_heap_pos() {
            self.drop_heap_pos(heap_pos);
        }
    }

    fn drop_heap_pos(&mut self, heap_pos: HeapPos) {
        let num_values = self.heap_regions[heap_pos as usize].values.len();
        for value_idx in 0..num_values {
            if let Some(other_heap_pos) = self.heap_regions[heap_pos as usize].values[value_idx].get_heap_pos() {
                self.drop_heap_pos(other_heap_pos);
            }
        }

        self.heap_regions[heap_pos as usize].values.clear();
        self.free_regions.push_back(heap_pos);
    }

    fn alloc_heap(&mut self) -> HeapPos {
        if self.free_regions.is_empty() {
            let idx = self.heap_regions.len() as HeapPos;
            self.heap_regions.push(HeapAllocation{ values: Vec::new() });
            return idx;
        } else {
            let idx = self.free_regions.pop_back().unwrap();
            return idx;
        }
    }
}

enum ExprInstruction {
    EvalExpr(ExpressionId),
    PushValToFront,
}

struct Frame {
    definition: DefinitionId,
    position: StatementId,
    expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
    expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
}

impl Frame {
    /// Creates a new execution frame. Does not modify the stack in any way.
    pub fn new(heap: &Heap, definition_id: DefinitionId) -> Self {
        let definition = &heap[definition_id];
        let first_statement = match definition {
            Definition::Component(definition) => definition.body,
            Definition::Function(definition) => definition.body,
            _ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
        };

        Frame{
            definition: definition_id,
            position: first_statement.upcast(),
            expr_stack: VecDeque::with_capacity(128),
            expr_values: VecDeque::with_capacity(128),
        }
    }

    /// Prepares a single expression for execution. This involves walking the
    /// expression tree and putting them in the `expr_stack` such that
    /// continuously popping from its back will evaluate the expression. The
    /// results of each expression will be stored by pushing onto `expr_values`.
    pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
        debug_assert!(self.expr_stack.is_empty());
        self.expr_values.clear(); // May not be empty if last expression result(s) were discarded

        self.serialize_expression(heap, expr_id);
    }

    /// Prepares multiple expressions for execution (i.e. evaluating all
    /// function arguments or all elements of an array/union literal). Per
    /// expression this works the same as `prepare_single_expression`. However
    /// after each expression is evaluated we insert a `PushValToFront`
    /// instruction
    pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
        debug_assert!(self.expr_stack.is_empty());
        self.expr_values.clear();

        for expr_id in expr_ids {
            self.expr_stack.push_back(ExprInstruction::PushValToFront);
            self.serialize_expression(heap, *expr_id);
        }
    }

    /// Performs depth-first serialization of expression tree. Let's not care
    /// about performance for a temporary runtime implementation
    fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
        self.expr_stack.push_back(ExprInstruction::EvalExpr(id));

        match &heap[id] {
            Expression::Assignment(expr) => {
                self.serialize_expression(heap, expr.left);
                self.serialize_expression(heap, expr.right);
            },
            Expression::Binding(expr) => {
                todo!("implement binding expression");
            },
            Expression::Conditional(expr) => {
                self.serialize_expression(heap, expr.test);
            },
            Expression::Binary(expr) => {
                self.serialize_expression(heap, expr.left);
                self.serialize_expression(heap, expr.right);
            },
            Expression::Unary(expr) => {
                self.serialize_expression(heap, expr.expression);
            },
            Expression::Indexing(expr) => {
                self.serialize_expression(heap, expr.index);
                self.serialize_expression(heap, expr.subject);
            },
            Expression::Slicing(expr) => {
                self.serialize_expression(heap, expr.from_index);
                self.serialize_expression(heap, expr.to_index);
                self.serialize_expression(heap, expr.subject);
            },
            Expression::Select(expr) => {
                self.serialize_expression(heap, expr.subject);
            },
            Expression::Literal(expr) => {
                // Here we only care about literals that have subexpressions
                match &expr.value {
                    Literal::Null | Literal::True | Literal::False |
                    Literal::Character(_) | Literal::String(_) |
                    Literal::Integer(_) | Literal::Enum(_) => {
                        // No subexpressions
                    },
                    Literal::Struct(literal) => {
                        for field in &literal.fields {
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
                            self.serialize_expression(heap, field.value);
                        }
                    },
                    Literal::Union(literal) => {
                        for value_expr_id in &literal.values {
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
                            self.serialize_expression(heap, *value_expr_id);
                        }
                    },
                    Literal::Array(value_expr_ids) => {
                        for value_expr_id in value_expr_ids {
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
                            self.serialize_expression(heap, *value_expr_id);
                        }
                    }
                }
            },
            Expression::Call(expr) => {
                for arg_expr_id in &expr.arguments {
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
                    self.serialize_expression(heap, *arg_expr_id);
                }
            },
            Expression::Variable(expr) => {
                // No subexpressions
            }
        }
    }
}

