Files
@ 699bec97a862
Branch filter:
Location: CSY/reowolf/src/protocol/parser/pass_validation_linking.rs
699bec97a862
83.0 KiB
application/rls-services+xml
Fix longstanding variable scoping bug, add select statement test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 | /*
* pass_validation_linking.rs
*
* The pass that will validate properties of the AST statements (one is not
* allowed to nest synchronous statements, instantiating components occurs in
* the right places, etc.) and expressions (assignments may not occur in
* arbitrary expressions).
*
* Furthermore, this pass will also perform "linking", in the sense of: some AST
* nodes have something to do with one another, so we link them up in this pass
* (e.g. setting the parents of expressions, linking the control flow statements
* like `continue` and `break` up to the respective loop statement, etc.).
*
* There are several "confusing" parts about this pass:
*
* Setting expression parents: this is the simplest one. The pass struct acts
* like a little state machine. When visiting an expression it will set the
* "parent expression" field of the pass to itself, then visit its child. The
* child will look at this "parent expression" field to determine its parent.
*
* Setting the `next` statement: the AST is a tree, but during execution we walk
* a linear path through all statements. So where appropriate a statement may
* set the "previous statement" field of the pass to itself. When visiting the
* subsequent statement it will check this "previous statement", and if set, it
* will link this previous statement up to itself. Not every statement has a
* previous statement. Hence there are two patterns that occur: assigning the
* `next` value, then clearing the "previous statement" field. And assigning the
* `next` value, and then putting the current statement's ID in the "previous
* statement" field. Because it is so common, this file contain two macros that
* perform that operation.
*
* To make storing types for polymorphic procedures simpler and more efficient,
* we assign to each expression in the procedure a unique ID. This is what the
* "next expression index" field achieves. Each expression simply takes the
* current value, and then increments this counter.
*/
use crate::collections::{ScopedBuffer};
use crate::protocol::ast::*;
use crate::protocol::input_source::*;
use crate::protocol::parser::symbol_table::*;
use crate::protocol::parser::type_table::*;
use super::visitor::{
BUFFER_INIT_CAPACITY,
Ctx,
Visitor,
VisitorResult
};
use crate::protocol::parser::ModuleCompilationPhase;
#[derive(PartialEq, Eq)]
enum DefinitionType {
Primitive(ComponentDefinitionId),
Composite(ComponentDefinitionId),
Function(FunctionDefinitionId)
}
impl DefinitionType {
fn is_primitive(&self) -> bool { if let Self::Primitive(_) = self { true } else { false } }
fn is_composite(&self) -> bool { if let Self::Composite(_) = self { true } else { false } }
fn is_function(&self) -> bool { if let Self::Function(_) = self { true } else { false } }
fn definition_id(&self) -> DefinitionId {
match self {
DefinitionType::Primitive(v) => v.upcast(),
DefinitionType::Composite(v) => v.upcast(),
DefinitionType::Function(v) => v.upcast(),
}
}
}
struct ControlFlowStatement {
in_sync: SynchronousStatementId,
in_while: WhileStatementId,
in_scope: Scope,
statement: StatementId, // of 'break', 'continue' or 'goto'
}
/// This particular visitor will go through the entire AST in a recursive manner
/// and check if all statements and expressions are legal (e.g. no "return"
/// statements in component definitions), and will link certain AST nodes to
/// their appropriate targets (e.g. goto statements, or function calls).
///
/// This visitor will not perform control-flow analysis (e.g. making sure that
/// each function actually returns) and will also not perform type checking. So
/// the linking of function calls and component instantiations will be checked
/// and linked to the appropriate definitions, but the return types and/or
/// arguments will not be checked for validity.
///
/// The main idea is, because we're visiting nodes in a tree, to do as much as
/// we can while we have the memory in cache.
pub(crate) struct PassValidationLinking {
// Traversal state, all valid IDs if inside a certain AST element. Otherwise
// `id.is_invalid()` returns true.
in_sync: SynchronousStatementId,
in_while: WhileStatementId, // to resolve labeled continue/break
in_select_guard: SelectStatementId, // for detection/rejection of builtin calls
in_select_arm: u32,
in_test_expr: StatementId, // wrapping if/while stmt id
in_binding_expr: BindingExpressionId, // to resolve variable expressions
in_binding_expr_lhs: bool,
// Traversal state, current scope (which can be used to find the parent
// scope) and the definition variant we are considering.
cur_scope: Scope,
def_type: DefinitionType,
// "Trailing" traversal state, set be child/prev stmt/expr used by next one
prev_stmt: StatementId,
expr_parent: ExpressionParent,
// Set by parent to indicate that child expression must be assignable. The
// child will throw an error if it is not assignable. The stored span is
// used for the error's position
must_be_assignable: Option<InputSpan>,
// Keeping track of relative positions and unique IDs.
relative_pos_in_block: i32, // of statements: to determine when variables are visible
next_expr_index: i32, // to arrive at a unique ID for all expressions within a definition
// Control flow statements that require label resolving
control_flow_stmts: Vec<ControlFlowStatement>,
// Various temporary buffers for traversal. Essentially working around
// Rust's borrowing rules since it cannot understand we're modifying AST
// members but not the AST container.
variable_buffer: ScopedBuffer<VariableId>,
definition_buffer: ScopedBuffer<DefinitionId>,
statement_buffer: ScopedBuffer<StatementId>,
expression_buffer: ScopedBuffer<ExpressionId>,
}
impl PassValidationLinking {
pub(crate) fn new() -> Self {
Self{
in_sync: SynchronousStatementId::new_invalid(),
in_while: WhileStatementId::new_invalid(),
in_select_guard: SelectStatementId::new_invalid(),
in_select_arm: 0,
in_test_expr: StatementId::new_invalid(),
in_binding_expr: BindingExpressionId::new_invalid(),
in_binding_expr_lhs: false,
cur_scope: Scope::new_invalid(),
prev_stmt: StatementId::new_invalid(),
expr_parent: ExpressionParent::None,
def_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
must_be_assignable: None,
relative_pos_in_block: 0,
next_expr_index: 0,
control_flow_stmts: Vec::with_capacity(32),
variable_buffer: ScopedBuffer::with_capacity(128),
definition_buffer: ScopedBuffer::with_capacity(128),
statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
}
}
fn reset_state(&mut self) {
self.in_sync = SynchronousStatementId::new_invalid();
self.in_while = WhileStatementId::new_invalid();
self.in_select_guard = SelectStatementId::new_invalid();
self.in_test_expr = StatementId::new_invalid();
self.in_binding_expr = BindingExpressionId::new_invalid();
self.in_binding_expr_lhs = false;
self.cur_scope = Scope::new_invalid();
self.def_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
self.prev_stmt = StatementId::new_invalid();
self.expr_parent = ExpressionParent::None;
self.must_be_assignable = None;
self.relative_pos_in_block = 0;
self.next_expr_index = 0;
self.control_flow_stmts.clear();
}
}
macro_rules! assign_then_erase_next_stmt {
($self:ident, $ctx:ident, $stmt_id:expr) => {
if !$self.prev_stmt.is_invalid() {
$ctx.heap[$self.prev_stmt].link_next($stmt_id);
$self.prev_stmt = StatementId::new_invalid();
}
}
}
macro_rules! assign_and_replace_next_stmt {
($self:ident, $ctx:ident, $stmt_id:expr) => {
if !$self.prev_stmt.is_invalid() {
$ctx.heap[$self.prev_stmt].link_next($stmt_id);
}
$self.prev_stmt = $stmt_id;
}
}
impl Visitor for PassValidationLinking {
fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::TypesAddedToTable);
let root = &ctx.heap[ctx.module().root_id];
let section = self.definition_buffer.start_section_initialized(&root.definitions);
for definition_id in section.iter_copied() {
self.visit_definition(ctx, definition_id)?;
}
section.forget();
ctx.module_mut().phase = ModuleCompilationPhase::ValidatedAndLinked;
Ok(())
}
//--------------------------------------------------------------------------
// Definition visitors
//--------------------------------------------------------------------------
fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
self.reset_state();
self.def_type = match &ctx.heap[id].variant {
ComponentVariant::Primitive => DefinitionType::Primitive(id),
ComponentVariant::Composite => DefinitionType::Composite(id),
};
self.cur_scope = Scope::Definition(id.upcast());
self.expr_parent = ExpressionParent::None;
// Visit parameters and assign a unique scope ID
let definition = &ctx.heap[id];
let body_id = definition.body;
let section = self.variable_buffer.start_section_initialized(&definition.parameters);
for variable_idx in 0..section.len() {
let variable_id = section[variable_idx];
let variable = &mut ctx.heap[variable_id];
variable.unique_id_in_scope = variable_idx as i32;
}
section.forget();
// Visit statements in component body
self.visit_block_stmt(ctx, body_id)?;
// Assign total number of expressions and assign an in-block unique ID
// to each of the locals in the procedure.
