Files @ 78de1ebfd99d
Branch filter:

Location: CSY/reowolf/src/runtime/experimental/api.rs

78de1ebfd99d 26.3 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
more detailed debug printing
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
use super::bits::{usizes_for_bits, BitChunkIter, BitMatrix};
use super::vec_storage::VecStorage;
use crate::common::*;
use crate::runtime::endpoint::EndpointExt;
use crate::runtime::endpoint::EndpointInfo;
use crate::runtime::endpoint::{Endpoint, Msg, SetupMsg};
use crate::runtime::errors::EndpointErr;
use crate::runtime::errors::MessengerRecvErr;
use crate::runtime::errors::PollDeadlineErr;
use crate::runtime::MessengerState;
use crate::runtime::Messengerlike;
use crate::runtime::ReceivedMsg;
use crate::runtime::{ProtocolD, ProtocolS};

use std::net::SocketAddr;
use std::sync::Arc;

pub enum Coupling {
    Active,
    Passive,
}

#[derive(Debug)]
struct Family {
    parent: Option<Port>,
    children: HashSet<Port>,
}

pub struct Binding {
    pub coupling: Coupling,
    pub polarity: Polarity,
    pub addr: SocketAddr,
}

pub struct InPort(Port); // InPort and OutPort are AFFINE (exposed to Rust API)
pub struct OutPort(Port);
impl From<InPort> for Port {
    fn from(x: InPort) -> Self {
        x.0
    }
}
impl From<OutPort> for Port {
    fn from(x: OutPort) -> Self {
        x.0
    }
}

#[derive(Default, Debug)]
struct ChannelIndexStream {
    next: u32,
}
impl ChannelIndexStream {
    fn next(&mut self) -> u32 {
        self.next += 1;
        self.next - 1
    }
}

enum Connector {
    Connecting(Connecting),
    Connected(Connected),
}

#[derive(Default)]
pub struct Connecting {
    bindings: Vec<Binding>,
}
trait Binds<T> {
    fn bind(&mut self, coupling: Coupling, addr: SocketAddr) -> T;
}
impl Binds<InPort> for Connecting {
    fn bind(&mut self, coupling: Coupling, addr: SocketAddr) -> InPort {
        self.bindings.push(Binding { coupling, polarity: Polarity::Getter, addr });
        InPort(Port(self.bindings.len() - 1))
    }
}
impl Binds<OutPort> for Connecting {
    fn bind(&mut self, coupling: Coupling, addr: SocketAddr) -> OutPort {
        self.bindings.push(Binding { coupling, polarity: Polarity::Putter, addr });
        OutPort(Port(self.bindings.len() - 1))
    }
}

#[derive(Debug, Clone)]
pub enum ConnectErr {
    BindErr(SocketAddr),
    NewSocketErr(SocketAddr),
    AcceptErr(SocketAddr),
    ConnectionShutdown(SocketAddr),
    PortKindMismatch(Port, SocketAddr),
    EndpointErr(Port, EndpointErr),
    PollInitFailed,
    PollingFailed,
    Timeout,
}

#[derive(Debug)]
struct Component {
    protocol: Arc<ProtocolD>,
    port_set: HashSet<Port>,
    identifier: Arc<[u8]>,
    state: ProtocolS,
}

impl From<PollDeadlineErr> for ConnectErr {
    fn from(e: PollDeadlineErr) -> Self {
        use PollDeadlineErr as P;
        match e {
            P::PollingFailed => Self::PollingFailed,
            P::Timeout => Self::Timeout,
        }
    }
}
impl From<MessengerRecvErr> for ConnectErr {
    fn from(e: MessengerRecvErr) -> Self {
        use MessengerRecvErr as M;
        match e {
            M::PollingFailed => Self::PollingFailed,
            M::EndpointErr(port, err) => Self::EndpointErr(port, err),
        }
    }
}
impl Connecting {
    fn random_controller_id() -> ControllerId {
        type Bytes8 = [u8; std::mem::size_of::<ControllerId>()];
        let mut bytes = Bytes8::default();
        getrandom::getrandom(&mut bytes).unwrap();
        unsafe {
            // safe:
            // 1. All random bytes give valid Bytes8
            // 2. Bytes8 and ControllerId have same valid representations
            std::mem::transmute::<Bytes8, ControllerId>(bytes)
        }
    }
    fn test_stream_connectivity(stream: &mut TcpStream) -> bool {
        use std::io::Write;
        stream.write(&[]).is_ok()
    }
    fn new_connected(
        &self,
        controller_id: ControllerId,
        timeout: Option<Duration>,
    ) -> Result<Connected, ConnectErr> {
        use ConnectErr::*;

