Files
@ 6bb433f85dc7
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component_pdl.rs
6bb433f85dc7
37.4 KiB
application/rls-services+xml
Refactored port state into flags
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | use crate::random::Random;
use crate::protocol::*;
use crate::protocol::ast::ProcedureDefinitionId;
use crate::protocol::eval::{
PortId as EvalPortId, Prompt,
ValueGroup, Value,
EvalContinuation, EvalResult, EvalError
};
use crate::runtime2::runtime::CompId;
use crate::runtime2::scheduler::SchedulerCtx;
use crate::runtime2::communication::*;
use super::component::{
self,
InboxMain, InboxBackup, GetResult,
CompExecState, Component, CompScheduling, CompError, CompMode, ExitReason,
port_id_from_eval, port_id_to_eval
};
use super::component_context::*;
use super::control_layer::*;
use super::consensus::Consensus;
pub enum ExecStmt {
CreatedChannel((Value, Value)),
PerformedPut,
PerformedGet(ValueGroup),
PerformedSelectWait(u32),
None,
}
impl ExecStmt {
fn take(&mut self) -> ExecStmt {
let mut value = ExecStmt::None;
std::mem::swap(self, &mut value);
return value;
}
fn is_none(&self) -> bool {
match self {
ExecStmt::None => return true,
_ => return false,
}
}
}
pub struct ExecCtx {
stmt: ExecStmt,
}
impl RunContext for ExecCtx {
fn performed_put(&mut self, _port: EvalPortId) -> bool {
match self.stmt.take() {
ExecStmt::None => return false,
ExecStmt::PerformedPut => return true,
_ => unreachable!(),
}
}
fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::PerformedGet(value) => return Some(value),
_ => unreachable!(),
}
}
fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
todo!("remove fires")
}
fn performed_fork(&mut self) -> Option<bool> {
todo!("remove fork")
}
fn created_channel(&mut self) -> Option<(Value, Value)> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::CreatedChannel(ports) => return Some(ports),
_ => unreachable!(),
}
}
fn performed_select_wait(&mut self) -> Option<u32> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::PerformedSelectWait(selected_case) => Some(selected_case),
_v => unreachable!(),
}
}
}
struct SelectCase {
involved_ports: Vec<LocalPortHandle>,
}
// TODO: @Optimize, flatten cases into single array, have index-pointers to next case
struct SelectState {
cases: Vec<SelectCase>,
next_case: u32,
num_cases: u32,
random: Random,
candidates_workspace: Vec<usize>,
}
enum SelectDecision {
None,
Case(u32), // contains case index, should be passed along to PDL code
}
impl SelectState {
fn new() -> Self {
return Self{
cases: Vec::new(),
next_case: 0,
num_cases: 0,
random: Random::new(),
candidates_workspace: Vec::new(),
}
}
fn handle_select_start(&mut self, num_cases: u32) {
self.cases.clear();
self.next_case = 0;
self.num_cases = num_cases;
}
/// Register a port as belonging to a particular case. As for correctness of
/// PDL code one cannot register the same port twice, this function might
/// return an error
fn register_select_case_port(&mut self, comp_ctx: &CompCtx, case_index: u32, _port_index: u32, port_id: PortId) -> Result<(), PortId> {
// Retrieve case and port handle
self.ensure_at_case(case_index);
let cur_case = &mut self.cases[case_index as usize];
let port_handle = comp_ctx.get_port_handle(port_id);
debug_assert_eq!(cur_case.involved_ports.len(), _port_index as usize);
// Make sure port wasn't added before, we disallow having the same port
// in the same select guard twice.
if cur_case.involved_ports.contains(&port_handle) {
return Err(port_id);
}
cur_case.involved_ports.push(port_handle);
return Ok(());
}
/// Notification that all ports have been registered and we should now wait
/// until the appropriate messages have come in.