ctx.heap[id].num_expressions_in_body = self.next_expr_index;
self.visit_definition_and_assign_local_ids(ctx, id.upcast());
self.resolve_pending_control_flow_targets(ctx)?;
Ok(())
}
fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
self.reset_state();
// Set internal statement indices
self.def_type = DefinitionType::Function(id);
self.cur_scope = Scope::Definition(id.upcast());
self.expr_parent = ExpressionParent::None;
// Visit parameters and assign a unique scope ID
let definition = &ctx.heap[id];
let body_id = definition.body;
let section = self.variable_buffer.start_section_initialized(&definition.parameters);
for variable_idx in 0..section.len() {
let variable_id = section[variable_idx];
let variable = &mut ctx.heap[variable_id];
variable.unique_id_in_scope = variable_idx as i32;
}
section.forget();
// Visit statements in function body
self.visit_block_stmt(ctx, body_id)?;
// Assign total number of expressions and assign an in-block unique ID
// to each of the locals in the procedure.
ctx.heap[id].num_expressions_in_body = self.next_expr_index;
self.visit_definition_and_assign_local_ids(ctx, id.upcast());
self.resolve_pending_control_flow_targets(ctx)?;
Ok(())
}
//--------------------------------------------------------------------------
// Statement visitors
//--------------------------------------------------------------------------
fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
let old_scope = self.push_statement_scope(ctx, Scope::Regular(id));
// Set end of block
let block_stmt = &ctx.heap[id];
let end_block_id = block_stmt.end_block;
// Copy statement IDs into buffer
// Traverse statements in block
let statement_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
assign_and_replace_next_stmt!(self, ctx, id.upcast());
for stmt_idx in 0..statement_section.len() {
self.relative_pos_in_block = stmt_idx as i32;
self.visit_stmt(ctx, statement_section[stmt_idx])?;
}
statement_section.forget();
assign_and_replace_next_stmt!(self, ctx, end_block_id.upcast());
self.pop_statement_scope(old_scope);
Ok(())
}
fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
let stmt = &ctx.heap[id];
let expr_id = stmt.initial_expr;
let variable_id = stmt.variable;
self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, variable_id)?;
assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
self.expr_parent = ExpressionParent::Memory(id);
self.visit_assignment_expr(ctx, expr_id)?;
self.expr_parent = ExpressionParent::None;
Ok(())
}
fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
let stmt = &ctx.heap[id];
let from_id = stmt.from;
let to_id = stmt.to;
self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, from_id)?;
self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, to_id)?;
assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
Ok(())
}
fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
let stmt = &ctx.heap[id];
let body_id = stmt.body;
self.checked_add_label(ctx, self.relative_pos_in_block, self.in_sync, id)?;
self.visit_stmt(ctx, body_id)?;
Ok(())
}
fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
let if_stmt = &ctx.heap[id];
let end_if_id = if_stmt.end_if;
let test_expr_id = if_stmt.test;
let true_stmt_id = if_stmt.true_body;
let false_stmt_id = if_stmt.false_body;
// Visit test expression
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
debug_assert!(self.in_test_expr.is_invalid());
self.in_test_expr = id.upcast();
self.expr_parent = ExpressionParent::If(id);
self.visit_expr(ctx, test_expr_id)?;
self.in_test_expr = StatementId::new_invalid();
self.expr_parent = ExpressionParent::None;
// Visit true and false branch. Executor chooses next statement based on
// test expression, not on if-statement itself. Hence the if statement
// does not have a static subsequent statement.
assign_then_erase_next_stmt!(self, ctx, id.upcast());
self.visit_block_stmt(ctx, true_stmt_id)?;
assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
if let Some(false_id) = false_stmt_id {
self.visit_block_stmt(ctx, false_id)?;
assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
}
self.prev_stmt = end_if_id.upcast();
Ok(())
}
fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
let stmt = &ctx.heap[id];
let end_while_id = stmt.end_while;
let test_expr_id = stmt.test;
let body_stmt_id = stmt.body;
let old_while = self.in_while;
self.in_while = id;
// Visit test expression
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
debug_assert!(self.in_test_expr.is_invalid());
self.in_test_expr = id.upcast();
self.expr_parent = ExpressionParent::While(id);
self.visit_expr(ctx, test_expr_id)?;
self.in_test_expr = StatementId::new_invalid();
// Link up to body statement
assign_then_erase_next_stmt!(self, ctx, id.upcast());
self.expr_parent = ExpressionParent::None;
self.visit_block_stmt(ctx, body_stmt_id)?;
self.in_while = old_while;
// Link final entry in while's block statement back to the while. The
// executor will go to the end-while statement if the test expression
// is false, so put that in as the new previous stmt
assign_then_erase_next_stmt!(self, ctx, id.upcast());
self.prev_stmt = end_while_id.upcast();
Ok(())
}
fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
self.control_flow_stmts.push(ControlFlowStatement{
in_sync: self.in_sync,
in_while: self.in_while,
in_scope: self.cur_scope,
statement: id.upcast()
});
assign_then_erase_next_stmt!(self, ctx, id.upcast());
Ok(())
}
fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
self.control_flow_stmts.push(ControlFlowStatement{
in_sync: self.in_sync,
in_while: self.in_while,
in_scope: self.cur_scope,
statement: id.upcast()
});
assign_then_erase_next_stmt!(self, ctx, id.upcast());
Ok(())
}
fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
// Check for validity of synchronous statement
let sync_stmt = &ctx.heap[id];
let end_sync_id = sync_stmt.end_sync;
let cur_sync_span = sync_stmt.span;
if !self.in_sync.is_invalid() {
// Nested synchronous statement
let old_sync_span = ctx.heap[self.in_sync].span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, cur_sync_span, "Illegal nested synchronous statement"
).with_info_str_at_span(
&ctx.module().source, old_sync_span, "It is nested in this synchronous statement"
));
}
if !self.def_type.is_primitive() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, cur_sync_span,
"synchronous statements may only be used in primitive components"
));
}
// Synchronous statement implicitly moves to its block
assign_then_erase_next_stmt!(self, ctx, id.upcast());
// Visit block statement. Note that we explicitly push the scope here
// (and the `visit_block_stmt` will also push, but without effect) to
// ensure the scope contains the sync ID.