type EvalResult = Result<(), EvalContinuation>;
pub enum EvalContinuation {
    Stepping,
    Inconsistent,
    Terminal,
    SyncBlockStart,
    SyncBlockEnd,
    NewComponent(DefinitionId, Vec<Value>),
    BlockFires(Value),
    BlockGet(Value),
    Put(Value, Value),
}

pub struct Prompt {
    frames: Vec<Frame>,
    store: Store,
}

impl Prompt {
    pub fn new(heap: &Heap, def: DefinitionId) -> Self {
        let mut prompt = Self{
            frames: Vec::new(),
            store: Store::new(),
        };

        prompt.frames.push(Frame::new(heap, def));
        prompt
    }

    pub fn step(&mut self, heap: &Heap, ctx: &mut EvalContext) -> EvalResult {
        let cur_frame = self.frames.last_mut().unwrap();
        if cur_frame.position.is_invalid() {
            if heap[cur_frame.definition].is_function() {
                todo!("End of function without return, return an evaluation error");
            }
            return Err(EvalContinuation::Terminal);
        }

        while !cur_frame.expr_stack.is_empty() {
            let next = cur_frame.expr_stack.pop_back().unwrap();
            match next {
                ExprInstruction::PushValToFront => {
                    cur_frame.expr_values.rotate_right(1);
                },
                ExprInstruction::EvalExpr(expr_id) => {
                    let expr = &heap[expr_id];
                    match expr {
                        Expression::Assignment(expr) => {
                            let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
                            apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
                            cur_frame.expr_values.push_back(self.store.read_copy(to));
                            self.store.drop_value(&rhs);
                        },
                        Expression::Binding(_expr) => {
                            todo!("Binding expression");
                        },
                        Expression::Conditional(expr) => {
                            // Evaluate testing expression, then extend the
                            // expression stack with the appropriate expression
                            let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
                            if test_result {
                                cur_frame.serialize_expression(heap, expr.true_expression);
                            } else {
                                cur_frame.serialize_expression(heap, expr.false_expression);
                            }
                        },
                        Expression::Binary(expr) => {
                            let lhs = cur_frame.expr_values.pop_back().unwrap();
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
                            let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
                            cur_frame.expr_values.push_back(result);
                            self.store.drop_value(&lhs);
                            self.store.drop_value(&rhs);
                        },
                        Expression::Unary(expr) => {
                            let val = cur_frame.expr_values.pop_back().unwrap();
                            let result = apply_unary_operator(&mut self.store, expr.operation, &val);
                            cur_frame.expr_values.push_back(result);
                            self.store.drop_value(&val);
                        },
                        Expression::Indexing(expr) => {
                            // TODO: Out of bounds checking
                            // Evaluate index. Never heap allocated so we do
                            // not have to drop it.
                            let index = cur_frame.expr_values.pop_back().unwrap();
                            let index = match &index {
                                Value::Ref(value_ref) => self.store.read_ref(*value_ref),
                                index => index,
                            };
                            debug_assert!(deref.is_integer());
                            let index = if index.is_signed_integer() {
                                index.as_signed_integer() as u32
                            } else {
                                index.as_unsigned_integer() as u32
                            };

                            let subject = cur_frame.expr_values.pop_back().unwrap();
                            let heap_pos = match val {
                                Value::Ref(value_ref) => self.store.read_ref(value_ref).as_array(),
                                val => val.as_array(),
                            };

                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, index)));
                            self.store.drop_value(&subject);
                        },
                        Expression::Slicing(expr) => {
                            // TODO: Out of bounds checking
                            todo!("implement slicing")
                        },
                        Expression::Select(expr) => {
                            let subject= cur_frame.expr_values.pop_back().unwrap();
                            let heap_pos = match &subject {
                                Value::Ref(value_ref) => self.store.read_ref(*value_ref).as_struct(),
                                subject => subject.as_struct(),
                            };

