Files
@ 7b9df91324ad
Branch filter:
Location: CSY/reowolf/src/runtime/communication.rs
7b9df91324ad
49.4 KiB
application/rls-services+xml
fixed unintentional name collisions in socket-micking API
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | use super::*;
use crate::common::*;
////////////////
#[derive(Default)]
struct GetterBuffer {
getters_and_sends: Vec<(PortId, SendPayloadMsg)>,
}
struct RoundCtx {
solution_storage: SolutionStorage,
spec_var_stream: SpecVarStream,
getter_buffer: GetterBuffer,
deadline: Option<Instant>,
}
struct BranchingNative {
branches: HashMap<Predicate, NativeBranch>,
}
#[derive(Clone, Debug)]
struct NativeBranch {
index: usize,
gotten: HashMap<PortId, Payload>,
to_get: HashSet<PortId>, // native branch is ended iff to_get.is_empty()
}
#[derive(Debug)]
struct SolutionStorage {
old_local: HashSet<Predicate>,
new_local: HashSet<Predicate>,
// this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
subtree_solutions: Vec<HashSet<Predicate>>,
subtree_id_to_index: HashMap<SubtreeId, usize>,
}
#[derive(Debug)]
struct BranchingProtoComponent {
ports: HashSet<PortId>,
branches: HashMap<Predicate, ProtoComponentBranch>,
}
#[derive(Debug, Clone)]
struct ProtoComponentBranch {
inbox: HashMap<PortId, Payload>,
state: ComponentState,
untaken_choice: Option<u16>,
ended: bool,
}
struct CyclicDrainer<'a, K: Eq + Hash, V> {
input: &'a mut HashMap<K, V>,
inner: CyclicDrainInner<'a, K, V>,
}
struct CyclicDrainInner<'a, K: Eq + Hash, V> {
swap: &'a mut HashMap<K, V>,
output: &'a mut HashMap<K, V>,
}
trait ReplaceBoolTrue {
fn replace_with_true(&mut self) -> bool;
}
impl ReplaceBoolTrue for bool {
fn replace_with_true(&mut self) -> bool {
let was = *self;
*self = true;
!was
}
}
////////////////
impl RoundCtxTrait for RoundCtx {
fn get_deadline(&self) -> &Option<Instant> {
&self.deadline
}
fn getter_add(&mut self, getter: PortId, msg: SendPayloadMsg) {
self.getter_buffer.getter_add(getter, msg)
}
}
impl Connector {
fn get_comm_mut(&mut self) -> Option<&mut ConnectorCommunication> {
if let ConnectorPhased::Communication(comm) = &mut self.phased {
Some(comm)
} else {
None
}
}
// pub(crate) fn get_mut_udp_sock(&mut self, index: usize) -> Option<&mut UdpSocket> {
// let sock = &mut self
// .get_comm_mut()?
// .endpoint_manager
// .udp_endpoint_store
// .endpoint_exts
// .get_mut(index)?
// .sock;
// Some(sock)
// }
pub fn gotten(&mut self, port: PortId) -> Result<&Payload, GottenError> {
use GottenError as Ge;
let comm = self.get_comm_mut().ok_or(Ge::NoPreviousRound)?;
match &comm.round_result {
Err(_) => Err(Ge::PreviousSyncFailed),
Ok(None) => Err(Ge::NoPreviousRound),
Ok(Some(round_ok)) => round_ok.gotten.get(&port).ok_or(Ge::PortDidntGet),
}
}
pub fn next_batch(&mut self) -> Result<usize, WrongStateError> {
// returns index of new batch
let comm = self.get_comm_mut().ok_or(WrongStateError)?;
comm.native_batches.push(Default::default());
Ok(comm.native_batches.len() - 1)
}
fn port_op_access(
&mut self,
port: PortId,
expect_polarity: Polarity,
) -> Result<&mut NativeBatch, PortOpError> {
use PortOpError as Poe;
let Self { unphased, phased } = self;
if !unphased.native_ports.contains(&port) {
return Err(Poe::PortUnavailable);
}
match unphased.port_info.polarities.get(&port) {
Some(p) if *p == expect_polarity => {}
Some(_) => return Err(Poe::WrongPolarity),
None => return Err(Poe::UnknownPolarity),
}
match phased {
ConnectorPhased::Setup { .. } => Err(Poe::NotConnected),
ConnectorPhased::Communication(comm) => {
let batch = comm.native_batches.last_mut().unwrap(); // length >= 1 is invariant
Ok(batch)
}
}
}
pub fn put(&mut self, port: PortId, payload: Payload) -> Result<(), PortOpError> {
use PortOpError as Poe;
let batch = self.port_op_access(port, Putter)?;
if batch.to_put.contains_key(&port) {
Err(Poe::MultipleOpsOnPort)
} else {
batch.to_put.insert(port, payload);