        ///////////////////////////////////////////////////////
        // 1. bindings correspond with ports 0..bindings.len(). For each:
        //    - reserve a slot in endpoint_exts.
        //    - store the port in `native_ports' set.
        let mut endpoint_exts = VecStorage::<EndpointExt>::with_reserved_range(self.bindings.len());
        let native_ports = (0..self.bindings.len()).map(Port).collect();

        // 2. create MessengerState structure for polling channels
        let edge = PollOpt::edge();
        let [ready_r, ready_w] = [Ready::readable(), Ready::writable()];
        let mut ms =
            MessengerState::with_event_capacity(self.bindings.len()).map_err(|_| PollInitFailed)?;

        // 3. create one TODO task per (port,binding) as a vector with indices in lockstep.
        //    we will drain it gradually so we store elements of type Option<Todo> where all are initially Some(_)
        enum Todo {
            PassiveAccepting { listener: TcpListener, channel_id: ChannelId },
            ActiveConnecting { stream: TcpStream },
            PassiveConnecting { stream: TcpStream, channel_id: ChannelId },
            ActiveRecving { endpoint: Endpoint },
        }
        let mut channel_index_stream = ChannelIndexStream::default();
        let mut todos = self
            .bindings
            .iter()
            .enumerate()
            .map(|(index, binding)| {
                Ok(Some(match binding.coupling {
                    Coupling::Passive => {
                        let channel_index = channel_index_stream.next();
                        let channel_id = ChannelId { controller_id, channel_index };
                        let listener =
                            TcpListener::bind(&binding.addr).map_err(|_| BindErr(binding.addr))?;
                        ms.poll.register(&listener, Token(index), ready_r, edge).unwrap(); // registration unique
                        Todo::PassiveAccepting { listener, channel_id }
                    }
                    Coupling::Active => {
                        let stream = TcpStream::connect(&binding.addr)
                            .map_err(|_| NewSocketErr(binding.addr))?;
                        ms.poll.register(&stream, Token(index), ready_w, edge).unwrap(); // registration unique
                        Todo::ActiveConnecting { stream }
                    }
                }))
            })
            .collect::<Result<Vec<Option<Todo>>, ConnectErr>>()?;
        let mut num_todos_remaining = todos.len();

