Files
@ 6810fd00a570
Branch filter:
Location: CSY/reowolf/src/protocol/eval/value.rs
6810fd00a570
13.5 KiB
application/rls-services+xml
initial (unused) ast executor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
use crate::PortId;
use crate::protocol::ast::{
AssignmentOperator,
BinaryOperator,
UnaryOperator,
};
use crate::protocol::eval::Store;
pub type StackPos = u32;
pub type HeapPos = u32;
#[derive(Copy, Clone)]
pub enum ValueId {
Stack(StackPos), // place on stack
Heap(HeapPos, u32), // allocated region + values within that region
}
#[derive(Debug, Clone)]
pub enum Value {
// Special types, never encountered during evaluation if the compiler works correctly
Unassigned, // Marker when variables are first declared, immediately followed by assignment
PrevStackBoundary(isize), // Marker for stack frame beginning, so we can pop stack values
Ref(ValueId), // Reference to a value, used by expressions producing references
// Builtin types
Input(PortId),
Output(PortId),
Message(HeapPos),
Null,
Bool(bool),
Char(char),
String(HeapPos),
UInt8(u8),
UInt16(u16),
UInt32(u32),
UInt64(u64),
SInt8(i8),
SInt16(i16),
SInt32(i32),
SInt64(i64),
Array(HeapPos),
// Instances of user-defined types
Enum(i64),
Union(i64, HeapPos),
Struct(HeapPos),
}
macro_rules! impl_union_unpack_as_value {
($func_name:ident, $variant_name:path, $return_type:ty) => {
impl Value {
pub(crate) fn $func_name(&self) -> $return_type {
match self {
$variant_name(v) => *v,
_ => panic!(concat!("called ", stringify!($func_name()), " on {:?}"), self),
}
}
}
}
}
impl_union_unpack_as_value!(as_stack_boundary, Value::PrevStackBoundary, isize);
impl_union_unpack_as_value!(as_ref, Value::Ref, ValueId);
impl_union_unpack_as_value!(as_input, Value::Input, PortId);
impl_union_unpack_as_value!(as_output, Value::Output, PortId);
impl_union_unpack_as_value!(as_message, Value::Message, HeapPos);
impl_union_unpack_as_value!(as_bool, Value::Bool, bool);
impl_union_unpack_as_value!(as_char, Value::Char, char);
impl_union_unpack_as_value!(as_string, Value::String, HeapPos);
impl_union_unpack_as_value!(as_uint8, Value::UInt8, u8);
impl_union_unpack_as_value!(as_uint16, Value::UInt16, u16);
impl_union_unpack_as_value!(as_uint32, Value::UInt32, u32);
impl_union_unpack_as_value!(as_uint64, Value::UInt64, u64);
impl_union_unpack_as_value!(as_sint8, Value::SInt8, i8);
impl_union_unpack_as_value!(as_sint16, Value::SInt16, i16);
impl_union_unpack_as_value!(as_sint32, Value::SInt32, i32);
impl_union_unpack_as_value!(as_sint64, Value::SInt64, i64);
impl_union_unpack_as_value!(as_array, Value::Array, HeapPos);
impl_union_unpack_as_value!(as_enum, Value::Enum, i64);
impl_union_unpack_as_value!(as_struct, Value::Struct, HeapPos);
impl Value {
pub(crate) fn as_union(&self) -> (i64, HeapPos) {
match self {
Value::Union(tag, v) => (*tag, *v),
_ => panic!("called as_union on {:?}", self),
}
}
pub(crate) fn is_integer(&self) -> bool {
match self {
Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
_ => false
}
}
pub(crate) fn is_unsigned_integer(&self) -> bool {
match self {
Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
_ => false
}
}
pub(crate) fn is_signed_integer(&self) -> bool {
match self {
Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
_ => false
}
}
pub(crate) fn as_unsigned_integer(&self) -> u64 {
match self {
Value::UInt8(v) => *v as u64,
Value::UInt16(v) => *v as u64,
Value::UInt32(v) => *v as u64,
Value::UInt64(v) => *v as u64,
_ => unreachable!("called as_unsigned_integer on {:?}", self),
}
}
pub(crate) fn as_signed_integer(&self) -> i64 {
match self {
Value::SInt8(v) => *v as i64,
Value::SInt16(v) => *v as i64,
Value::SInt32(v) => *v as i64,
Value::SInt64(v) => *v as i64,
_ => unreachable!("called as_signed_integer on {:?}", self)
}
}
/// Returns the heap position associated with the value. If the value
/// doesn't store anything in the heap then we return `None`.
pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
match self {
Value::Message(v) => Some(*v),
Value::Array(v) => Some(*v),
Value::Union(_, v) => Some(*v),
Value::Struct(v) => Some(*v),
_ => None
}
}
}
/// Applies the assignment operator. If a heap position is returned then that
/// heap position should be cleared
pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueRef, op: AssignmentOperator, rhs: Value) {
use AssignmentOperator as AO;
macro_rules! apply_int_op {
($lhs:ident, $assignment_tokens:tt, $operator:ident, $rhs:ident) => {
match $lhs {
Value::UInt8(v) => { *v $assignment_tokens $rhs.as_uint8(); },
Value::UInt16(v) => { *v $assignment_tokens $rhs.as_uint16(); },
Value::UInt32(v) => { *v $assignment_tokens $rhs.as_uint32(); },
Value::UInt64(v) => { *v $assignment_tokens $rhs.as_uint64(); },
Value::SInt8(v) => { *v $assignment_tokens $rhs.as_sint8(); },
Value::SInt16(v) => { *v $assignment_tokens $rhs.as_sint16(); },
Value::SInt32(v) => { *v $assignment_tokens $rhs.as_sint32(); },
Value::SInt64(v) => { *v $assignment_tokens $rhs.as_sint64(); },
_ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs),
}
}
}
let lhs = store.read_mut_ref(lhs);
let mut to_dealloc = None;
match AO {
AO::Set => {
match lhs {
Value::Unassigned => { *lhs = rhs; },
Value::Input(v) => { *v = rhs.as_input(); },
Value::Output(v) => { *v = rhs.as_output(); },
Value::Message(v) => { to_dealloc = Some(*v); *v = rhs.as_message(); },
Value::Bool(v) => { *v = rhs.as_bool(); },
Value::Char(v) => { *v = rhs.as_char(); },
Value::String(v) => { *v = rhs.as_string().clone(); },
Value::UInt8(v) => { *v = rhs.as_uint8(); },
Value::UInt16(v) => { *v = rhs.as_uint16(); },
Value::UInt32(v) => { *v = rhs.as_uint32(); },
Value::UInt64(v) => { *v = rhs.as_uint64(); },
Value::SInt8(v) => { *v = rhs.as_sint8(); },
Value::SInt16(v) => { *v = rhs.as_sint16(); },
Value::SInt32(v) => { *v = rhs.as_sint32(); },
Value::SInt64(v) => { *v = rhs.as_sint64(); },
Value::Array(v) => { to_dealloc = Some(*v); *v = rhs.as_array(); },
Value::Enum(v) => { *v = rhs.as_enum(); },
Value::Union(lhs_tag, lhs_heap_pos) => {
to_dealloc = Some(*lhs_heap_pos);
let (rhs_tag, rhs_heap_pos) = rhs.as_union();
*lhs_tag = rhs_tag;
*lhs_heap_pos = rhs_heap_pos;
}
Value::Struct(v) => { to_dealloc = Some(*v); *v = rhs.as_struct(); },
_ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs),
}
},
AO::Multiplied => { apply_int_op!(lhs, *=, op, rhs) },
AO::Divided => { apply_int_op!(lhs, /=, op, rhs) },
AO::Remained => { apply_int_op!(lhs, %=, op, rhs) },
AO::Added => { apply_int_op!(lhs, +=, op, rhs) },
AO::Subtracted => { apply_int_op!(lhs, -=, op, rhs) },
AO::ShiftedLeft => { apply_int_op!(lhs, <<=, op, rhs) },
AO::ShiftedRight => { apply_int_op!(lhs, >>=, op, rhs) },
AO::BitwiseAnded => { apply_int_op!(lhs, &=, op, rhs) },
AO::BitwiseXored => { apply_int_op!(lhs, ^=, op, rhs) },
AO::BitwiseOred => { apply_int_op!(lhs, |=, op, rhs) },
}
if let Some(heap_pos) = to_dealloc {
store.drop_heap_pos(heap_pos);
}
}
pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOperator, rhs: &Value) -> Value {
use BinaryOperator as BO;
macro_rules! apply_int_op_and_return {
($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
return match $lhs {
Value::UInt8(v) => { Value::UInt8( *v $operator_tokens $rhs.as_uint8() ); },
Value::UInt16(v) => { Value::UInt16(*v $operator_tokens $rhs.as_uint16()); },
Value::UInt32(v) => { Value::UInt32(*v $operator_tokens $rhs.as_uint32()); },