Ok(())
}
}
pub fn get(&mut self, port: PortId) -> Result<(), PortOpError> {
use PortOpError as Poe;
let batch = self.port_op_access(port, Getter)?;
if batch.to_get.insert(port) {
Ok(())
} else {
Err(Poe::MultipleOpsOnPort)
}
}
// entrypoint for caller. overwrites round result enum, and returns what happened
pub fn sync(&mut self, timeout: Option<Duration>) -> Result<usize, SyncError> {
let Self { unphased: cu, phased } = self;
match phased {
ConnectorPhased::Setup { .. } => Err(SyncError::NotConnected),
ConnectorPhased::Communication(comm) => {
match &comm.round_result {
Err(SyncError::Unrecoverable(e)) => {
log!(cu.logger, "Attempted to start sync round, but previous error {:?} was unrecoverable!", e);
return Err(SyncError::Unrecoverable(e.clone()));
}
_ => {}
}
comm.round_result = Self::connected_sync(cu, comm, timeout);
comm.round_index += 1;
match &comm.round_result {
Ok(None) => unreachable!(),
Ok(Some(ok_result)) => Ok(ok_result.batch_index),
Err(sync_error) => Err(sync_error.clone()),
}
}
}
}
// private function. mutates state but returns with round
// result ASAP (allows for convenient error return with ?)
fn connected_sync(
cu: &mut ConnectorUnphased,
comm: &mut ConnectorCommunication,
timeout: Option<Duration>,
) -> Result<Option<RoundOk>, SyncError> {
//////////////////////////////////
use SyncError as Se;
//////////////////////////////////
log!(
cu.logger,
"~~~ SYNC called with timeout {:?}; starting round {}",
&timeout,
comm.round_index
);
// 1. run all proto components to Nonsync blockers
let mut branching_proto_components =
HashMap::<ProtoComponentId, BranchingProtoComponent>::default();
let mut unrun_components: Vec<(ProtoComponentId, ProtoComponent)> =
cu.proto_components.iter().map(|(&k, v)| (k, v.clone())).collect();
log!(cu.logger, "Nonsync running {} proto components...", unrun_components.len());
// drains unrun_components, and populates branching_proto_components.
while let Some((proto_component_id, mut component)) = unrun_components.pop() {
// TODO coalesce fields
log!(
cu.logger,
"Nonsync running proto component with ID {:?}. {} to go after this",
proto_component_id,
unrun_components.len()
);
let mut ctx = NonsyncProtoContext {
logger: &mut *cu.logger,
port_info: &mut cu.port_info,
id_manager: &mut cu.id_manager,
proto_component_id,
unrun_components: &mut unrun_components,
proto_component_ports: &mut cu
.proto_components
.get_mut(&proto_component_id)
.unwrap() // unrun_components' keys originate from proto_components
.ports,
};
let blocker = component.state.nonsync_run(&mut ctx, &cu.proto_description);
log!(
cu.logger,
"proto component {:?} ran to nonsync blocker {:?}",
proto_component_id,
&blocker
);
use NonsyncBlocker as B;
match blocker {
B::ComponentExit => drop(component),
B::Inconsistent => return Err(Se::InconsistentProtoComponent(proto_component_id)),
B::SyncBlockStart => {
branching_proto_components
.insert(proto_component_id, BranchingProtoComponent::initial(component));
}
}
}
log!(
cu.logger,
"All {} proto components are now done with Nonsync phase",
branching_proto_components.len(),
);
// Create temp structures needed for the synchronous phase of the round
let mut rctx = RoundCtx {
solution_storage: {
let n = std::iter::once(SubtreeId::LocalComponent(ComponentId::Native));
let c = cu
.proto_components
.keys()
.map(|&id| SubtreeId::LocalComponent(ComponentId::Proto(id)));
let e = comm
.neighborhood
.children
.iter()
.map(|&index| SubtreeId::NetEndpoint { index });
let subtree_id_iter = n.chain(c).chain(e);
SolutionStorage::new(subtree_id_iter)
},
spec_var_stream: cu.id_manager.new_spec_var_stream(),
getter_buffer: Default::default(),
deadline: timeout.map(|to| Instant::now() + to),
};
log!(cu.logger, "Round context structure initialized");
// Explore all native branches eagerly. Find solutions, buffer messages, etc.