fn handle_select_waiting_point(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
if self.num_cases != self.next_case {
// This happens when there are >=1 select cases written at the end
// of the select block.
self.ensure_at_case(self.num_cases - 1);
}
return self.has_decision(inbox, comp_ctx);
}
fn handle_updated_inbox(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
return self.has_decision(inbox, comp_ctx);
}
/// Internal helper, pushes empty cases inbetween last case and provided new
/// case index.
fn ensure_at_case(&mut self, new_case_index: u32) {
// Push an empty case for all intermediate cases that were not
// registered with a port.
debug_assert!(new_case_index >= self.next_case && new_case_index < self.num_cases);
for _ in self.next_case..new_case_index + 1 {
self.cases.push(SelectCase{ involved_ports: Vec::new() });
}
self.next_case = new_case_index + 1;
}
/// Checks if a decision can be reached
fn has_decision(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
self.candidates_workspace.clear();
if self.cases.is_empty() {
// If there are no cases then we can immediately reach a "bogus
// decision".
return SelectDecision::Case(0);
}
// Need to check for valid case
'case_loop: for (case_index, case) in self.cases.iter().enumerate() {
for port_handle in case.involved_ports.iter().copied() {
let port_index = comp_ctx.get_port_index(port_handle);
if inbox[port_index].is_none() {
// Condition not satisfied
continue 'case_loop;
}
}
// If here then the case guard is satisfied
self.candidates_workspace.push(case_index);
}
if self.candidates_workspace.is_empty() {
return SelectDecision::None;
} else {
let candidate_index = self.random.get_u64() as usize % self.candidates_workspace.len();
return SelectDecision::Case(self.candidates_workspace[candidate_index] as u32);
}
}
}
pub(crate) struct CompPDL {
pub exec_state: CompExecState,
select_state: SelectState,
pub prompt: Prompt,
pub control: ControlLayer,
pub consensus: Consensus,
pub sync_counter: u32,
pub exec_ctx: ExecCtx,
// TODO: Temporary field, simulates future plans of having one storage place
// reserved per port.
// Should be same length as the number of ports. Corresponding indices imply
// message is intended for that port.
pub inbox_main: InboxMain,
pub inbox_backup: Vec<DataMessage>,
}
impl Component for CompPDL {
fn on_creation(&mut self, _id: CompId, _sched_ctx: &SchedulerCtx) {
// Intentionally empty
}
fn on_shutdown(&mut self, _sched_ctx: &SchedulerCtx) {
// Intentionally empty
}
fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage) {
let port_handle = comp_ctx.get_port_handle(message.data_header.target_port);
let port_index = comp_ctx.get_port_index(port_handle);
if self.inbox_main[port_index].is_none() {
self.inbox_main[port_index] = Some(message);
} else {
self.inbox_backup.push(message);
}
}
fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, mut message: Message) {
// sched_ctx.log(&format!("handling message: {:?}", message));
if let Some(new_target) = self.control.should_reroute(&mut message) {
let mut target = sched_ctx.runtime.get_component_public(new_target); // TODO: @NoDirectHandle
target.send_message_logged(sched_ctx, message, false); // not waking up: we schedule once we've received all PortPeerChanged Acks
let _should_remove = target.decrement_users();
debug_assert!(_should_remove.is_none());
return;
}
match message {
Message::Data(message) => {
self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
},
Message::Control(message) => {
if let Err(location_and_message) = component::default_handle_control_message(
&mut self.exec_state, &mut self.control, &mut self.consensus,
message, sched_ctx, comp_ctx
) {
self.handle_generic_component_error(sched_ctx, location_and_message);
}
},
Message::Sync(message) => {
self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
},
Message::Poll => {
unreachable!(); // because we never register at the polling thread
}
}
}
fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling {
use EvalContinuation as EC;
sched_ctx.info(&format!("Running component (mode: {:?})", self.exec_state.mode));
// Depending on the mode don't do anything at all, take some special
// actions, or fall through and run the PDL code.