let sync_body = ctx.heap[id].body;
debug_assert!(self.in_sync.is_invalid());
self.in_sync = id;
let old_scope = self.push_statement_scope(ctx, Scope::Synchronous(id, sync_body));
self.visit_block_stmt(ctx, sync_body)?;
self.pop_statement_scope(old_scope);
assign_and_replace_next_stmt!(self, ctx, end_sync_id.upcast());
self.in_sync = SynchronousStatementId::new_invalid();
Ok(())
}
fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
let fork_stmt = &ctx.heap[id];
let end_fork_id = fork_stmt.end_fork;
let left_body_id = fork_stmt.left_body;
let right_body_id = fork_stmt.right_body;
// Fork statements may only occur inside sync blocks
if self.in_sync.is_invalid() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, fork_stmt.span,
"Forking may only occur inside sync blocks"
));
}
// Visit the respective bodies. Like the if statement, a fork statement
// does not have a single static subsequent statement. It forks and then
// each fork has a different next statement.
assign_then_erase_next_stmt!(self, ctx, id.upcast());
self.visit_block_stmt(ctx, left_body_id)?;
assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
if let Some(right_body_id) = right_body_id {
self.visit_block_stmt(ctx, right_body_id)?;
assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
}
self.prev_stmt = end_fork_id.upcast();
Ok(())
}
fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
let select_stmt = &ctx.heap[id];
let end_select_id = select_stmt.end_select;
// Select statements may only occur inside sync blocks
if self.in_sync.is_invalid() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, select_stmt.span,
"select statements may only occur inside sync blocks"
));
}
if !self.def_type.is_primitive() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, select_stmt.span,
"select statements may only be used in primitive components"
));
}
// Visit the various arms in the select block
let mut case_stmt_ids = self.statement_buffer.start_section();
let num_cases = select_stmt.cases.len();
for case in &select_stmt.cases {
// Note: we add both to the buffer, retrieve them later in indexed
// fashion
case_stmt_ids.push(case.guard);
case_stmt_ids.push(case.block.upcast());
}
assign_then_erase_next_stmt!(self, ctx, id.upcast());
for idx in 0..num_cases {
let base_idx = 2 * idx;
let guard_id = case_stmt_ids[base_idx ];
let arm_block_id = case_stmt_ids[base_idx + 1];
debug_assert_eq!(ctx.heap[arm_block_id].as_block().this.upcast(), arm_block_id); // backwards way of saying arm_block_id is a BlockStatementId
let arm_block_id = BlockStatementId(arm_block_id);
// The guard statement ends up belonging to the block statement
// following the arm. The reason we parse it separately is to
// extract all of the "get" calls.
let old_scope = self.push_statement_scope(ctx, Scope::Regular(arm_block_id));
// Visit the guard of this arm
debug_assert!(self.in_select_guard.is_invalid());
self.in_select_guard = id;
self.in_select_arm = idx as u32;
self.visit_stmt(ctx, guard_id)?;
self.in_select_guard = SelectStatementId::new_invalid();
// Visit the code associated with the guard
self.visit_block_stmt(ctx, arm_block_id)?;
self.pop_statement_scope(old_scope);
// Link up last statement in block to EndSelect
assign_then_erase_next_stmt!(self, ctx, end_select_id.upcast());
}
self.in_select_guard = SelectStatementId::new_invalid();
self.prev_stmt = end_select_id.upcast();
Ok(())
}
fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
// Check if "return" occurs within a function
let stmt = &ctx.heap[id];
if !self.def_type.is_function() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, stmt.span,
"return statements may only appear in function bodies"
));
}
// If here then we are within a function
assign_then_erase_next_stmt!(self, ctx, id.upcast());
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
debug_assert_eq!(ctx.heap[id].expressions.len(), 1);
self.expr_parent = ExpressionParent::Return(id);
self.visit_expr(ctx, ctx.heap[id].expressions[0])?;
self.expr_parent = ExpressionParent::None;
Ok(())
}
fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult {
self.control_flow_stmts.push(ControlFlowStatement{
in_sync: self.in_sync,
in_while: self.in_while,
in_scope: self.cur_scope,
statement: id.upcast(),
});
assign_then_erase_next_stmt!(self, ctx, id.upcast());
Ok(())
}
fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
// Make sure the new statement occurs inside a composite component
if !self.def_type.is_composite() {
let new_stmt = &ctx.heap[id];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, new_stmt.span,
"instantiating components may only be done in composite components"
));
}
// Recurse into call expression (which will check the expression parent
// to ensure that the "new" statment instantiates a component)
let call_expr_id = ctx.heap[id].expression;
assign_and_replace_next_stmt!(self, ctx, id.upcast());
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
self.expr_parent = ExpressionParent::New(id);
self.visit_call_expr(ctx, call_expr_id)?;
self.expr_parent = ExpressionParent::None;
Ok(())
}
fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
let expr_id = ctx.heap[id].expression;
assign_and_replace_next_stmt!(self, ctx, id.upcast());
debug_assert_eq!(self.expr_parent, ExpressionParent::None);
self.expr_parent = ExpressionParent::ExpressionStmt(id);
self.visit_expr(ctx, expr_id)?;
self.expr_parent = ExpressionParent::None;
Ok(())
}
//--------------------------------------------------------------------------
// Expression visitors
//--------------------------------------------------------------------------
fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
let assignment_expr = &mut ctx.heap[id];
// Although we call assignment an expression to simplify the compiler's
// code (mainly typechecking), we disallow nested use in expressions
match self.expr_parent {
// Look at us: lying through our teeth while providing error messages.
ExpressionParent::Memory(_) => {},
ExpressionParent::ExpressionStmt(_) => {},
_ => {
let assignment_span = assignment_expr.full_span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, assignment_span,
"assignments are statements, and cannot be used in expressions"
))
},
}
let left_expr_id = assignment_expr.left;
let right_expr_id = assignment_expr.right;
let old_expr_parent = self.expr_parent;
assignment_expr.parent = old_expr_parent;
assignment_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.must_be_assignable = Some(assignment_expr.operator_span);
self.visit_expr(ctx, left_expr_id)?;
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.must_be_assignable = None;
self.visit_expr(ctx, right_expr_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
// Check for valid context of binding expression
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a binding expression"
));
}
if self.in_test_expr.is_invalid() {
let binding_expr = &ctx.heap[id];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, binding_expr.full_span,
"binding expressions can only be used inside the testing expression of 'if' and 'while' statements"
));
}
if !self.in_binding_expr.is_invalid() {
let binding_expr = &ctx.heap[id];
let previous_expr = &ctx.heap[self.in_binding_expr];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, binding_expr.full_span,
"nested binding expressions are not allowed"
).with_info_str_at_span(
&ctx.module().source, previous_expr.operator_span,
"the outer binding expression is found here"
));
}
let mut seeking_parent = self.expr_parent;
loop {
// Perform upward search to make sure only LogicalAnd is applied to
// the binding expression
let valid = match seeking_parent {
ExpressionParent::If(_) | ExpressionParent::While(_) => {
// Every parent expression (if any) were LogicalAnd.