log!(
cu.logger,
"Translating {} native batches into branches...",
comm.native_batches.len()
);
let native_branch_spec_var = rctx.spec_var_stream.next();
log!(cu.logger, "Native branch spec var is {:?}", native_branch_spec_var);
let mut branching_native = BranchingNative { branches: Default::default() };
'native_branches: for ((native_branch, index), branch_spec_val) in
comm.native_batches.drain(..).zip(0..).zip(SpecVal::iter_domain())
{
let NativeBatch { to_get, to_put } = native_branch;
let predicate = {
let mut predicate = Predicate::default();
// assign trues for ports that fire
let firing_ports: HashSet<PortId> =
to_get.iter().chain(to_put.keys()).copied().collect();
for &port in to_get.iter().chain(to_put.keys()) {
let var = cu.port_info.spec_var_for(port);
predicate.assigned.insert(var, SpecVal::FIRING);
}
// assign falses for all silent (not firing) ports
for &port in cu.native_ports.difference(&firing_ports) {
let var = cu.port_info.spec_var_for(port);
if let Some(SpecVal::FIRING) = predicate.assigned.insert(var, SpecVal::SILENT) {
log!(cu.logger, "Native branch index={} contains internal inconsistency wrt. {:?}. Skipping", index, var);
continue 'native_branches;
}
}
// this branch is consistent. distinguish it with a unique var:val mapping and proceed
predicate.inserted(native_branch_spec_var, branch_spec_val)
};
log!(cu.logger, "Native branch index={:?} has consistent {:?}", index, &predicate);
// send all outgoing messages (by buffering them)
for (putter, payload) in to_put {
let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
log!(cu.logger, "Native branch {} sending msg {:?}", index, &msg);
rctx.getter_buffer.putter_add(cu, putter, msg);
}
if to_get.is_empty() {
// this branch is immediately ready to be part of a solution
log!(
cu.logger,
"Native submitting solution for batch {} with {:?}",
index,
&predicate
);
rctx.solution_storage.submit_and_digest_subtree_solution(
&mut *cu.logger,
SubtreeId::LocalComponent(ComponentId::Native),
predicate.clone(),
);
}
let branch = NativeBranch { index, gotten: Default::default(), to_get };
if let Some(_) = branching_native.branches.insert(predicate, branch) {
// thanks to the native_branch_spec_var, each batch has a distinct predicate
unreachable!()
}
}
// restore the invariant: !native_batches.is_empty()
comm.native_batches.push(Default::default());
comm.endpoint_manager.udp_endpoints_round_start(&mut *cu.logger, &mut rctx.spec_var_stream);
// Call to another big method; keep running this round until a distributed decision is reached
let decision = Self::sync_reach_decision(
cu,
comm,
&mut branching_native,
&mut branching_proto_components,
&mut rctx,
)?;
log!(cu.logger, "Committing to decision {:?}!", &decision);
comm.endpoint_manager.udp_endpoints_round_end(&mut *cu.logger, &decision)?;
// propagate the decision to children
let msg = Msg::CommMsg(CommMsg {
round_index: comm.round_index,
contents: CommMsgContents::CommCtrl(CommCtrlMsg::Announce {
decision: decision.clone(),
}),
});
log!(
cu.logger,
"Announcing decision {:?} through child endpoints {:?}",
&msg,
&comm.neighborhood.children
);
for &child in comm.neighborhood.children.iter() {
comm.endpoint_manager.send_to_comms(child, &msg)?;
}
let ret = match decision {
Decision::Failure => {
// dropping {branching_proto_components, branching_native}
Err(Se::RoundFailure)
}
Decision::Success(predicate) => {
// commit changes to component states
cu.proto_components.clear();
cu.proto_components.extend(
// consume branching proto components
branching_proto_components
.into_iter()
.map(|(id, bpc)| (id, bpc.collapse_with(&predicate))),
);
log!(
cu.logger,
"End round with (updated) component states {:?}",
cu.proto_components.keys()
);
// consume native
Ok(Some(branching_native.collapse_with(&mut *cu.logger, &predicate)))
}
};
log!(cu.logger, "Sync round ending! Cleaning up");
// dropping {solution_storage, payloads_to_get}
ret
}
fn sync_reach_decision(
cu: &mut ConnectorUnphased,
comm: &mut ConnectorCommunication,
branching_native: &mut BranchingNative,
branching_proto_components: &mut HashMap<ProtoComponentId, BranchingProtoComponent>,
rctx: &mut RoundCtx,
) -> Result<Decision, UnrecoverableSyncError> {
let mut already_requested_failure = false;
if branching_native.branches.is_empty() {
log!(cu.logger, "Native starts with no branches! Failure!");
match comm.neighborhood.parent {
Some(parent) => {
if already_requested_failure.replace_with_true() {
Self::request_failure(cu, comm, parent)?
