Files
@ 685eb9d4ae13
Branch filter:
Location: CSY/reowolf/src/runtime/bits.rs
685eb9d4ae13
9.8 KiB
application/rls-services+xml
properties as rows works much better
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | use crate::common::*;
/// Converts an iterator over contiguous u32 chunks into an iterator over usize
/// e.g. input [0b111000, 0b11] gives output [3, 4, 5, 32, 33]
/// observe that the bits per chunk are ordered from least to most significant bits, yielding smaller to larger usizes.
/// works by draining the inner u32 chunk iterator one u32 at a time, then draining that chunk until its 0.
struct BitChunkIter<I: Iterator<Item = u32>> {
chunk_iter: I,
next_bit_index: u32,
cached: u32,
}
impl<I: Iterator<Item = u32>> BitChunkIter<I> {
fn new(chunk_iter: I) -> Self {
// first chunk is always a dummy zero, as if chunk_iter yielded Some(0).
// Consequences:
// 1. our next_bit_index is always off by 32 (we correct for it in Self::next) (no additional overhead)
// 2. we cache u32 and not Option<u32>, because chunk_iter.next() is only called in Self::next.
Self { chunk_iter, next_bit_index: 0, cached: 0 }
}
}
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
let mut chunk = self.cached;
// loop until either:
// 1. there are no more Items to return, or
// 2. chunk encodes 1+ Items, one of which we will return.
while chunk == 0 {
// chunk is still empty! get the next one...
chunk = self.chunk_iter.next()?;
// ... and jump self.next_bit_index to the next multiple of 32.
self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
}
// assert(chunk > 0);
// Shift the contents of chunk until the least significant bit is 1.
// ... being sure to increment next_bit_index accordingly.
#[inline(always)]
fn skip_n_zeroes(chunk: &mut u32, n: u32, next_bit_index: &mut u32) {
if *chunk & ((1 << n) - 1) == 0 {
// n least significant bits are zero. skip n bits.
*next_bit_index += n;
*chunk >>= n;
}
}
skip_n_zeroes(&mut chunk, 16, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 08, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 04, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 02, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 01, &mut self.next_bit_index);
// least significant bit of chunk is 1.
// assert(chunk & 1 == 1)
// prepare our state for the next time Self::next is called.
// Overwrite self.cached such that its shifted state is retained,
// and jump over the bit whose index we are about to return.
self.next_bit_index += 1;
self.cached = chunk >> 1;
// returned index is 32 smaller than self.next_bit_index because we use an
// off-by-32 encoding to avoid having to cache an Option<u32>.
Some(self.next_bit_index - 1 - 32)
}
}
/* --properties-->
___ ___ ___ ___
|___|___|___|___|
| |___|___|___|___|
| |___|___|___|___|
| |___|___|___|___|
|
V
entity chunks (groups of 32)
*/
// TODO newtypes Entity and Property
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
struct Pair {
entity: u32,
property: u32,
}
impl From<[u32; 2]> for Pair {
fn from([entity, property]: [u32; 2]) -> Self {
Pair { entity, property }
}
}
struct BitMatrix {
bounds: Pair,
buffer: *mut u32,
}
impl Drop for BitMatrix {
fn drop(&mut self) {
let total_chunks = Self::row_chunks(self.bounds.property) as usize
* Self::column_chunks(self.bounds.entity) as usize;
let layout = Self::layout_for(total_chunks);
unsafe {
// ?