match self.exec_state.mode {
CompMode::NonSync | CompMode::Sync => {
// continue and run PDL code
},
CompMode::SyncEnd | CompMode::BlockedGet | CompMode::BlockedPut | CompMode::BlockedSelect => {
return CompScheduling::Sleep;
}
CompMode::StartExit => return component::default_handle_start_exit(
&mut self.exec_state, &mut self.control, sched_ctx, comp_ctx, &mut self.consensus
),
CompMode::BusyExit => return component::default_handle_busy_exit(
&mut self.exec_state, &self.control, sched_ctx
),
CompMode::Exit => return component::default_handle_exit(&self.exec_state),
}
let run_result = self.execute_prompt(&sched_ctx);
if let Err(error) = run_result {
self.handle_component_error(sched_ctx, CompError::Executor(error));
return CompScheduling::Immediate;
}
let run_result = run_result.unwrap();
match run_result {
EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
// Results that can be returned in sync mode
EC::SyncBlockEnd => {
component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
return CompScheduling::Immediate;
},
EC::BlockGet(expr_id, port_id) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
debug_assert!(self.exec_ctx.stmt.is_none());
let port_id = port_id_from_eval(port_id);
match component::default_attempt_get(
&mut self.exec_state, port_id, PortInstruction::SourceLocation(expr_id),
&mut self.inbox_main, &mut self.inbox_backup, sched_ctx, comp_ctx,
&mut self.control, &mut self.consensus
) {
GetResult::Received(message) => {
self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
return CompScheduling::Immediate;
},
GetResult::NoMessage => {
return CompScheduling::Sleep;
},
GetResult::Error(location_and_message) => {
self.handle_generic_component_error(sched_ctx, location_and_message);
return CompScheduling::Immediate;
}
}
},
EC::Put(expr_id, port_id, value) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
sched_ctx.info(&format!("Putting value {:?}", value));
// Send the message
let target_port_id = port_id_from_eval(port_id);
let send_result = component::default_send_data_message(
&mut self.exec_state, target_port_id,
PortInstruction::SourceLocation(expr_id), value,
sched_ctx, &mut self.consensus, comp_ctx
);
if let Err(location_and_message) = send_result {
self.handle_generic_component_error(sched_ctx, location_and_message);
return CompScheduling::Immediate;
} else {
// When `run` is called again (potentially after becoming
// unblocked) we need to instruct the executor that we performed
// the `put`
let scheduling = send_result.unwrap();
self.exec_ctx.stmt = ExecStmt::PerformedPut;
return scheduling;
}
},
EC::SelectStart(num_cases, _num_ports) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
self.select_state.handle_select_start(num_cases);
return CompScheduling::Requeue;
},
EC::SelectRegisterPort(expr_id, case_index, port_index, port_id) => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
let port_id = port_id_from_eval(port_id);
let port_handle = comp_ctx.get_port_handle(port_id);
// Note: we register the "last_instruction" here already. This
// way if we get a `ClosePort` message, the condition to fail
// the synchronous round is satisfied.