Value::UInt64(v) => { Value::UInt64(*v $operator_tokens $rhs.as_uint64()); },
Value::SInt8(v) => { Value::SInt8( *v $operator_tokens $rhs.as_sint8() ); },
Value::SInt16(v) => { Value::SInt16(*v $operator_tokens $rhs.as_sint16()); },
Value::SInt32(v) => { Value::SInt32(*v $operator_tokens $rhs.as_sint32()); },
Value::SInt64(v) => { Value::SInt64(*v $operator_tokens $rhs.as_sint64()); },
_ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
};
}
}
match op {
BO::Concatenate => {
let lhs_heap_pos;
let rhs_heap_pos;
let construct_fn;
match lhs {
Value::Message(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = rhs.as_message();
construct_fn = |pos: HeapPos| Value::Message(pos);
},
Value::String(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = rhs.as_string();
construct_fn = |pos: HeapPos| Value::String(pos);
},
Value::Array(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = *rhs.as_array();
construct_fn = |pos: HeapPos| Value::Array(pos);
},
_ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
}
let target_heap_pos = store.alloc_heap();
let target = &mut store.heap_regions[target_heap_pos as usize].values;
target.extend(&store.heap_regions[lhs_heap_pos as usize].values);
target.extend(&store.heap_regions[rhs_heap_pos as usize].values);
return construct_fn(target_heap_pos);
},
BO::LogicalOr => {
return Value::Bool(lhs.as_bool() || rhs.as_bool());
},
BO::LogicalAnd => {
return Value::Bool(lhs.as_bool() && rhs.as_bool());
},
BO::BitwiseOr => { apply_int_op_and_return!(lhs, |, op, rhs); },
BO::BitwiseXor => { apply_int_op_and_return!(lhs, ^, op, rhs); },
BO::BitwiseAnd => { apply_int_op_and_return!(lhs, &, op, rhs); },
BO::Equality => { todo!("implement") },
BO::Inequality => { todo!("implement") },
BO::LessThan => { apply_int_op_and_return!(lhs, <, op, rhs); },
BO::GreaterThan => { apply_int_op_and_return!(lhs, >, op, rhs); },
BO::LessThanEqual => { apply_int_op_and_return!(lhs, <=, op, rhs); },
BO::GreaterThanEqual => { apply_int_op_and_return!(lhs, >=, op, rhs); },
BO::ShiftLeft => { apply_int_op_and_return!(lhs, <<, op, rhs); },
BO::ShiftRight => { apply_int_op_and_return!(lhs, >>, op, rhs); },
BO::Add => { apply_int_op_and_return!(lhs, +, op, rhs); },
BO::Subtract => { apply_int_op_and_return!(lhs, -, op, rhs); },
BO::Multiply => { apply_int_op_and_return!(lhs, *, op, rhs); },
BO::Divide => { apply_int_op_and_return!(lhs, /, op, rhs); },
BO::Remainder => { apply_int_op_and_return!(lhs, %, op, rhs); }
}
}
pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value: &Value) -> Value {
use UnaryOperator as UO;
macro_rules! apply_int_expr_and_return {
($value:ident, $apply:expr, $op:ident) => {
return match $value {
Value::UInt8(v) => Value::UInt8($apply),
Value::UInt16(v) => Value::UInt16($apply),
Value::UInt32(v) => Value::UInt32($apply),
Value::UInt64(v) => Value::UInt64($apply),
Value::SInt8(v) => Value::SInt8($apply),
Value::SInt16(v) => Value::SInt16($apply),
Value::SInt32(v) => Value::SInt32($apply),
Value::SInt64(v) => Value::SInt64($apply),
_ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
};
}
}
match op {
UO::Positive => { apply_int_expr_and_return!(value, *v, op) },
UO::Negative => { apply_int_expr_and_return!(value, *v, op) },
UO::BitwiseNot => { apply_int_expr_and_return!(value, *v, op)},
UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
UO::PreIncrement => { todo!("implement") },
UO::PreDecrement => { todo!("implement") },
UO::PostIncrement => { todo!("implement") },
UO::PostDecrement => { todo!("implement") },
}
}
|