std::alloc::dealloc(self.buffer as *mut u8, layout);
}
}
}
impl Debug for BitMatrix {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
let row_chunks = Self::row_chunks(self.bounds.property) as usize;
let column_chunks = Self::column_chunks(self.bounds.entity) as usize;
for property in 0..row_chunks {
for entity_chunk in 0..column_chunks {
write!(f, "|")?;
let mut chunk = unsafe { *self.buffer.add(row_chunks * entity_chunk + property) };
let end =
if entity_chunk + 1 == column_chunks { self.bounds.entity % 32 } else { 32 };
for _ in 0..end {
let c = match chunk & 1 {
0 => '0',
_ => '1',
};
write!(f, "{}", c)?;
chunk >>= 1;
}
}
write!(f, "|\n")?;
}
Ok(())
}
}
impl BitMatrix {
#[inline]
fn ceiling_to_mul_32(value: u32) -> u32 {
(value + 31) & !31
}
#[inline]
fn row_of(entity: u32) -> u32 {
entity / 32
}
#[inline]
fn row_chunks(property_bound: u32) -> u32 {
property_bound
}
#[inline]
fn column_chunks(entity_bound: u32) -> u32 {
Self::ceiling_to_mul_32(entity_bound) / 32
}
#[inline]
fn offsets_unchecked(&self, at: Pair) -> [usize; 2] {
let o_in = at.entity as usize % 32;
let row = Self::row_of(at.entity);
let row_chunks = self.bounds.property;
let o_of = row as usize * row_chunks as usize + at.property as usize;
[o_of, o_in]
}
// returns a u32 which has bits 000...000111...111
// for the last JAGGED chunk given the column size
// if the last chunk is not jagged (when entity_bound % 32 == 0)
// None is returned,
// otherwise Some(x) is returned such that x & chunk would mask out
// the bits NOT in 0..entity_bound
fn last_row_chunk_mask(entity_bound: u32) -> Option<u32> {
let zero_prefix_len = entity_bound % 32;
if zero_prefix_len == 0 {
None
} else {
Some(!0u32 >> (32 - zero_prefix_len))
}
}
fn assert_within_bounds(&self, at: Pair) {
assert!(at.entity < self.bounds.entity);
assert!(at.property < self.bounds.property);
}
/////////
fn reshape(&mut self, dims: [usize; 2]) {
todo!()
}
fn new(bounds: Pair) -> Self {
let total_chunks = Self::row_chunks(bounds.property) as usize
* Self::column_chunks(bounds.entity) as usize;
let layout = Self::layout_for(total_chunks);
let buffer;
unsafe {
buffer = std::alloc::alloc(layout) as *mut u32;
buffer.write_bytes(0u8, total_chunks);
};
Self { buffer, bounds }
}
fn set(&mut self, at: Pair) {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { *self.buffer.add(o_of) |= 1 << o_in };
}
fn unset(&mut self, at: Pair) {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { *self.buffer.add(o_of) &= !(1 << o_in) };
}
fn test(&self, at: Pair) -> bool {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { (*self.buffer.add(o_of) & 1 << o_in) != 0 }
}
fn batch_mut<'a, 'b>(&mut self, mut chunk_mut_fn: impl FnMut(&'b mut [u32])) {
let row_chunks = Self::row_chunks(self.bounds.property) as usize;
let column_chunks = Self::column_chunks(self.bounds.entity);
let mut ptr = self.buffer;
for _row in 0..column_chunks {
let slice;
unsafe {
slice = std::slice::from_raw_parts_mut(ptr, row_chunks);
ptr = ptr.add(row_chunks);
}
chunk_mut_fn(slice);
}
if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
// TODO TEST
let mut ptr =
unsafe { self.buffer.add((column_chunks - 1) as usize * row_chunks as usize) };
for _ in 0..row_chunks {
unsafe {
*ptr &= mask;
ptr = ptr.add(1);
}
}
}
}
fn iter_entities_where<'a, 'b>(
&'a self,
buf: &'b mut Vec<u32>,
mut fold_fn: impl FnMut(&'b [u32]) -> u32,
) -> impl Iterator<Item = u32> + 'b {
let buf_start = buf.len();
let row_chunks = Self::row_chunks(self.bounds.property) as usize;
let column_chunks = Self::column_chunks(self.bounds.entity);
let mut ptr = self.buffer;
for _row in 0..column_chunks {
let slice;
unsafe {
slice = std::slice::from_raw_parts(ptr, row_chunks);
ptr = ptr.add(row_chunks);
}
buf.push(fold_fn(slice));
}
if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
*buf.iter_mut().last().unwrap() &= mask;
}
BitChunkIter::new(buf.drain(buf_start..))
}
fn layout_for(total_chunks: usize) -> std::alloc::Layout {
unsafe {
// this layout is ALWAYS valid:
// 1. size is always nonzero
// 2. size is always a multiple of 4 and 4-aligned
std::alloc::Layout::from_size_align_unchecked(4 * total_chunks.max(1), 4)
}
}
}
#[test]
fn matrix_test() {
let mut m = BitMatrix::new(Pair { entity: 50, property: 3 });
m.set([2, 0].into());
m.set([40, 1].into());
m.set([40, 2].into());
m.set([40, 0].into());
println!("{:?}", &m);
m.batch_mut(|p| p[0] = !0);
println!("{:?}", &m);
let mut buf = vec![];
for index in m.iter_entities_where(&mut buf, move |p| p[0] ^ p[1] ^ p[2]) {
println!("index {}", index);
}
for index in m.iter_entities_where(&mut buf, move |p| (p[0] | p[1]) & p[2]) {
println!("index {}", index);
}
}
// TODO something still a bit screwy with 1s where theere should be zeroes
|