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = PortInstruction::SourceLocation(expr_id);
let port_is_closed = port_info.state.is_closed();
// Register port as part of select guard
if let Err(_err) = self.select_state.register_select_case_port(comp_ctx, case_index, port_index, port_id) {
// Failure occurs if a port is used twice in the same guard
let protocol = &sched_ctx.runtime.protocol;
self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap, expr_id,
String::from("Cannot have the one port appear in the same guard twice")
)));
} else if port_is_closed {
// Port is closed
let peer_id = comp_ctx.get_port(port_handle).peer_comp_id;
let protocol = &sched_ctx.runtime.protocol;
self.handle_component_error(sched_ctx, CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap, expr_id,
format!("Cannot register port, as the peer component (id:{}) has shut down", peer_id.0)
)));
}
return CompScheduling::Immediate;
},
EC::SelectWait => {
debug_assert_eq!(self.exec_state.mode, CompMode::Sync);
let select_decision = self.select_state.handle_select_waiting_point(&self.inbox_main, comp_ctx);
if let SelectDecision::Case(case_index) = select_decision {
// Reached a conclusion, so we can continue immediately
self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
self.exec_state.mode = CompMode::Sync;
return CompScheduling::Immediate;
} else {
// No decision yet
self.exec_state.mode = CompMode::BlockedSelect;
return CompScheduling::Sleep;
}
},
// Results that can be returned outside of sync mode
EC::ComponentTerminated => {
self.exec_state.set_as_start_exit(ExitReason::Termination);
return CompScheduling::Immediate;
},
EC::SyncBlockStart => {
component::default_handle_sync_start(
&mut self.exec_state, &mut self.inbox_main, sched_ctx, comp_ctx, &mut self.consensus
);
return CompScheduling::Immediate;
},
EC::NewComponent(definition_id, type_id, arguments) => {
debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
self.create_component_and_transfer_ports(
sched_ctx, comp_ctx,
definition_id, type_id, arguments
);
return CompScheduling::Requeue;
},
EC::NewChannel => {
debug_assert_eq!(self.exec_state.mode, CompMode::NonSync);
debug_assert!(self.exec_ctx.stmt.is_none());
let channel = comp_ctx.create_channel();
self.exec_ctx.stmt = ExecStmt::CreatedChannel((
Value::Output(port_id_to_eval(channel.putter_id)),
Value::Input(port_id_to_eval(channel.getter_id))
));
self.inbox_main.push(None);
self.inbox_main.push(None);
return CompScheduling::Immediate;
}
}
}
}
impl CompPDL {
pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
let mut inbox_main = Vec::new();
inbox_main.reserve(num_ports);
for _ in 0..num_ports {
inbox_main.push(None);
}
return Self{
exec_state: CompExecState::new(),
select_state: SelectState::new(),
prompt: initial_state,
control: ControlLayer::default(),
consensus: Consensus::new(),
sync_counter: 0,
exec_ctx: ExecCtx{
stmt: ExecStmt::None,
},
inbox_main,
inbox_backup: Vec::new(),
}
}
// -------------------------------------------------------------------------
// Running component and handling changes in global component state
// -------------------------------------------------------------------------
fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
let mut step_result = EvalContinuation::Stepping;
while let EvalContinuation::Stepping = step_result {
step_result = self.prompt.step(
&sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
&sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
)?;
}
return Ok(step_result)
}
// -------------------------------------------------------------------------
// Handling messages
// -------------------------------------------------------------------------
/// Handles a message that came in through the public inbox. This function
/// will handle putting it in the correct place, and potentially blocking
/// the port in case too many messages are being received.
fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
use component::IncomingData;
// Whatever we do, glean information from headers in message
if self.exec_state.mode.is_in_sync_block() {
self.consensus.handle_incoming_data_message(comp_ctx, &message);
}
match component::default_handle_incoming_data_message(
&mut self.exec_state, &mut self.inbox_main, comp_ctx, message,
sched_ctx, &mut self.control
) {
IncomingData::PlacedInSlot => {
if self.exec_state.mode == CompMode::BlockedSelect {
let select_decision = self.select_state.handle_updated_inbox(&self.inbox_main, comp_ctx);
if let SelectDecision::Case(case_index) = select_decision {
self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
self.exec_state.mode = CompMode::Sync;
}
}
},
IncomingData::SlotFull(message) => {
self.inbox_backup.push(message);
}
}
}
fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
component::default_handle_sync_decision(sched_ctx, &mut self.exec_state, comp_ctx, decision, &mut self.consensus);
}
/// Handles an error coming from the generic `component::handle_xxx`
/// functions. Hence accepts argument as a tuple.