} else {
log!(cu.logger, "Already requested failure");
}
}
None => {
log!(cu.logger, "No parent. Deciding on failure");
return Ok(Decision::Failure);
}
}
}
log!(cu.logger, "Done translating native batches into branches");
// run all proto components to their sync blocker
log!(
cu.logger,
"Running all {} proto components to their sync blocker...",
branching_proto_components.len()
);
for (&proto_component_id, proto_component) in branching_proto_components.iter_mut() {
let BranchingProtoComponent { ports, branches } = proto_component;
let mut swap = HashMap::default();
// initially, no components have .ended==true
let mut blocked = HashMap::default();
// drain from branches --> blocked
let cd = CyclicDrainer::new(branches, &mut swap, &mut blocked);
BranchingProtoComponent::drain_branches_to_blocked(
cd,
cu,
rctx,
proto_component_id,
ports,
)?;
// swap the blocked branches back
std::mem::swap(&mut blocked, branches);
if branches.is_empty() {
log!(cu.logger, "{:?} has become inconsistent!", proto_component_id);
if let Some(parent) = comm.neighborhood.parent {
if already_requested_failure.replace_with_true() {
Self::request_failure(cu, comm, parent)?
} else {
log!(cu.logger, "Already requested failure");
}
} else {
log!(cu.logger, "As the leader, deciding on timeout");
return Ok(Decision::Failure);
}
}
}
log!(cu.logger, "All proto components are blocked");
log!(cu.logger, "Entering decision loop...");
comm.endpoint_manager.undelay_all();
'undecided: loop {
// drain payloads_to_get, sending them through endpoints / feeding them to components
log!(cu.logger, "Decision loop! have {} messages to recv", rctx.getter_buffer.len());
while let Some((getter, send_payload_msg)) = rctx.getter_buffer.pop() {
assert!(cu.port_info.polarities.get(&getter).copied() == Some(Getter));
let route = cu.port_info.routes.get(&getter);
log!(
cu.logger,
"Routing msg {:?} to {:?} via {:?}",
&send_payload_msg,
getter,
&route
);
match route {
None => log!(cu.logger, "Delivery failed. Physical route unmapped!"),
Some(Route::UdpEndpoint { index }) => {
let udp_endpoint_ext =
&mut comm.endpoint_manager.udp_endpoint_store.endpoint_exts[*index];
let SendPayloadMsg { predicate, payload } = send_payload_msg;
log!(cu.logger, "Delivering to udp endpoint index={}", index);
udp_endpoint_ext.outgoing_payloads.insert(predicate, payload);
}
Some(Route::NetEndpoint { index }) => {
let msg = Msg::CommMsg(CommMsg {
round_index: comm.round_index,
contents: CommMsgContents::SendPayload(send_payload_msg),
});
comm.endpoint_manager.send_to_comms(*index, &msg)?;
}
Some(Route::LocalComponent(ComponentId::Native)) => branching_native.feed_msg(
cu,
&mut rctx.solution_storage,
getter,
&send_payload_msg,
),
Some(Route::LocalComponent(ComponentId::Proto(proto_component_id))) => {
if let Some(branching_component) =
branching_proto_components.get_mut(proto_component_id)
{
let proto_component_id = *proto_component_id;
branching_component.feed_msg(
cu,
rctx,
proto_component_id,
getter,
&send_payload_msg,
)?;
if branching_component.branches.is_empty() {
log!(
cu.logger,
"{:?} has become inconsistent!",
proto_component_id
);
if let Some(parent) = comm.neighborhood.parent {
if already_requested_failure.replace_with_true() {
Self::request_failure(cu, comm, parent)?