        // 4. handle incoming events until all TODOs are completed OR we timeout
        let deadline = timeout.map(|t| Instant::now() + t);
        let mut polled_undrained_later = IndexSet::<_>::default();
        let mut backoff_millis = 10;
        while num_todos_remaining > 0 {
            ms.poll_events_until(deadline)?;
            for event in ms.events.iter() {
                let token = event.token();
                let index = token.0;
                let binding = &self.bindings[index];
                match todos[index].take() {
                    None => {
                        polled_undrained_later.insert(index);
                    }
                    Some(Todo::PassiveAccepting { listener, channel_id }) => {
                        let (stream, _peer_addr) =
                            listener.accept().map_err(|_| AcceptErr(binding.addr))?;
                        ms.poll.deregister(&listener).expect("wer");
                        ms.poll.register(&stream, token, ready_w, edge).expect("3y5");
                        todos[index] = Some(Todo::PassiveConnecting { stream, channel_id });
                    }
                    Some(Todo::ActiveConnecting { mut stream }) => {
                        let todo = if Self::test_stream_connectivity(&mut stream) {
                            ms.poll.reregister(&stream, token, ready_r, edge).expect("52");
                            let endpoint = Endpoint::from_fresh_stream(stream);
                            Todo::ActiveRecving { endpoint }
                        } else {
                            ms.poll.deregister(&stream).expect("wt");
                            std::thread::sleep(Duration::from_millis(backoff_millis));
                            backoff_millis = ((backoff_millis as f32) * 1.2) as u64 + 3;
                            let stream = TcpStream::connect(&binding.addr).unwrap();
                            ms.poll.register(&stream, token, ready_w, edge).expect("PAC 3");
                            Todo::ActiveConnecting { stream }
                        };
                        todos[index] = Some(todo);
                    }
                    Some(Todo::PassiveConnecting { mut stream, channel_id }) => {
                        if !Self::test_stream_connectivity(&mut stream) {
                            return Err(ConnectionShutdown(binding.addr));
                        }
                        ms.poll.reregister(&stream, token, ready_r, edge).expect("55");
                        let polarity = binding.polarity;
                        let info = EndpointInfo { polarity, channel_id };
                        let msg = Msg::SetupMsg(SetupMsg::ChannelSetup { info });
                        let mut endpoint = Endpoint::from_fresh_stream(stream);
                        endpoint.send(msg).map_err(|e| EndpointErr(Port(index), e))?;
                        let endpoint_ext = EndpointExt { endpoint, info };
                        endpoint_exts.occupy_reserved(index, endpoint_ext);
                        num_todos_remaining -= 1;
                    }
                    Some(Todo::ActiveRecving { mut endpoint }) => {
                        let ekey = Port(index);
                        'recv_loop: while let Some(msg) =
                            endpoint.recv().map_err(|e| EndpointErr(ekey, e))?
                        {
                            if let Msg::SetupMsg(SetupMsg::ChannelSetup { info }) = msg {
                                if info.polarity == binding.polarity {
                                    return Err(PortKindMismatch(ekey, binding.addr));
                                }
                                let channel_id = info.channel_id;
                                let info = EndpointInfo { polarity: binding.polarity, channel_id };
                                ms.polled_undrained.insert(ekey);
                                let endpoint_ext = EndpointExt { endpoint, info };
                                endpoint_exts.occupy_reserved(index, endpoint_ext);
                                num_todos_remaining -= 1;
                                break 'recv_loop;
                            } else {
                                ms.delayed.push(ReceivedMsg { recipient: ekey, msg });
                            }
                        }
                    }
                }
            }
        }
        assert_eq!(None, endpoint_exts.iter_reserved().next());
        drop(todos);

        ///////////////////////////////////////////////////////
        // 1. construct `family', i.e. perform the sink tree setup procedure
        use {Msg::SetupMsg as S, SetupMsg::*};
        let mut messenger = (&mut ms, &mut endpoint_exts);
        impl Messengerlike for (&mut MessengerState, &mut VecStorage<EndpointExt>) {
            fn get_state_mut(&mut self) -> &mut MessengerState {
                self.0
            }
            fn get_endpoint_mut(&mut self, ekey: Key) -> &mut Endpoint {
                &mut self
                    .1
                    .get_occupied_mut(ekey.to_raw() as usize)
                    .expect("OUT OF BOUNDS")
                    .endpoint
            }
        }

        // 1. broadcast my ID as the first echo. await reply from all in net_keylist
        let neighbors = (0..self.bindings.len()).map(Port);
        let echo = S(LeaderEcho { maybe_leader: controller_id });
        let mut awaiting = IndexSet::<Port>::with_capacity(neighbors.len());
        for n in neighbors.clone() {
            messenger.send(n, echo.clone()).map_err(|e| EndpointErr(n, e))?;
            awaiting.insert(n);
        }

        // 2. Receive incoming replies. whenever a higher-id echo arrives,
        //    adopt it as leader, sender as parent, and reset the await set.
        let mut parent: Option<Port> = None;
        let mut my_leader = controller_id;
        messenger.undelay_all();
        'echo_loop: while !awaiting.is_empty() || parent.is_some() {
            let ReceivedMsg { recipient, msg } = messenger.recv_until(deadline)?.ok_or(Timeout)?;
            match msg {
                S(LeaderAnnounce { leader }) => {
                    // someone else completed the echo and became leader first!
                    // the sender is my parent
                    parent = Some(recipient);
                    my_leader = leader;
                    awaiting.clear();
                    break 'echo_loop;
                }
                S(LeaderEcho { maybe_leader }) => {
                    use Ordering::*;
                    match maybe_leader.cmp(&my_leader) {
                        Less => { /* ignore */ }
                        Equal => {
                            awaiting.remove(&recipient);
                            if awaiting.is_empty() {
                                if let Some(p) = parent {
                                    // return the echo to my parent
                                    messenger
                                        .send(p, S(LeaderEcho { maybe_leader }))
                                        .map_err(|e| EndpointErr(p, e))?;
                                } else {
                                    // DECIDE!
                                    break 'echo_loop;
                                }
                            }
                        }
                        Greater => {
                            // join new echo
                            parent = Some(recipient);
                            my_leader = maybe_leader;
                            let echo = S(LeaderEcho { maybe_leader: my_leader });
                            awaiting.clear();
                            if neighbors.len() == 1 {
                                // immediately reply to parent
                                messenger
                                    .send(recipient, echo.clone())
                                    .map_err(|e| EndpointErr(recipient, e))?;
                            } else {
                                for n in neighbors.clone() {
                                    if n != recipient {
                                        messenger
                                            .send(n, echo.clone())
                                            .map_err(|e| EndpointErr(n, e))?;
                                        awaiting.insert(n);
                                    }
                                }
                            }
                        }
                    }
                }
                msg => messenger.delay(ReceivedMsg { recipient, msg }),
            }
        }
        match parent {
            None => assert_eq!(
                my_leader, controller_id,
                "I've got no parent, but I consider {:?} the leader?",
                my_leader
            ),
            Some(parent) => assert_ne!(
                my_leader, controller_id,
                "I have {:?} as parent, but I consider myself ({:?}) the leader?",
                parent, controller_id
            ),
        }