fn handle_generic_component_error(&mut self, sched_ctx: &SchedulerCtx, location_and_message: (PortInstruction, String)) {
// Retrieve location and message, display in terminal
let (location, message) = location_and_message;
let error = match location {
PortInstruction::None => CompError::Component(message),
PortInstruction::NoSource => unreachable!(), // for debugging: all in-sync errors are associated with a source location
PortInstruction::SourceLocation(expression_id) => {
let protocol = &sched_ctx.runtime.protocol;
CompError::Executor(EvalError::new_error_at_expr(
&self.prompt, &protocol.modules, &protocol.heap,
expression_id, message
))
}
};
self.handle_component_error(sched_ctx, error);
}
fn handle_component_error(&mut self, sched_ctx: &SchedulerCtx, error: CompError) {
sched_ctx.error(&format!("{}", error));
// Set state to handle subsequent error
let exit_reason = if self.exec_state.mode.is_in_sync_block() {
ExitReason::ErrorInSync
} else {
ExitReason::ErrorNonSync
};
self.exec_state.set_as_start_exit(exit_reason);
}
// -------------------------------------------------------------------------
// Handling ports
// -------------------------------------------------------------------------
/// Creates a new component and transfers ports. Because of the stepwise
/// process in which memory is allocated, ports are transferred, messages
/// are exchanged, component lifecycle methods are called, etc. This
/// function facilitates a lot of implicit assumptions (e.g. when the
/// `Component::on_creation` method is called, the component is already
/// registered at the runtime).
fn create_component_and_transfer_ports(
&mut self,
sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx,
definition_id: ProcedureDefinitionId, type_id: TypeId, mut arguments: ValueGroup
) {
struct PortPair{
creator_handle: LocalPortHandle,
creator_id: PortId,
created_handle: LocalPortHandle,
created_id: PortId,
}
let mut opened_port_id_pairs = Vec::new();
let mut closed_port_id_pairs = Vec::new();
let reservation = sched_ctx.runtime.start_create_pdl_component();
let mut created_ctx = CompCtx::new(&reservation);
let other_proc = &sched_ctx.runtime.protocol.heap[definition_id];
let self_proc = &sched_ctx.runtime.protocol.heap[self.prompt.frames[0].definition];
// dbg_code!({
// sched_ctx.log(&format!(
// "DEBUG: Comp '{}' (ID {:?}) is creating comp '{}' (ID {:?})",
// self_proc.identifier.value.as_str(), creator_ctx.id,
// other_proc.identifier.value.as_str(), reservation.id()
// ));
// });
// Take all the ports ID that are in the `args` (and currently belong to
// the creator component) and translate them into new IDs that are
// associated with the component we're about to create
let mut arg_iter = ValueGroupPortIter::new(&mut arguments);
while let Some(port_reference) = arg_iter.next() {
// Create port entry for new component
let creator_port_id = port_reference.id;
let creator_port_handle = creator_ctx.get_port_handle(creator_port_id);
let creator_port = creator_ctx.get_port(creator_port_handle);
let created_port_handle = created_ctx.add_port(
creator_port.peer_comp_id, creator_port.peer_port_id,
creator_port.kind, creator_port.state
);
let created_port = created_ctx.get_port(created_port_handle);
let created_port_id = created_port.self_id;
let port_id_pair = PortPair {
creator_handle: creator_port_handle,
creator_id: creator_port_id,
created_handle: created_port_handle,
created_id: created_port_id,
};
if creator_port.state.is_closed() {
closed_port_id_pairs.push(port_id_pair)
} else {
opened_port_id_pairs.push(port_id_pair);
}
// Modify value in arguments (bit dirty, but double vec in ValueGroup causes lifetime issues)
let arg_value = if let Some(heap_pos) = port_reference.heap_pos {
&mut arg_iter.group.regions[heap_pos][port_reference.index]
} else {
&mut arg_iter.group.values[port_reference.index]
};
match arg_value {
Value::Input(id) => *id = port_id_to_eval(created_port_id),
Value::Output(id) => *id = port_id_to_eval(created_port_id),
_ => unreachable!(),
}
}
// For each transferred port pair set their peer components to the
// correct values. This will only change the values for the ports of
// the new component.