} else {
log!(cu.logger, "Already requested failure");
}
} else {
log!(cu.logger, "As the leader, deciding on timeout");
return Ok(Decision::Failure);
}
}
} else {
log!(
cu.logger,
"Delivery to getter {:?} msg {:?} failed because {:?} isn't here",
getter,
&send_payload_msg,
proto_component_id
);
}
}
}
}
// check if we have a solution yet
log!(cu.logger, "Check if we have any local decisions...");
for solution in rctx.solution_storage.iter_new_local_make_old() {
log!(cu.logger, "New local decision with solution {:?}...", &solution);
match comm.neighborhood.parent {
Some(parent) => {
log!(cu.logger, "Forwarding to my parent {:?}", parent);
let suggestion = Decision::Success(solution);
let msg = Msg::CommMsg(CommMsg {
round_index: comm.round_index,
contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest {
suggestion,
}),
});
comm.endpoint_manager.send_to_comms(parent, &msg)?;
}
None => {
log!(cu.logger, "No parent. Deciding on solution {:?}", &solution);
return Ok(Decision::Success(solution));
}
}
}
// stuck! make progress by receiving a msg
// try recv messages arriving through endpoints
log!(cu.logger, "No decision yet. Let's recv an endpoint msg...");
{
let (net_index, comm_ctrl_msg): (usize, CommCtrlMsg) =
match comm.endpoint_manager.try_recv_any_comms(
&mut *cu.logger,
&cu.port_info,
rctx,
comm.round_index,
)? {
CommRecvOk::NewControlMsg { net_index, msg } => (net_index, msg),
CommRecvOk::NewPayloadMsgs => continue 'undecided,
CommRecvOk::TimeoutWithoutNew => {
log!(cu.logger, "Reached user-defined deadling without decision...");
if let Some(parent) = comm.neighborhood.parent {
if already_requested_failure.replace_with_true() {
Self::request_failure(cu, comm, parent)?
} else {
log!(cu.logger, "Already requested failure");
}
} else {
log!(cu.logger, "As the leader, deciding on timeout");
return Ok(Decision::Failure);
}
rctx.deadline = None;
continue 'undecided;
}
};
log!(
cu.logger,
"Received from endpoint {} ctrl msg {:?}",
net_index,
&comm_ctrl_msg
);
match comm_ctrl_msg {
CommCtrlMsg::Suggest { suggestion } => {
// only accept this control msg through a child endpoint
if comm.neighborhood.children.contains(&net_index) {
match suggestion {
Decision::Success(predicate) => {
// child solution contributes to local solution
log!(cu.logger, "Child provided solution {:?}", &predicate);
let subtree_id = SubtreeId::NetEndpoint { index: net_index };
rctx.solution_storage.submit_and_digest_subtree_solution(
&mut *cu.logger,
subtree_id,
predicate,
);
}
Decision::Failure => {
match comm.neighborhood.parent {
None => {
log!(cu.logger, "I decide on my child's failure");
break 'undecided Ok(Decision::Failure);
}
Some(parent) => {
log!(cu.logger, "Forwarding failure through my parent endpoint {:?}", parent);
if already_requested_failure.replace_with_true() {
Self::request_failure(cu, comm, parent)?