        // 3. broadcast leader announcement (except to parent: confirm they are your parent)
        //    in this loop, every node sends 1 message to each neighbor
        let msg_for_non_parents = S(LeaderAnnounce { leader: my_leader });
        for n in neighbors.clone() {
            let msg =
                if Some(n) == parent { S(YouAreMyParent) } else { msg_for_non_parents.clone() };
            messenger.send(n, msg).map_err(|e| EndpointErr(n, e))?;
        }

        // await 1 message from all non-parents
        for n in neighbors.clone() {
            if Some(n) != parent {
                awaiting.insert(n);
            }
        }
        let mut children = HashSet::default();
        messenger.undelay_all();
        while !awaiting.is_empty() {
            let ReceivedMsg { recipient, msg } = messenger.recv_until(deadline)?.ok_or(Timeout)?;
            let recipient = recipient;
            match msg {
                S(YouAreMyParent) => {
                    assert!(awaiting.remove(&recipient));
                    children.insert(recipient);
                }
                S(SetupMsg::LeaderAnnounce { leader }) => {
                    assert!(awaiting.remove(&recipient));
                    assert!(leader == my_leader);
                    assert!(Some(recipient) != parent);
                    // they wouldn't send me this if they considered me their parent
                }
                _ => messenger.delay(ReceivedMsg { recipient, msg }),
            }
        }
        let family = Family { parent, children };

        // done!
        Ok(Connected {
            components: Default::default(),
            controller_id,
            channel_index_stream,
            endpoint_exts,
            native_ports,
            family,
            ephemeral: Default::default(),
        })
    }
    /////////
    pub fn connect_using_id(
        &mut self,
        controller_id: ControllerId,
        timeout: Option<Duration>,
    ) -> Result<Connected, ConnectErr> {
        // 1. try and create a connection from these bindings with self immutable.
        let connected = self.new_connected(controller_id, timeout)?;
        // 2. success! drain self and return
        self.bindings.clear();
        Ok(connected)
    }
    pub fn connect(&mut self, timeout: Option<Duration>) -> Result<Connected, ConnectErr> {
        self.connect_using_id(Self::random_controller_id(), timeout)
    }
}