let mut created_component_has_remote_peers = false;
for pair in opened_port_id_pairs.iter() {
let creator_port_info = creator_ctx.get_port(pair.creator_handle);
let created_port_info = created_ctx.get_port_mut(pair.created_handle);
if created_port_info.peer_comp_id == creator_ctx.id {
// Port peer is owned by the creator as well
let created_peer_port_index = opened_port_id_pairs
.iter()
.position(|v| v.creator_id == creator_port_info.peer_port_id);
match created_peer_port_index {
Some(created_peer_port_index) => {
// Peer port moved to the new component as well. So
// adjust IDs appropriately.
let peer_pair = &opened_port_id_pairs[created_peer_port_index];
created_port_info.peer_port_id = peer_pair.created_id;
created_port_info.peer_comp_id = reservation.id();
todo!("either add 'self peer', or remove that idea from Ctx altogether")
},
None => {
// Peer port remains with creator component.
created_port_info.peer_comp_id = creator_ctx.id;
created_ctx.add_peer(pair.created_handle, sched_ctx, creator_ctx.id, None);
}
}
} else {
// Peer is a different component. We'll deal with sending the
// appropriate messages later
let peer_handle = creator_ctx.get_peer_handle(created_port_info.peer_comp_id);
let peer_info = creator_ctx.get_peer(peer_handle);
created_ctx.add_peer(pair.created_handle, sched_ctx, peer_info.id, Some(&peer_info.handle));
created_component_has_remote_peers = true;
}
}
// We'll now actually turn our reservation for a new component into an
// actual component. Note that we initialize it as "not sleeping" as
// its initial scheduling might be performed based on `Ack`s in response
// to message exchanges between remote peers.
let total_num_ports = opened_port_id_pairs.len() + closed_port_id_pairs.len();
let component = component::create_component(&sched_ctx.runtime.protocol, definition_id, type_id, arguments, total_num_ports);
let (created_key, component) = sched_ctx.runtime.finish_create_pdl_component(
reservation, component, created_ctx, false,
);
component.component.on_creation(created_key.downgrade(), sched_ctx);
// Now modify the creator's ports: remove every transferred port and
// potentially remove the peer component.
for pair in opened_port_id_pairs.iter() {
// Remove peer if appropriate
let creator_port_info = creator_ctx.get_port(pair.creator_handle);
let creator_port_index = creator_ctx.get_port_index(pair.creator_handle);
let creator_peer_comp_id = creator_port_info.peer_comp_id;
creator_ctx.remove_peer(sched_ctx, pair.creator_handle, creator_peer_comp_id, false);
creator_ctx.remove_port(pair.creator_handle);
// Transfer any messages
if let Some(mut message) = self.inbox_main.remove(creator_port_index) {
message.data_header.target_port = pair.created_id;
component.component.adopt_message(&mut component.ctx, message)
}
let mut message_index = 0;
while message_index < self.inbox_backup.len() {
let message = &self.inbox_backup[message_index];
if message.data_header.target_port == pair.creator_id {
// transfer message
let mut message = self.inbox_backup.remove(message_index);
message.data_header.target_port = pair.created_id;
component.component.adopt_message(&mut component.ctx, message);
} else {
message_index += 1;
}
}
// Handle potential channel between creator and created component
let created_port_info = component.ctx.get_port(pair.created_handle);
if created_port_info.peer_comp_id == creator_ctx.id {
let peer_port_handle = creator_ctx.get_port_handle(created_port_info.peer_port_id);
let peer_port_info = creator_ctx.get_port_mut(peer_port_handle);
peer_port_info.peer_comp_id = component.ctx.id;
peer_port_info.peer_port_id = created_port_info.self_id;
creator_ctx.add_peer(peer_port_handle, sched_ctx, component.ctx.id, None);
}
}
// Do the same for the closed ports. Note that we might still have to
// transfer messages that cause the new owner of the port to fail.