} else {
log!(cu.logger, "Already requested failure");
}
}
}
}
}
} else {
log!(
cu.logger,
"Discarding suggestion {:?} from non-child endpoint idx {:?}",
&suggestion,
net_index
);
}
}
CommCtrlMsg::Announce { decision } => {
if Some(net_index) == comm.neighborhood.parent {
// adopt this decision
return Ok(decision);
} else {
log!(
cu.logger,
"Discarding announcement {:?} from non-parent endpoint idx {:?}",
&decision,
net_index
);
}
}
}
}
log!(cu.logger, "Endpoint msg recv done");
}
}
fn request_failure(
cu: &mut ConnectorUnphased,
comm: &mut ConnectorCommunication,
parent: usize,
) -> Result<(), UnrecoverableSyncError> {
log!(cu.logger, "Forwarding to my parent {:?}", parent);
let suggestion = Decision::Failure;
let msg = Msg::CommMsg(CommMsg {
round_index: comm.round_index,
contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest { suggestion }),
});
comm.endpoint_manager.send_to_comms(parent, &msg)
}
}
impl BranchingNative {
fn feed_msg(
&mut self,
cu: &mut ConnectorUnphased,
solution_storage: &mut SolutionStorage,
getter: PortId,
send_payload_msg: &SendPayloadMsg,
) {
log!(cu.logger, "feeding native getter {:?} {:?}", getter, &send_payload_msg);
assert!(cu.port_info.polarities.get(&getter).copied() == Some(Getter));
let mut draining = HashMap::default();
let finished = &mut self.branches;
std::mem::swap(&mut draining, finished);
for (predicate, mut branch) in draining.drain() {
log!(cu.logger, "visiting native branch {:?} with {:?}", &branch, &predicate);
// check if this branch expects to receive it
let var = cu.port_info.spec_var_for(getter);
let mut feed_branch = |branch: &mut NativeBranch, predicate: &Predicate| {
let was = branch.gotten.insert(getter, send_payload_msg.payload.clone());
assert!(was.is_none());
branch.to_get.remove(&getter);
if branch.to_get.is_empty() {
log!(
cu.logger,
"new native solution with {:?} (to_get.is_empty()) with gotten {:?}",
&predicate,
&branch.gotten
);
let subtree_id = SubtreeId::LocalComponent(ComponentId::Native);
solution_storage.submit_and_digest_subtree_solution(
&mut *cu.logger,
subtree_id,
predicate.clone(),
);
}
};
if predicate.query(var) != Some(SpecVal::FIRING) {
// optimization. Don't bother trying this branch
log!(
cu.logger,
"skipping branch with {:?} that doesn't want the message (fastpath)",
&predicate
);
finished.insert(predicate, branch);
continue;
}
use AssignmentUnionResult as Aur;
match predicate.assignment_union(&send_payload_msg.predicate) {
Aur::Nonexistant => {
// this branch does not receive the message
log!(
cu.logger,
"skipping branch with {:?} that doesn't want the message (slowpath)",
&predicate
);
finished.insert(predicate, branch);
}
Aur::Equivalent | Aur::FormerNotLatter => {
// retain the existing predicate, but add this payload
feed_branch(&mut branch, &predicate);
log!(cu.logger, "branch pred covers it! Accept the msg");
finished.insert(predicate, branch);
}
Aur::LatterNotFormer => {
// fork branch, give fork the message and payload predicate. original branch untouched
let mut branch2 = branch.clone();
let predicate2 = send_payload_msg.predicate.clone();
feed_branch(&mut branch2, &predicate2);
log!(
cu.logger,
"payload pred {:?} covers branch pred {:?}",
&predicate2,
&predicate
);
finished.insert(predicate, branch);
finished.insert(predicate2, branch2);
}
Aur::New(predicate2) => {
// fork branch, give fork the message and the new predicate. original branch untouched
let mut branch2 = branch.clone();
feed_branch(&mut branch2, &predicate2);
log!(
cu.logger,
"new subsuming pred created {:?}. forking and feeding",
&predicate2
);
finished.insert(predicate, branch);
finished.insert(predicate2, branch2);
}
}
}
}
fn collapse_with(self, logger: &mut dyn Logger, solution_predicate: &Predicate) -> RoundOk {
log!(
logger,
"Collapsing native with {} branch preds {:?}",
self.branches.len(),
self.branches.keys()
);
for (branch_predicate, branch) in self.branches {
if branch.to_get.is_empty() && branch_predicate.assigns_subset(solution_predicate) {
let NativeBranch { index, gotten, .. } = branch;
log!(logger, "Collapsed native has gotten {:?}", &gotten);
return RoundOk { batch_index: index, gotten };