break;
}
ExpressionParent::Expression(parent_id, _) => {
let parent_expr = &ctx.heap[parent_id];
match parent_expr {
Expression::Binary(parent_expr) => {
// Set new parent to continue the search. Otherwise
// halt and provide an error using the current
// parent.
if parent_expr.operation == BinaryOperator::LogicalAnd {
seeking_parent = parent_expr.parent;
true
} else {
false
}
},
_ => false,
}
},
_ => unreachable!(), // nested under if/while, so always expressions as parents
};
if !valid {
let binding_expr = &ctx.heap[id];
let parent_expr = &ctx.heap[seeking_parent.as_expression()];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, binding_expr.full_span,
"only the logical-and operator (&&) may be applied to binding expressions"
).with_info_str_at_span(
&ctx.module().source, parent_expr.operation_span(),
"this was the disallowed operation applied to the result from a binding expression"
));
}
}
// Perform all of the index/parent assignment magic
let binding_expr = &mut ctx.heap[id];
let old_expr_parent = self.expr_parent;
binding_expr.parent = old_expr_parent;
binding_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.in_binding_expr = id;
// Perform preliminary check on children: binding expressions only make
// sense if the left hand side is just a variable expression, or if it
// is a literal of some sort. The typechecker will take care of the rest
let bound_to_id = binding_expr.bound_to;
let bound_from_id = binding_expr.bound_from;
match &ctx.heap[bound_to_id] {
// Variables may not be binding variables, and literals may
// actually not contain binding variables. But in that case we just
// perform an equality check.
Expression::Variable(_) => {}
Expression::Literal(_) => {},
_ => {
let binding_expr = &ctx.heap[id];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, binding_expr.operator_span,
"the left hand side of a binding expression may only be a variable or a literal expression"
));
},
}
// Visit the children themselves
self.in_binding_expr_lhs = true;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.visit_expr(ctx, bound_to_id)?;
self.in_binding_expr_lhs = false;
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.visit_expr(ctx, bound_from_id)?;
self.expr_parent = old_expr_parent;
self.in_binding_expr = BindingExpressionId::new_invalid();
Ok(())
}
fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
let conditional_expr = &mut ctx.heap[id];
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a conditional expression"
))
}
let test_expr_id = conditional_expr.test;
let true_expr_id = conditional_expr.true_expression;
let false_expr_id = conditional_expr.false_expression;
let old_expr_parent = self.expr_parent;
conditional_expr.parent = old_expr_parent;
conditional_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.visit_expr(ctx, test_expr_id)?;
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.visit_expr(ctx, true_expr_id)?;
self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
self.visit_expr(ctx, false_expr_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
let binary_expr = &mut ctx.heap[id];
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a binary expression"
))
}
let left_expr_id = binary_expr.left;
let right_expr_id = binary_expr.right;
let old_expr_parent = self.expr_parent;
binary_expr.parent = old_expr_parent;
binary_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.visit_expr(ctx, left_expr_id)?;
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.visit_expr(ctx, right_expr_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
let unary_expr = &mut ctx.heap[id];
let expr_id = unary_expr.expression;
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a unary expression"
))
}
let old_expr_parent = self.expr_parent;
unary_expr.parent = old_expr_parent;
unary_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
self.visit_expr(ctx, expr_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
let indexing_expr = &mut ctx.heap[id];
let subject_expr_id = indexing_expr.subject;
let index_expr_id = indexing_expr.index;
let old_expr_parent = self.expr_parent;
indexing_expr.parent = old_expr_parent;
indexing_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.visit_expr(ctx, subject_expr_id)?;
let old_assignable = self.must_be_assignable.take();
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.visit_expr(ctx, index_expr_id)?;
self.must_be_assignable = old_assignable;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
let upcast_id = id.upcast();
let slicing_expr = &mut ctx.heap[id];
if let Some(span) = self.must_be_assignable {
// TODO: @Slicing
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "assignment to slices should be valid in the final language, but is currently not implemented"
));
}
let subject_expr_id = slicing_expr.subject;
let from_expr_id = slicing_expr.from_index;
let to_expr_id = slicing_expr.to_index;
let old_expr_parent = self.expr_parent;
slicing_expr.parent = old_expr_parent;
slicing_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
self.visit_expr(ctx, subject_expr_id)?;
let old_assignable = self.must_be_assignable.take();
self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
self.visit_expr(ctx, from_expr_id)?;
self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
self.visit_expr(ctx, to_expr_id)?;
self.must_be_assignable = old_assignable;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
let select_expr = &mut ctx.heap[id];
let expr_id = select_expr.subject;
let old_expr_parent = self.expr_parent;
select_expr.parent = old_expr_parent;
select_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
self.visit_expr(ctx, expr_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
let literal_expr = &mut ctx.heap[id];
let old_expr_parent = self.expr_parent;
literal_expr.parent = old_expr_parent;
literal_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to a literal expression"
))
}
match &mut literal_expr.value {
Literal::Null | Literal::True | Literal::False |
Literal::Character(_) | Literal::String(_) | Literal::Integer(_) => {
// Just the parent has to be set, done above
},
Literal::Struct(literal) => {
let upcast_id = id.upcast();
// Retrieve type definition
let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
let struct_definition = type_definition.definition.as_struct();
// Make sure all fields are specified, none are specified twice
// and all fields exist on the struct definition
let mut specified = Vec::new(); // TODO: @performance
specified.resize(struct_definition.fields.len(), false);
for field in &mut literal.fields {
// Find field in the struct definition
let field_idx = struct_definition.fields.iter().position(|v| v.identifier == field.identifier);
if field_idx.is_none() {
let field_span = field.identifier.span;
let literal = ctx.heap[id].value.as_struct();
let ast_definition = &ctx.heap[literal.definition];
return Err(ParseError::new_error_at_span(
&ctx.module().source, field_span, format!(
"This field does not exist on the struct '{}'",
ast_definition.identifier().value.as_str()
)
));
}
field.field_idx = field_idx.unwrap();
// Check if specified more than once
if specified[field.field_idx] {
let field_span = field.identifier.span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, field_span,
"This field is specified more than once"
));
}
specified[field.field_idx] = true;
}
if !specified.iter().all(|v| *v) {
// Some fields were not specified
let mut not_specified = String::new();
let mut num_not_specified = 0;
for (def_field_idx, is_specified) in specified.iter().enumerate() {
if !is_specified {
if !not_specified.is_empty() { not_specified.push_str(", ") }
let field_ident = &struct_definition.fields[def_field_idx].identifier;
not_specified.push_str(field_ident.value.as_str());
num_not_specified += 1;
}
}
debug_assert!(num_not_specified > 0);
let msg = if num_not_specified == 1 {
format!("not all fields are specified, '{}' is missing", not_specified)
} else {
format!("not all fields are specified, [{}] are missing", not_specified)
};
let literal_span = literal.parser_type.full_span;
return Err(ParseError::new_error_at_span(
&ctx.module().source, literal_span, msg
));
}
// Need to traverse fields expressions in struct and evaluate
// the poly args
let mut expr_section = self.expression_buffer.start_section();
for field in &literal.fields {
expr_section.push(field.value);
}
for expr_idx in 0..expr_section.len() {
let expr_id = expr_section[expr_idx];
self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
self.visit_expr(ctx, expr_id)?;
}
expr_section.forget();
},
Literal::Enum(literal) => {
// Make sure the variant exists
let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
let enum_definition = type_definition.definition.as_enum();
let variant_idx = enum_definition.variants.iter().position(|v| {
v.identifier == literal.variant
});
if variant_idx.is_none() {
let literal = ctx.heap[id].value.as_enum();
let ast_definition = ctx.heap[literal.definition].as_enum();
return Err(ParseError::new_error_at_span(
&ctx.module().source, literal.parser_type.full_span, format!(
"the variant '{}' does not exist on the enum '{}'",
literal.variant.value.as_str(), ast_definition.identifier.value.as_str()
)
));
}
literal.variant_idx = variant_idx.unwrap();
},
Literal::Union(literal) => {
// Make sure the variant exists
let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
let union_definition = type_definition.definition.as_union();
let variant_idx = union_definition.variants.iter().position(|v| {
v.identifier == literal.variant
});
if variant_idx.is_none() {
let literal = ctx.heap[id].value.as_union();
let ast_definition = ctx.heap[literal.definition].as_union();
return Err(ParseError::new_error_at_span(
&ctx.module().source, literal.parser_type.full_span, format!(
"the variant '{}' does not exist on the union '{}'",
literal.variant.value.as_str(), ast_definition.identifier.value.as_str()
)
));
}
literal.variant_idx = variant_idx.unwrap();
// Make sure the number of specified values matches the expected
// number of embedded values in the union variant.