for pair in closed_port_id_pairs.iter() {
let port_index = creator_ctx.get_port_index(pair.creator_handle);
creator_ctx.remove_port(pair.creator_handle);
if let Some(mut message) = self.inbox_main.remove(port_index) {
message.data_header.target_port = pair.created_id;
component.component.adopt_message(&mut component.ctx, message);
}
let mut message_index = 0;
while message_index < self.inbox_backup.len() {
let message = &self.inbox_backup[message_index];
if message.data_header.target_port == pair.created_id {
// Transfer message
let mut message = self.inbox_backup.remove(message_index);
message.data_header.target_port = pair.created_id;
component.component.adopt_message(&mut component.ctx, message);
} else {
message_index += 1;
}
}
}
// By now all ports and messages have been transferred. If there are any
// peers that need to be notified about this new component, then we
// initiate the protocol that will notify everyone here.
if created_component_has_remote_peers {
let created_ctx = &component.ctx;
let schedule_entry_id = self.control.add_schedule_entry(created_ctx.id);
for pair in opened_port_id_pairs.iter() {
let port_info = created_ctx.get_port(pair.created_handle);
if port_info.peer_comp_id != creator_ctx.id && port_info.peer_comp_id != created_ctx.id {
let message = self.control.add_reroute_entry(
creator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
pair.creator_id, pair.created_id, created_ctx.id,
schedule_entry_id
);
let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = created_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, message, true);
}
}
} else {
// Peer can be scheduled immediately
sched_ctx.runtime.enqueue_work(created_key);
}
}
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortId(port_id.id);
for prev_port in ports.iter() {
if *prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
struct ValueGroupPortIter<'a> {
group: &'a mut ValueGroup,
heap_stack: Vec<(usize, usize)>,
index: usize,
}
impl<'a> ValueGroupPortIter<'a> {
fn new(group: &'a mut ValueGroup) -> Self {
return Self{ group, heap_stack: Vec::new(), index: 0 }
}
}
struct ValueGroupPortRef {
id: PortId,
heap_pos: Option<usize>, // otherwise: on stack
index: usize,
}
impl<'a> Iterator for ValueGroupPortIter<'a> {
type Item = ValueGroupPortRef;
fn next(&mut self) -> Option<Self::Item> {
// Enter loop that keeps iterating until a port is found
loop {
if let Some(pos) = self.heap_stack.last() {
let (heap_pos, region_index) = *pos;
if region_index >= self.group.regions[heap_pos].len() {
self.heap_stack.pop();
continue;
}
let value = &self.group.regions[heap_pos][region_index];
self.heap_stack.last_mut().unwrap().1 += 1;
match value {
Value::Input(id) | Value::Output(id) => {
let id = PortId(id.id);
return Some(ValueGroupPortRef{
id,
heap_pos: Some(heap_pos),
index: region_index,
});
},
_ => {},
}
if let Some(heap_pos) = value.get_heap_pos() {
self.heap_stack.push((heap_pos as usize, 0));
}
} else {
if self.index >= self.group.values.len() {
return None;
}
let value = &mut self.group.values[self.index];
self.index += 1;
match value {
Value::Input(id) | Value::Output(id) => {
let id = PortId(id.id);
return Some(ValueGroupPortRef{
id,
heap_pos: None,
index: self.index - 1
});
},
_ => {},
}
// Not a port, check if we need to enter a heap region
if let Some(heap_pos) = value.get_heap_pos() {
self.heap_stack.push((heap_pos as usize, 0));
} // else: just consider the next value
}
}
}
}
|