}
}
panic!("Native had no branches matching pred {:?}", solution_predicate);
}
}
impl BranchingProtoComponent {
fn drain_branches_to_blocked(
cd: CyclicDrainer<Predicate, ProtoComponentBranch>,
cu: &mut ConnectorUnphased,
rctx: &mut RoundCtx,
proto_component_id: ProtoComponentId,
ports: &HashSet<PortId>,
) -> Result<(), UnrecoverableSyncError> {
cd.cylic_drain(|mut predicate, mut branch, mut drainer| {
let mut ctx = SyncProtoContext {
untaken_choice: &mut branch.untaken_choice,
logger: &mut *cu.logger,
predicate: &predicate,
port_info: &cu.port_info,
inbox: &branch.inbox,
};
let blocker = branch.state.sync_run(&mut ctx, &cu.proto_description);
log!(
cu.logger,
"Proto component with id {:?} branch with pred {:?} hit blocker {:?}",
proto_component_id,
&predicate,
&blocker,
);
use SyncBlocker as B;
match blocker {
B::NondetChoice { n } => {
let var = rctx.spec_var_stream.next();
for val in SpecVal::iter_domain().take(n as usize) {
let pred = predicate.clone().inserted(var, val);
let mut branch_n = branch.clone();
branch_n.untaken_choice = Some(val.0);
drainer.add_input(pred, branch_n);
}
}
B::Inconsistent => {
// branch is inconsistent. throw it away
drop((predicate, branch));
}
B::SyncBlockEnd => {
// make concrete all variables
for &port in ports.iter() {
let var = cu.port_info.spec_var_for(port);
predicate.assigned.entry(var).or_insert(SpecVal::SILENT);
}
// submit solution for this component
let subtree_id = SubtreeId::LocalComponent(ComponentId::Proto(proto_component_id));
rctx.solution_storage.submit_and_digest_subtree_solution(
&mut *cu.logger,
subtree_id,
predicate.clone(),
);
branch.ended = true;
// move to "blocked"
drainer.add_output(predicate, branch);
}
B::CouldntReadMsg(port) => {
// move to "blocked"
assert!(!branch.inbox.contains_key(&port));
drainer.add_output(predicate, branch);
}
B::CouldntCheckFiring(port) => {
// sanity check
let var = cu.port_info.spec_var_for(port);
assert!(predicate.query(var).is_none());
// keep forks in "unblocked"
drainer.add_input(predicate.clone().inserted(var, SpecVal::SILENT), branch.clone());
drainer.add_input(predicate.inserted(var, SpecVal::FIRING), branch);
}
B::PutMsg(putter, payload) => {
// sanity check
assert_eq!(Some(&Putter), cu.port_info.polarities.get(&putter));
// overwrite assignment
let var = cu.port_info.spec_var_for(putter);
let was = predicate.assigned.insert(var, SpecVal::FIRING);
if was == Some(SpecVal::SILENT) {
log!(cu.logger, "Proto component {:?} tried to PUT on port {:?} when pred said var {:?}==Some(false). inconsistent!", proto_component_id, putter, var);
// discard forever
drop((predicate, branch));
} else {
// keep in "unblocked"
log!(cu.logger, "Proto component {:?} putting payload {:?} on port {:?} (using var {:?})", proto_component_id, &payload, putter, var);
let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
rctx.getter_buffer.putter_add(cu, putter, msg);
drainer.add_input(predicate, branch);
}
}
}
Ok(())
})
}
fn feed_msg(
&mut self,
cu: &mut ConnectorUnphased,
rctx: &mut RoundCtx,
proto_component_id: ProtoComponentId,
getter: PortId,
send_payload_msg: &SendPayloadMsg,
) -> Result<(), UnrecoverableSyncError> {
let logger = &mut *cu.logger;
log!(
logger,
"feeding proto component {:?} getter {:?} {:?}",
proto_component_id,
getter,
&send_payload_msg
);
let BranchingProtoComponent { branches, ports } = self;
let mut unblocked = HashMap::default();
let mut blocked = HashMap::default();
// partition drain from branches -> {unblocked, blocked}
log!(logger, "visiting {} blocked branches...", branches.len());
for (predicate, mut branch) in branches.drain() {
if branch.ended {
log!(logger, "Skipping ended branch with {:?}", &predicate);
blocked.insert(predicate, branch);
continue;
}
use AssignmentUnionResult as Aur;
log!(logger, "visiting branch with pred {:?}", &predicate);
match predicate.assignment_union(&send_payload_msg.predicate) {
Aur::Nonexistant => {
// this branch does not receive the message
log!(logger, "skipping branch");
blocked.insert(predicate, branch);
}
Aur::Equivalent | Aur::FormerNotLatter => {
// retain the existing predicate, but add this payload