let union_variant = &union_definition.variants[literal.variant_idx];
if union_variant.embedded.len() != literal.values.len() {
let literal = ctx.heap[id].value.as_union();
let ast_definition = ctx.heap[literal.definition].as_union();
return Err(ParseError::new_error_at_span(
&ctx.module().source, literal.parser_type.full_span, format!(
"The variant '{}' of union '{}' expects {} embedded values, but {} were specified",
literal.variant.value.as_str(), ast_definition.identifier.value.as_str(),
union_variant.embedded.len(), literal.values.len()
),
))
}
// Traverse embedded values of union (if any) and evaluate the
// polymorphic arguments
let upcast_id = id.upcast();
let mut expr_section = self.expression_buffer.start_section();
for value in &literal.values {
expr_section.push(*value);
}
for expr_idx in 0..expr_section.len() {
let expr_id = expr_section[expr_idx];
self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
self.visit_expr(ctx, expr_id)?;
}
expr_section.forget();
},
Literal::Array(literal) | Literal::Tuple(literal) => {
// Visit all expressions in the array
let upcast_id = id.upcast();
let expr_section = self.expression_buffer.start_section_initialized(literal);
for expr_idx in 0..expr_section.len() {
let expr_id = expr_section[expr_idx];
self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
self.visit_expr(ctx, expr_id)?;
}
expr_section.forget();
}
}
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitorResult {
let cast_expr = &mut ctx.heap[id];
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a cast expression"
))
}
let upcast_id = id.upcast();
let old_expr_parent = self.expr_parent;
cast_expr.parent = old_expr_parent;
cast_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
// Recurse into the thing that we're casting
self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
let subject_id = cast_expr.subject;
self.visit_expr(ctx, subject_id)?;
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
let call_expr = &ctx.heap[id];
if let Some(span) = self.must_be_assignable {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "cannot assign to the result from a call expression"
))
}
// Check whether the method is allowed to be called within the code's
// context (in sync, definition type, etc.)
let mut expecting_wrapping_new_stmt = false;
let mut expecting_primitive_def = false;
let mut expecting_wrapping_sync_stmt = false;
let mut expecting_no_select_stmt = false;
match call_expr.method {
Method::Get => {
expecting_primitive_def = true;
expecting_wrapping_sync_stmt = true;
if !self.in_select_guard.is_invalid() {
// In a select guard. Take the argument (i.e. the port we're
// retrieving from) and add it to the list of involved ports
// of the guard
if call_expr.arguments.len() == 1 {
// We're checking the number of arguments later, for now
// assume it is correct.
let argument = call_expr.arguments[0];
let select_stmt = &mut ctx.heap[self.in_select_guard];
let select_case = &mut select_stmt.cases[self.in_select_arm as usize];
select_case.involved_ports.push((id, argument));
}
}
},
Method::Put => {
expecting_primitive_def = true;
expecting_wrapping_sync_stmt = true;
expecting_no_select_stmt = true;
},
Method::Fires => {
expecting_primitive_def = true;
expecting_wrapping_sync_stmt = true;
},
Method::Create => {},
Method::Length => {},
Method::Assert => {
expecting_wrapping_sync_stmt = true;
expecting_no_select_stmt = true;
if self.def_type.is_function() {
let call_span = call_expr.func_span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, call_span,
"assert statement may only occur in components"
));
}
},
Method::Print => {},
Method::UserFunction => {},
Method::UserComponent => {
expecting_wrapping_new_stmt = true;
},
}
let call_expr = &mut ctx.heap[id];
fn get_span_and_name<'a>(ctx: &'a Ctx, id: CallExpressionId) -> (InputSpan, String) {
let call = &ctx.heap[id];
let span = call.func_span;
let name = String::from_utf8_lossy(ctx.module().source.section_at_span(span)).to_string();
return (span, name);
}
if expecting_primitive_def {
if !self.def_type.is_primitive() {
let (call_span, func_name) = get_span_and_name(ctx, id);
return Err(ParseError::new_error_at_span(
&ctx.module().source, call_span,
format!("a call to '{}' may only occur in primitive component definitions", func_name)
));
}
}
if expecting_wrapping_sync_stmt {
if self.in_sync.is_invalid() {
let (call_span, func_name) = get_span_and_name(ctx, id);
return Err(ParseError::new_error_at_span(
&ctx.module().source, call_span,
format!("a call to '{}' may only occur inside synchronous blocks", func_name)
))
}
}
if expecting_no_select_stmt {
if !self.in_select_guard.is_invalid() {
let (call_span, func_name) = get_span_and_name(ctx, id);
return Err(ParseError::new_error_at_span(
&ctx.module().source, call_span,
format!("a call to '{}' may not occur in a select statement's guard", func_name)
));
}
}
if expecting_wrapping_new_stmt {
if !self.expr_parent.is_new() {
let call_span = call_expr.func_span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, call_span,
"cannot call a component, it can only be instantiated by using 'new'"
));
}
} else {
if self.expr_parent.is_new() {
let call_span = call_expr.func_span;
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, call_span,
"only components can be instantiated, this is a function"
));
}
}
// Check the number of arguments
let call_definition = ctx.types.get_base_definition(&call_expr.definition).unwrap();
let num_expected_args = match &call_definition.definition {
DefinedTypeVariant::Function(definition) => definition.arguments.len(),
DefinedTypeVariant::Component(definition) => definition.arguments.len(),
v => unreachable!("encountered {} type in call expression", v.type_class()),
};
let num_provided_args = call_expr.arguments.len();
if num_provided_args != num_expected_args {
let argument_text = if num_expected_args == 1 { "argument" } else { "arguments" };
let call_span = call_expr.full_span;
return Err(ParseError::new_error_at_span(
&ctx.module().source, call_span, format!(
"expected {} {}, but {} were provided",
num_expected_args, argument_text, num_provided_args
)
));
}
// Recurse into all of the arguments and set the expression's parent
let upcast_id = id.upcast();
let section = self.expression_buffer.start_section_initialized(&call_expr.arguments);
let old_expr_parent = self.expr_parent;
call_expr.parent = old_expr_parent;
call_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
for arg_expr_idx in 0..section.len() {
let arg_expr_id = section[arg_expr_idx];
self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32);
self.visit_expr(ctx, arg_expr_id)?;
}
section.forget();
self.expr_parent = old_expr_parent;
Ok(())
}
fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
let var_expr = &ctx.heap[id];
// Check if declaration was already resolved (this occurs for the
// variable expr that is on the LHS of the assignment expr that is
// associated with a variable declaration)
let mut variable_id = var_expr.declaration;
let mut is_binding_target = false;
// Otherwise try to find it
if variable_id.is_none() {
variable_id = self.find_variable(ctx, self.relative_pos_in_block, &var_expr.identifier);
}
// Otherwise try to see if is a variable introduced by a binding expr
let variable_id = if let Some(variable_id) = variable_id {
variable_id
} else {
if self.in_binding_expr.is_invalid() || !self.in_binding_expr_lhs {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, var_expr.identifier.span, "unresolved variable"
));
}
// This is a binding variable, but it may only appear in very
// specific locations.