                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, expr.field.as_symbolic().field_idx as u32)));
                            self.store.drop_value(&subject);
                        },
                        Expression::Literal(expr) => {
                            let value = match &expr.value {
                                Literal::Null => Value::Null,
                                Literal::True => Value::Bool(true),
                                Literal::False => Value::Bool(false),
                                Literal::Character(lit_value) => Value::Char(*lit_value),
                                Literal::String(lit_value) => {
                                    let heap_pos = self.store.alloc_heap();
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
                                    let value = lit_value.as_str();
                                    debug_assert!(values.is_empty());
                                    values.reserve(value.len());
                                    for character in value.as_bytes() {
                                        debug_assert!(character.is_ascii());
                                        values.push(Value::Char(*character as char));
                                    }
                                    Value::String(heap_pos)
                                }
                                Literal::Integer(lit_value) => {
                                    use ConcreteTypePart as CTP;
                                    debug_assert_eq!(expr.concrete_type.parts.len(), 1);
                                    match expr.concrete_type.parts[0] {
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
                                        _ => unreachable!(),
                                    }
                                }
                                Literal::Struct(lit_value) => {
                                    let heap_pos = self.store.alloc_heap();
                                    let num_fields = lit_value.fields.len();
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
                                    debug_assert!(values.is_empty());
                                    values.reserve(num_fields);
                                    for _ in 0..num_fields {
                                        values.push(cur_frame.expr_values.pop_front().unwrap());
                                    }
                                    Value::Struct(heap_pos)
                                }
                                Literal::Enum(lit_value) => {
                                    Value::Enum(lit_value.variant_idx as i64);
                                }
                                Literal::Union(lit_value) => {
                                    let heap_pos = self.store.alloc_heap();
                                    let num_values = lit_value.values.len();
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
                                    debug_assert!(values.is_empty());
                                    values.reserve(num_values);
                                    for _ in 0..num_values {
                                        values.push(cur_frame.expr_values.pop_front().unwrap());
                                    }
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
                                }
                                Literal::Array(lit_value) => {
                                    let heap_pos = self.store.alloc_heap();
                                    let num_values = lit_value.len();
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
                                    debug_assert!(values.is_empty());
                                    values.reserve(num_values);
                                    for _ in 0..num_values {
                                        values.push(cur_frame.expr_values.pop_front().unwrap())
                                    }
                                }
                            };

                            cur_frame.expr_values.push_back(value);
                        },
                        Expression::Call(expr) => {
                            // Push a new frame. Note that all expressions have
                            // been pushed to the front, so they're in the order
                            // of the definition.
                            let num_args = expr.arguments.len();

                            // Prepare stack for a new frame
                            let cur_stack_boundary = self.store.cur_stack_boundary;
                            self.store.cur_stack_boundary = self.store.stack.len();
                            self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
                            for _ in 0..num_args {
                                self.store.stack.push(cur_frame.expr_values.pop_front().unwrap());
                            }

                            // Push the new frame
                            self.frames.push(Frame::new(heap, expr.definition));

                            // To simplify the logic a little bit we will now
                            // return and ask our caller to call us again
                            return Err(EvalContinuation::Stepping);
                        },
                        Expression::Variable(expr) => {
                            let variable = &heap[expr.declaration.unwrap()];
                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos)));
                        }
                    }
                }
            }
        }

        // No (more) expressions to evaluate. So evaluate statement (that may
        // depend on the result on the last evaluated expression(s))
        let stmt = &heap[cur_frame.position];
        let return_value = match stmt {
            Statement::Block(stmt) => {
                // Reserve space on stack, but also make sure excess stack space
                // is cleared
                self.store.clear_stack(stmt.first_unique_id_in_scope as usize);
                self.store.reserve_stack(stmt.next_unique_id_in_scope as usize);
                cur_frame.position = stmt.statements[0];

                Ok(())
            },
            Statement::Local(stmt) => {
                match stmt {
                    LocalStatement::Memory(stmt) => {
                        let variable = &heap[stmt.variable];
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);

                        cur_frame.position = stmt.next;
                    },
                    LocalStatement::Channel(stmt) => {
                        let [from_value, to_value] = ctx.new_channel();
                        self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), from_value);
                        self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), to_value);