#[derive(Debug)]
pub struct Connected {
    native_ports: HashSet<Port>,
    controller_id: ControllerId,
    channel_index_stream: ChannelIndexStream,
    endpoint_exts: VecStorage<EndpointExt>,
    components: VecStorage<Component>,
    family: Family,
    ephemeral: Ephemeral,
}
#[derive(Debug, Default)]
struct Ephemeral {
    bit_matrix: BitMatrix,
}
impl Connected {
    pub fn new_component(
        &mut self,
        protocol: &Arc<ProtocolD>,
        identifier: &Arc<[u8]>,
        moved_port_list: &[Port],
    ) -> Result<(), MainComponentErr> {
        //////////////////////////////////////////
        // 1. try and create a new component (without mutating self)
        use MainComponentErr::*;
        let moved_port_set = {
            let mut set: HashSet<Port> = Default::default();
            for &port in moved_port_list.iter() {
                if !self.native_ports.contains(&port) {
                    return Err(CannotMovePort(port));
                }
                if !set.insert(port) {
                    return Err(DuplicateMovedPort(port));
                }
            }
            set
        };
        // moved_port_set is disjoint to native_ports
        let expected_polarities = protocol.component_polarities(identifier)?;
        if moved_port_list.len() != expected_polarities.len() {
            return Err(WrongNumberOfParamaters { expected: expected_polarities.len() });
        }
        // correct polarity list
        for (param_index, (&port, &expected_polarity)) in
            moved_port_list.iter().zip(expected_polarities.iter()).enumerate()
        {
            let polarity =
                self.endpoint_exts.get_occupied(port.0).ok_or(UnknownPort(port))?.info.polarity;
            if polarity != expected_polarity {
                return Err(WrongPortPolarity { param_index, port });
            }
        }
        let state = protocol.new_main_component(identifier, &moved_port_list);
        let component = Component {
            port_set: moved_port_set,
            protocol: protocol.clone(),
            identifier: identifier.clone(),
            state,
        };
        //////////////////////////////
        // success! mutate self and return Ok
        self.native_ports.retain(|e| !component.port_set.contains(e));
        self.components.new_occupied(component);
        Ok(())
    }
    pub fn new_channel(&mut self) -> (OutPort, InPort) {
        assert!(self.endpoint_exts.len() <= std::u32::MAX as usize - 2);
        let channel_id = ChannelId {
            controller_id: self.controller_id,
            channel_index: self.channel_index_stream.next(),
        };
        let [e0, e1] = Endpoint::new_memory_pair();
        let kp = self.endpoint_exts.new_occupied(EndpointExt {
            info: EndpointInfo { channel_id, polarity: Putter },
            endpoint: e0,
        });
        let kg = self.endpoint_exts.new_occupied(EndpointExt {
            info: EndpointInfo { channel_id, polarity: Getter },
            endpoint: e1,
        });
        (OutPort(Port(kp)), InPort(Port(kg)))
    }
    pub fn sync_set(&mut self, _inbuf: &mut [u8], _ops: &mut [PortOpRs]) -> Result<(), ()> {
        Ok(())
    }
    pub fn sync_subsets(
        &mut self,
        _inbuf: &mut [u8],
        _ops: &mut [PortOpRs],
        bit_subsets: &[&[usize]],
    ) -> Result<usize, ()> {
        for (batch_index, bit_subset) in bit_subsets.iter().enumerate() {
            println!("batch_index {:?}", batch_index);
            let chunk_iter = bit_subset.iter().copied();
            for index in BitChunkIter::new(chunk_iter) {
                println!("  index {:?}", index);
            }
        }
        Ok(0)
    }
}

macro_rules! bitslice {
    ($( $num:expr  ),*) => {{
        &[0 $( | (1usize << $num)  )*]
    }};
}

#[test]
fn api_new_test() {
    let mut c = Connecting::default();
    let net_out: OutPort = c.bind(Coupling::Active, "127.0.0.1:8000".parse().unwrap());
    let net_in: InPort = c.bind(Coupling::Active, "127.0.0.1:8001".parse().unwrap());
    let proto_0 = Arc::new(ProtocolD::parse(b"").unwrap());
    let mut c = c.connect(None).unwrap();
    let (mem_out, mem_in) = c.new_channel();
    let mut inbuf = [0u8; 64];
    let identifier: Arc<[u8]> = b"sync".to_vec().into();
    c.new_component(&proto_0, &identifier, &[net_in.into(), mem_out.into()]).unwrap();
    let mut ops = [
        PortOpRs::In { msg_range: None, port: &mem_in },
        PortOpRs::Out { msg: b"hey", port: &net_out, optional: false },
        PortOpRs::Out { msg: b"hi?", port: &net_out, optional: true },
        PortOpRs::Out { msg: b"yo!", port: &net_out, optional: false },
    ];
    c.sync_set(&mut inbuf, &mut ops).unwrap();
    c.sync_subsets(&mut inbuf, &mut ops, &[bitslice! {0,1,2}]).unwrap();
}