let is_valid_binding = match self.expr_parent {
ExpressionParent::Expression(expr_id, idx) => {
match &ctx.heap[expr_id] {
Expression::Binding(_binding_expr) => {
// Nested binding is disallowed, and because of
// the check above we know we're directly at the
// LHS of the binding expression
debug_assert_eq!(_binding_expr.this, self.in_binding_expr);
debug_assert_eq!(idx, 0);
true
}
Expression::Literal(lit_expr) => {
// Only struct, unions, tuples and arrays can
// have subexpressions, so we're always fine
if cfg!(debug_assertions) {
match lit_expr.value {
Literal::Struct(_) | Literal::Union(_) | Literal::Array(_) | Literal::Tuple(_) => {},
_ => unreachable!(),
}
}
true
},
_ => false,
}
},
_ => {
false
}
};
if !is_valid_binding {
let binding_expr = &ctx.heap[self.in_binding_expr];
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, var_expr.identifier.span,
"illegal location for binding variable: binding variables may only be nested under a binding expression, or a struct, union or array literal"
).with_info_at_span(
&ctx.module().source, binding_expr.operator_span, format!(
"'{}' was interpreted as a binding variable because the variable is not declared and it is nested under this binding expression",
var_expr.identifier.value.as_str()
)
));
}
// By now we know that this is a valid binding expression. Given
// that a binding expression must be nested under an if/while
// statement, we now add the variable to the (implicit) block
// statement following the if/while statement.
let bound_identifier = var_expr.identifier.clone();
let bound_variable_id = ctx.heap.alloc_variable(|this| Variable {
this,
kind: VariableKind::Binding,
parser_type: ParserType {
elements: vec![ParserTypeElement {
element_span: bound_identifier.span,
variant: ParserTypeVariant::Inferred
}],
full_span: bound_identifier.span
},
identifier: bound_identifier,
relative_pos_in_block: 0,
unique_id_in_scope: -1,
});
let body_stmt_id = match &ctx.heap[self.in_test_expr] {
Statement::If(stmt) => stmt.true_body,
Statement::While(stmt) => stmt.body,
_ => unreachable!(),
};
let body_scope = Scope::Regular(body_stmt_id);
self.checked_at_single_scope_add_local(ctx, body_scope, -1, bound_variable_id)?; // add at -1 such that first statement can access
is_binding_target = true;
bound_variable_id
};
let var_expr = &mut ctx.heap[id];
var_expr.declaration = Some(variable_id);
var_expr.used_as_binding_target = is_binding_target;
var_expr.parent = self.expr_parent;
var_expr.unique_id_in_definition = self.next_expr_index;
self.next_expr_index += 1;
Ok(())
}
}
impl PassValidationLinking {
//--------------------------------------------------------------------------
// Special traversal
//--------------------------------------------------------------------------
/// Pushes a new scope associated with a particular statement. If that
/// statement already has an associated scope (i.e. scope associated with
/// sync statement or select statement's arm) then we won't do anything.
/// In all cases the caller must call `pop_statement_scope` with the scope
/// and relative scope position returned by this function.
fn push_statement_scope(&mut self, ctx: &mut Ctx, new_scope: Scope) -> (Scope, i32) {
let old_scope = self.cur_scope.clone();
debug_assert!(new_scope.is_block()); // never call for Definition scope
let is_new_block = if old_scope.is_block() {
old_scope.to_block() != new_scope.to_block()
} else {
true
};
if !is_new_block {
// No need to push, but still return old scope, we pretend like we
// replaced it.