                        cur_frame.position = stmt.next;
                    }
                }

                Ok(())
            },
            Statement::Labeled(stmt) => {
                cur_frame.position = stmt.body;

                Ok(())
            },
            Statement::If(stmt) => {
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
                let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
                if test_value {
                    cur_frame.position = stmt.true_body.upcast();
                } else if let Some(false_body) = stmt.false_body {
                    cur_frame.position = false_body.upcast();
                } else {
                    // Not true, and no false body
                    cur_frame.position = stmt.end_if.unwrap().upcast();
                }

                Ok(())
            },
            Statement::EndIf(stmt) => {
                cur_frame.position = stmt.next;
                Ok(())
            },
            Statement::While(stmt) => {
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
                let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
                if test_value {
                    cur_frame.position = stmt.body.upcast();
                } else {
                    cur_frame.position = stmt.end_while.unwrap().upcast();
                }

                Ok(())
            },
            Statement::EndWhile(stmt) => {
                cur_frame.position = stmt.next;

                Ok(())
            },
            Statement::Break(stmt) => {
                cur_frame.position = stmt.target.unwrap().upcast();

                Ok(())
            },
            Statement::Continue(stmt) => {
                cur_frame.position = stmt.target.unwrap().upcast();

                Ok(())
            },
            Statement::Synchronous(stmt) => {
                cur_frame.position = stmt.body.upcast();

                Err(EvalContinuation::SyncBlockStart)
            },
            Statement::EndSynchronous(stmt) => {
                cur_frame.position = stmt.next;

                Err(EvalContinuation::SyncBlockEnd)
            },
            Statement::Return(stmt) => {
                debug_assert!(heap[cur_frame.definition].is_function());
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");

                // Clear any values in the current stack frame
                self.store.clear_stack(0);

                // The preceding frame has executed a call, so is expecting the
                // return expression on its expression value stack.
                let return_value = cur_frame.expr_values.pop_back().unwrap();
                let prev_stack_idx = self.store.stack[self.store.cur_stack_boundary].as_stack_boundary();
                debug_assert!(prev_stack_idx >= 0);
                self.store.cur_stack_boundary = prev_stack_idx as usize;
                self.frames.pop();
                let cur_frame = self.frames.last_mut().unwrap();
                cur_frame.expr_values.push_back(return_value);

                // Immediately return, we don't care about the current frame
                // anymore and there is nothing left to evaluate
                return Ok(());
            },
            Statement::Goto(stmt) => {
                cur_frame.position = stmt.target.unwrap().upcast();

                Ok(())
            },
            Statement::New(stmt) => {
                let call_expr = &heap[stmt.expression];
                debug_assert!(heap[call_expr.definition].is_component());
                debug_assert_eq!(
                    cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
                    "mismatch in expr stack size and number of arguments for new statement"
                );

                // Note that due to expression value evaluation they exist in
                // reverse order on the stack.
                // TODO: Revise this code, keep it as is to be compatible with current runtime
                let mut args = Vec::new();
                while let Some(value) = cur_frame.expr_values.pop_front() {
                    args.push(value);
                }

                cur_frame.position = stmt.next;

                todo!("Make sure this is handled correctly, transfer 'heap' values to another Prompt");
                Err(EvalContinuation::NewComponent(call_expr.definition, args))
            },
            Statement::Expression(stmt) => {
                // The expression has just been completely evaluated. Some
                // values might have remained on the expression value stack.
                cur_frame.expr_values.clear();
                cur_frame.position = stmt.next;

                Ok(())
            },
        };

        // If the next statement requires evaluating expressions then we push
        // these onto the expression stack. This way we will evaluate this
        // stack in the next loop, then evaluate the statement using the result
        // from the expression evaluation.
        if !cur_frame.position.is_invalid() {
            let stmt = &heap[cur_frame.position];

            match stmt {
                Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
                Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
                Statement::Return(stmt) => {
                    debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
                    cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
                },
                Statement::New(stmt) => {
                    // Note that we will end up not evaluating the call itself.
                    // Rather we will evaluate its expressions and then
                    // instantiate the component upon reaching the "new" stmt.
                    let call_expr = &heap[stmt.expression];
                    cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
                },
                Statement::Expression(stmt) => {
                    cur_frame.prepare_single_expression(heap, stmt.expression);
                }
                _ => {},
            }
        }

        return_value
    }
}