#[repr(C)]
pub struct PortOp {
    msgptr: *mut u8, // read if OUT, field written if IN, will point into buf
    msglen: usize,   // read if OUT, written if IN, won't exceed buf
    port: Port,
    optional: bool, // no meaning if
}

pub enum PortOpRs<'a> {
    In { msg_range: Option<Range<usize>>, port: &'a InPort },
    Out { msg: &'a [u8], port: &'a OutPort, optional: bool },
}

unsafe fn c_sync_set(
    connected: &mut Connected,
    inbuflen: usize,
    inbufptr: *mut u8,
    opslen: usize,
    opsptr: *mut PortOp,
) -> i32 {
    let buf = as_mut_slice(inbuflen, inbufptr);
    let ops = as_mut_slice(opslen, opsptr);
    let (subset_index, wrote) = sync_inner(connected, buf);
    assert_eq!(0, subset_index);
    for op in ops {
        if let Some(range) = wrote.get(&op.port) {
            op.msgptr = inbufptr.add(range.start);
            op.msglen = range.end - range.start;
        }
    }
    0
}

unsafe fn c_sync_subset(
    connected: &mut Connected,
    inbuflen: usize,
    inbufptr: *mut u8,
    opslen: usize,
    opsptr: *mut PortOp,
    subsetslen: usize,
    subsetsptr: *const *const usize,
) -> i32 {
    let buf: &mut [u8] = as_mut_slice(inbuflen, inbufptr);
    let ops: &mut [PortOp] = as_mut_slice(opslen, opsptr);
    let subsets: &[*const usize] = as_const_slice(subsetslen, subsetsptr);
    let subsetlen = usizes_for_bits(opslen);
    // don't yet know subsetptr; which subset fires unknown!

    let (subset_index, wrote) = sync_inner(connected, buf);
    let subsetptr: *const usize = subsets[subset_index];
    let subset: &[usize] = as_const_slice(subsetlen, subsetptr);

    for index in BitChunkIter::new(subset.iter().copied()) {
        let op = &mut ops[index as usize];
        if let Some(range) = wrote.get(&op.port) {
            op.msgptr = inbufptr.add(range.start);
            op.msglen = range.end - range.start;
        }
    }
    subset_index as i32
}

// dummy fn for the actual synchronous round
fn sync_inner<'c, 'b>(
    _connected: &'c mut Connected,
    _buf: &'b mut [u8],
) -> (usize, &'b HashMap<Port, Range<usize>>) {
    todo!()
}

unsafe fn as_mut_slice<'a, T>(len: usize, ptr: *mut T) -> &'a mut [T] {
    std::slice::from_raw_parts_mut(ptr, len)
}
unsafe fn as_const_slice<'a, T>(len: usize, ptr: *const T) -> &'a [T] {
    std::slice::from_raw_parts(ptr, len)
}

#[test]
fn api_connecting() {
    let addrs: [SocketAddr; 3] = [
        "127.0.0.1:8888".parse().unwrap(),
        "127.0.0.1:8889".parse().unwrap(),
        "127.0.0.1:8890".parse().unwrap(),
    ];

    lazy_static::lazy_static! {
        static ref PROTOCOL: Arc<ProtocolD> = {
            static PDL: &[u8] = b"
            primitive sync(in i, out o) {
                while(true) synchronous {
                    put(o, get(i));
                }
            }
            ";
            Arc::new(ProtocolD::parse(PDL).unwrap())
        };
    }

    const TIMEOUT: Option<Duration> = Some(Duration::from_secs(1));
    let handles = vec![
        std::thread::spawn(move || {
            let mut connecting = Connecting::default();
            let p_in: InPort = connecting.bind(Coupling::Passive, addrs[0]);
            let p_out: OutPort = connecting.bind(Coupling::Active, addrs[1]);
            let mut connected = connecting.connect(TIMEOUT).unwrap();
            let identifier = b"sync".to_vec().into();
            println!("connected {:#?}", &connected);
            connected.new_component(&PROTOCOL, &identifier, &[p_in.into(), p_out.into()]).unwrap();
            println!("connected {:#?}", &connected);
        }),
        std::thread::spawn(move || {
            let mut connecting = Connecting::default();
            let _a: OutPort = connecting.bind(Coupling::Active, addrs[0]);
            let _b: InPort = connecting.bind(Coupling::Passive, addrs[1]);
            let _c: InPort = connecting.bind(Coupling::Active, addrs[2]);
            let _connected = connecting.connect(TIMEOUT).unwrap();
        }),
        std::thread::spawn(move || {
            let mut connecting = Connecting::default();
            let _a: OutPort = connecting.bind(Coupling::Passive, addrs[2]);
            let _connected = connecting.connect(TIMEOUT).unwrap();
        }),
    ];
    for h in handles {
        h.join().unwrap();
    }
}