debug_assert!(!ctx.heap[new_scope.to_block()].scope_node.parent.is_invalid());
return (old_scope, self.relative_pos_in_block);
}
// This is a new block, so link it up
if old_scope.is_block() {
let parent_block = &mut ctx.heap[old_scope.to_block()];
parent_block.scope_node.nested.push(new_scope);
}
self.cur_scope = new_scope;
let cur_block = &mut ctx.heap[new_scope.to_block()];
cur_block.scope_node.parent = old_scope;
cur_block.scope_node.relative_pos_in_parent = self.relative_pos_in_block;
let old_relative_pos = self.relative_pos_in_block;
self.relative_pos_in_block = -1;
return (old_scope, old_relative_pos)
}
fn pop_statement_scope(&mut self, scope_to_restore: (Scope, i32)) {
self.cur_scope = scope_to_restore.0;
self.relative_pos_in_block = scope_to_restore.1;
}
fn visit_definition_and_assign_local_ids(&mut self, ctx: &mut Ctx, definition_id: DefinitionId) {
let mut var_counter = 0;
// Set IDs on parameters
let (param_section, body_id) = match &ctx.heap[definition_id] {
Definition::Function(func_def) => (
self.variable_buffer.start_section_initialized(&func_def.parameters),
func_def.body
),
Definition::Component(comp_def) => (
self.variable_buffer.start_section_initialized(&comp_def.parameters),
comp_def.body
),
_ => unreachable!(),
} ;
for var_id in param_section.iter_copied() {
let var = &mut ctx.heap[var_id];
var.unique_id_in_scope = var_counter;
var_counter += 1;
}
param_section.forget();
// Recurse into body
self.visit_block_and_assign_local_ids(ctx, body_id, var_counter);
}
fn visit_block_and_assign_local_ids(&mut self, ctx: &mut Ctx, block_id: BlockStatementId, mut var_counter: i32) {
let block_stmt = &mut ctx.heap[block_id];
block_stmt.first_unique_id_in_scope = var_counter;
let var_section = self.variable_buffer.start_section_initialized(&block_stmt.locals);
let mut scope_section = self.statement_buffer.start_section();
for child_scope in &block_stmt.scope_node.nested {
debug_assert!(child_scope.is_block(), "found a child scope that is not a block statement");
scope_section.push(child_scope.to_block().upcast());
}
let mut var_idx = 0;
let mut scope_idx = 0;
while var_idx < var_section.len() || scope_idx < scope_section.len() {
let relative_var_pos = if var_idx < var_section.len() {
ctx.heap[var_section[var_idx]].relative_pos_in_block
} else {
i32::MAX
};
let relative_scope_pos = if scope_idx < scope_section.len() {
ctx.heap[scope_section[scope_idx]].as_block().scope_node.relative_pos_in_parent
} else {
i32::MAX
};
debug_assert!(!(relative_var_pos == i32::MAX && relative_scope_pos == i32::MAX));
// In certain cases the relative variable position is the same as
// the scope position (insertion of binding variables). In that case
// the variable should be treated first
if relative_var_pos <= relative_scope_pos {
let var = &mut ctx.heap[var_section[var_idx]];
var.unique_id_in_scope = var_counter;
var_counter += 1;
var_idx += 1;
} else {
// Boy oh boy
let block_id = ctx.heap[scope_section[scope_idx]].as_block().this;
self.visit_block_and_assign_local_ids(ctx, block_id, var_counter);
scope_idx += 1;
}
}
var_section.forget();
scope_section.forget();
// Done assigning all IDs, assign the last ID to the block statement scope
let block_stmt = &mut ctx.heap[block_id];
block_stmt.next_unique_id_in_scope = var_counter;
}
fn resolve_pending_control_flow_targets(&mut self, ctx: &mut Ctx) -> Result<(), ParseError> {
for entry in &self.control_flow_stmts {
let stmt = &ctx.heap[entry.statement];
match stmt {
Statement::Break(stmt) => {
let stmt_id = stmt.this;
let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
let target_while_stmt = &ctx.heap[target_while_id];
let target_end_while_id = target_while_stmt.end_while;
debug_assert!(!target_end_while_id.is_invalid());
let break_stmt = &mut ctx.heap[stmt_id];
break_stmt.target = target_end_while_id;
},
Statement::Continue(stmt) => {
let stmt_id = stmt.this;
let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
let continue_stmt = &mut ctx.heap[stmt_id];
continue_stmt.target = target_while_id;
},
Statement::Goto(stmt) => {
let stmt_id = stmt.this;
let target_id = Self::find_label(entry.in_scope, ctx, &stmt.label)?;
let target_stmt = &ctx.heap[target_id];
if entry.in_sync != target_stmt.in_sync {
// Nested sync not allowed. And goto can only go to
// outer scopes, so we must be escaping from a sync.
debug_assert!(target_stmt.in_sync.is_invalid()); // target not in sync
debug_assert!(!entry.in_sync.is_invalid()); // but the goto is in sync
let goto_stmt = &ctx.heap[stmt_id];
let sync_stmt = &ctx.heap[entry.in_sync];
return Err(
ParseError::new_error_str_at_span(&ctx.module().source, goto_stmt.span, "goto may not escape the surrounding synchronous block")
.with_info_str_at_span(&ctx.module().source, target_stmt.label.span, "this is the target of the goto statement")
.with_info_str_at_span(&ctx.module().source, sync_stmt.span, "which will jump past this statement")
);
}
let goto_stmt = &mut ctx.heap[stmt_id];
goto_stmt.target = target_id;
},
_ => unreachable!("cannot resolve control flow target for {:?}", stmt),
}
}
return Ok(())
}
//--------------------------------------------------------------------------
// Utilities
//--------------------------------------------------------------------------
/// Adds a local variable to the current scope. It will also annotate the
/// `Local` in the AST with its relative position in the block.
fn checked_add_local(&mut self, ctx: &mut Ctx, target_scope: Scope, target_relative_pos: i32, id: VariableId) -> Result<(), ParseError> {
debug_assert!(target_scope.is_block());
let local = &ctx.heap[id];
println!("DEBUG: Adding local '{}' at relative_pos {} in scope {:?}", local.identifier.value.as_str(), target_relative_pos, target_scope);
// We immediately go to the parent scope. We check the target scope
// in the call at the end. That is also where we check for collisions
// with symbols.
let block = &ctx.heap[target_scope.to_block()];
let mut scope = block.scope_node.parent;
let mut cur_relative_pos = block.scope_node.relative_pos_in_parent;
loop {
if let Scope::Definition(definition_id) = scope {
// At outer scope, check parameters of function/component
for parameter_id in ctx.heap[definition_id].parameters() {
let parameter = &ctx.heap[*parameter_id];
if local.identifier == parameter.identifier {
return Err(
ParseError::new_error_str_at_span(
&ctx.module().source, local.identifier.span, "Local variable name conflicts with parameter"
).with_info_str_at_span(
&ctx.module().source, parameter.identifier.span, "Parameter definition is found here"
)
);
}
}
// No collisions
break;
}
// If here then the parent scope is a block scope
let block = &ctx.heap[scope.to_block()];
for other_local_id in &block.locals {
let other_local = &ctx.heap[*other_local_id];
// Position check in case another variable with the same name
// is defined in a higher-level scope, but later than the scope
// in which the current variable resides.
if local.this != *other_local_id &&
cur_relative_pos >= other_local.relative_pos_in_block &&
local.identifier == other_local.identifier {
// Collision within this scope
return Err(
ParseError::new_error_str_at_span(
&ctx.module().source, local.identifier.span, "Local variable name conflicts with another variable"
).with_info_str_at_span(
&ctx.module().source, other_local.identifier.span, "Previous variable is found here"
)
);
}
}
scope = block.scope_node.parent;
cur_relative_pos = block.scope_node.relative_pos_in_parent;
}
// No collisions in any of the parent scope, attempt to add to scope
self.checked_at_single_scope_add_local(ctx, target_scope, target_relative_pos, id)
}
/// Adds a local variable to the specified scope. Will check the specified
/// scope for variable conflicts and the symbol table for global conflicts.
/// Will NOT check parent scopes of the specified scope.
fn checked_at_single_scope_add_local(
&mut self, ctx: &mut Ctx, scope: Scope, relative_pos: i32, id: VariableId
) -> Result<(), ParseError> {
// Check the symbol table for conflicts
{
let cur_scope = SymbolScope::Definition(self.def_type.definition_id());
let ident = &ctx.heap[id].identifier;
if let Some(symbol) = ctx.symbols.get_symbol_by_name(cur_scope, &ident.value.as_bytes()) {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, ident.span,
"local variable declaration conflicts with symbol"
).with_info_str_at_span(
&ctx.module().source, symbol.variant.span_of_introduction(&ctx.heap), "the conflicting symbol is introduced here"
));
}
}
// Check the specified scope for conflicts
let local = &ctx.heap[id];
debug_assert!(scope.is_block());
let block = &ctx.heap[scope.to_block()];
for other_local_id in &block.locals {
let other_local = &ctx.heap[*other_local_id];
if local.this != other_local.this &&
// relative_pos >= other_local.relative_pos_in_block &&
local.identifier == other_local.identifier {
// Collision
return Err(
ParseError::new_error_str_at_span(
&ctx.module().source, local.identifier.span, "Local variable name conflicts with another variable"
).with_info_str_at_span(
&ctx.module().source, other_local.identifier.span, "Previous variable is found here"
)
);
}
}
// No collisions
let block = &mut ctx.heap[scope.to_block()];
block.locals.push(id);
let local = &mut ctx.heap[id];
local.relative_pos_in_block = relative_pos;
Ok(())
}
/// Finds a variable in the visitor's scope that must appear before the
/// specified relative position within that block.
fn find_variable(&self, ctx: &Ctx, mut relative_pos: i32, identifier: &Identifier) -> Option<VariableId> {
println!("DEBUG: Calling find_variable for '{}' at relative_pos {}", identifier.value.as_str(), relative_pos);
debug_assert!(self.cur_scope.is_block());
// No need to use iterator over namespaces if here
let mut scope = &self.cur_scope;
loop {
debug_assert!(scope.is_block());
let block = &ctx.heap[scope.to_block()];
println!("DEBUG: > Looking in block {:?} at relative_pos {}", scope.to_block().0, relative_pos);
for local_id in &block.locals {
let local = &ctx.heap[*local_id];
if local.relative_pos_in_block < relative_pos && identifier == &local.identifier {
println!("DEBUG: > Matched at local with relative_pos {}", local.relative_pos_in_block);
return Some(*local_id);
}
}
scope = &block.scope_node.parent;
if !scope.is_block() {
// Definition scope, need to check arguments to definition
match scope {
Scope::Definition(definition_id) => {
let definition = &ctx.heap[*definition_id];
for parameter_id in definition.parameters() {
let parameter = &ctx.heap[*parameter_id];
if identifier == ¶meter.identifier {
return Some(*parameter_id);
}
}
},
_ => unreachable!(),
}
// Variable could not be found
return None
} else {
relative_pos = block.scope_node.relative_pos_in_parent;
}
}
}
/// Adds a particular label to the current scope. Will return an error if
/// there is another label with the same name visible in the current scope.
fn checked_add_label(&mut self, ctx: &mut Ctx, relative_pos: i32, in_sync: SynchronousStatementId, id: LabeledStatementId) -> Result<(), ParseError> {
debug_assert!(self.cur_scope.is_block());
// Make sure label is not defined within the current scope or any of the
// parent scope.
let label = &mut ctx.heap[id];
label.relative_pos_in_block = relative_pos;
label.in_sync = in_sync;
let label = &ctx.heap[id];
let mut scope = &self.cur_scope;
loop {
debug_assert!(scope.is_block(), "scope is not a block");
let block = &ctx.heap[scope.to_block()];
for other_label_id in &block.labels {
let other_label = &ctx.heap[*other_label_id];
if other_label.label == label.label {
// Collision
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, label.label.span, "label name is used more than once"
).with_info_str_at_span(
&ctx.module().source, other_label.label.span, "the other label is found here"
));
}
}
scope = &block.scope_node.parent;
if !scope.is_block() {
break;
}
}
// No collisions
let block = &mut ctx.heap[self.cur_scope.to_block()];
block.labels.push(id);
Ok(())
}
/// Finds a particular labeled statement by its identifier. Once found it
/// will make sure that the target label does not skip over any variable
/// declarations within the scope in which the label was found.
fn find_label(mut scope: Scope, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError> {
debug_assert!(scope.is_block());
loop {
debug_assert!(scope.is_block(), "scope is not a block");
let relative_scope_pos = ctx.heap[scope.to_block()].scope_node.relative_pos_in_parent;
let block = &ctx.heap[scope.to_block()];
for label_id in &block.labels {
let label = &ctx.heap[*label_id];
if label.label == *identifier {
for local_id in &block.locals {
// TODO: Better to do this in control flow analysis, it
// is legal to skip over a variable declaration if it
// is not actually being used. I might be missing
// something here when laying out the bytecode...
let local = &ctx.heap[*local_id];
if local.relative_pos_in_block > relative_scope_pos && local.relative_pos_in_block < label.relative_pos_in_block {
return Err(
ParseError::new_error_str_at_span(&ctx.module().source, identifier.span, "this target label skips over a variable declaration")
.with_info_str_at_span(&ctx.module().source, label.label.span, "because it jumps to this label")
.with_info_str_at_span(&ctx.module().source, local.identifier.span, "which skips over this variable")
);
}
}
return Ok(*label_id);
}
}
scope = block.scope_node.parent;
if !scope.is_block() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, identifier.span, "could not find this label"
));
}
}
}
/// This function will check if the provided while statement ID has a block
/// statement that is one of our current parents.
fn has_parent_while_scope(mut scope: Scope, ctx: &Ctx, id: WhileStatementId) -> bool {
let while_stmt = &ctx.heap[id];
loop {
debug_assert!(scope.is_block());
let block = scope.to_block();
if while_stmt.body == block {
return true;
}
let block = &ctx.heap[block];
scope = block.scope_node.parent;
if !scope.is_block() {
return false;
}
}
}
/// This function should be called while dealing with break/continue
/// statements. It will try to find the targeted while statement, using the
/// target label if provided. If a valid target is found then the loop's
/// ID will be returned, otherwise a parsing error is constructed.
/// The provided input position should be the position of the break/continue
/// statement.
fn resolve_break_or_continue_target(ctx: &Ctx, control_flow: &ControlFlowStatement, span: InputSpan, label: &Option<Identifier>) -> Result<WhileStatementId, ParseError> {
let target = match label {
Some(label) => {
let target_id = Self::find_label(control_flow.in_scope, ctx, label)?;
// Make sure break target is a while statement
let target = &ctx.heap[target_id];
if let Statement::While(target_stmt) = &ctx.heap[target.body] {
// Even though we have a target while statement, the break might not be
// present underneath this particular labeled while statement
if !Self::has_parent_while_scope(control_flow.in_scope, ctx, target_stmt.this) {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, label.span, "break statement is not nested under the target label's while statement"
).with_info_str_at_span(
&ctx.module().source, target.label.span, "the targeted label is found here"
));
}
target_stmt.this
} else {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, label.span, "incorrect break target label, it must target a while loop"
).with_info_str_at_span(
&ctx.module().source, target.label.span, "The targeted label is found here"
));
}
},
None => {
// Use the enclosing while statement, the break must be
// nested within that while statement
if control_flow.in_while.is_invalid() {
return Err(ParseError::new_error_str_at_span(
&ctx.module().source, span, "Break statement is not nested under a while loop"
));
}
control_flow.in_while
}
};
// We have a valid target for the break statement. But we need to
// make sure we will not break out of a synchronous block
{
let target_while = &ctx.heap[target];
if target_while.in_sync != control_flow.in_sync {
// Break is nested under while statement, so can only escape a
// sync block if the sync is nested inside the while statement.
debug_assert!(!control_flow.in_sync.is_invalid());
let sync_stmt = &ctx.heap[control_flow.in_sync];
return Err(
ParseError::new_error_str_at_span(&ctx.module().source, span, "break may not escape the surrounding synchronous block")
.with_info_str_at_span(&ctx.module().source, target_while.span, "the break escapes out of this loop")
.with_info_str_at_span(&ctx.module().source, sync_stmt.span, "And would therefore escape this synchronous block")
);
}
}
Ok(target)
}
}
|