log!(logger, "feeding this branch without altering its predicate");
branch.feed_msg(getter, send_payload_msg.payload.clone());
unblocked.insert(predicate, branch);
}
Aur::LatterNotFormer => {
// fork branch, give fork the message and payload predicate. original branch untouched
log!(logger, "Forking this branch, giving it the predicate of the msg");
let mut branch2 = branch.clone();
let predicate2 = send_payload_msg.predicate.clone();
branch2.feed_msg(getter, send_payload_msg.payload.clone());
blocked.insert(predicate, branch);
unblocked.insert(predicate2, branch2);
}
Aur::New(predicate2) => {
// fork branch, give fork the message and the new predicate. original branch untouched
log!(logger, "Forking this branch with new predicate {:?}", &predicate2);
let mut branch2 = branch.clone();
branch2.feed_msg(getter, send_payload_msg.payload.clone());
blocked.insert(predicate, branch);
unblocked.insert(predicate2, branch2);
}
}
}
log!(logger, "blocked {:?} unblocked {:?}", blocked.len(), unblocked.len());
// drain from unblocked --> blocked
let mut swap = HashMap::default();
let cd = CyclicDrainer::new(&mut unblocked, &mut swap, &mut blocked);
BranchingProtoComponent::drain_branches_to_blocked(
cd,
cu,
rctx,
proto_component_id,
ports,
)?;
// swap the blocked branches back
std::mem::swap(&mut blocked, branches);
log!(cu.logger, "component settles down with branches: {:?}", branches.keys());
Ok(())
}
fn collapse_with(self, solution_predicate: &Predicate) -> ProtoComponent {
let BranchingProtoComponent { ports, branches } = self;
for (branch_predicate, branch) in branches {
if branch.ended && branch_predicate.assigns_subset(solution_predicate) {
let ProtoComponentBranch { state, .. } = branch;
return ProtoComponent { state, ports };
}
}
panic!("ProtoComponent had no branches matching pred {:?}", solution_predicate);
}
fn initial(ProtoComponent { state, ports }: ProtoComponent) -> Self {
let branch = ProtoComponentBranch {
inbox: Default::default(),
state,
ended: false,
untaken_choice: None,
};
Self { ports, branches: hashmap! { Predicate::default() => branch } }
}
}
impl SolutionStorage {
fn new(subtree_ids: impl Iterator<Item = SubtreeId>) -> Self {
let mut subtree_id_to_index: HashMap<SubtreeId, usize> = Default::default();
let mut subtree_solutions = vec![];
for id in subtree_ids {
subtree_id_to_index.insert(id, subtree_solutions.len());
subtree_solutions.push(Default::default())
}
Self {
subtree_solutions,
subtree_id_to_index,
old_local: Default::default(),
new_local: Default::default(),
}
}
fn is_clear(&self) -> bool {
self.subtree_id_to_index.is_empty()
&& self.subtree_solutions.is_empty()
&& self.old_local.is_empty()
&& self.new_local.is_empty()
}
fn clear(&mut self) {
self.subtree_id_to_index.clear();
self.subtree_solutions.clear();
self.old_local.clear();
self.new_local.clear();
}
fn reset(&mut self, subtree_ids: impl Iterator<Item = SubtreeId>) {
self.subtree_id_to_index.clear();
self.subtree_solutions.clear();
self.old_local.clear();
self.new_local.clear();
for key in subtree_ids {
self.subtree_id_to_index.insert(key, self.subtree_solutions.len());
self.subtree_solutions.push(Default::default())
}
}
pub(crate) fn iter_new_local_make_old(&mut self) -> impl Iterator<Item = Predicate> + '_ {
let Self { old_local, new_local, .. } = self;
new_local.drain().map(move |local| {
old_local.insert(local.clone());
local
})
}
pub(crate) fn submit_and_digest_subtree_solution(
&mut self,
logger: &mut dyn Logger,
subtree_id: SubtreeId,
predicate: Predicate,
) {
log!(logger, "NEW COMPONENT SOLUTION {:?} {:?}", subtree_id, &predicate);
let index = self.subtree_id_to_index[&subtree_id];
let left = 0..index;
let right = (index + 1)..self.subtree_solutions.len();
let Self { subtree_solutions, new_local, old_local, .. } = self;
let was_new = subtree_solutions[index].insert(predicate.clone());
if was_new {
let set_visitor = left.chain(right).map(|index| &subtree_solutions[index]);
Self::elaborate_into_new_local_rec(
logger,
predicate,
set_visitor,
old_local,
new_local,
);
}
}
fn elaborate_into_new_local_rec<'a, 'b>(
logger: &mut dyn Logger,
partial: Predicate,
mut set_visitor: impl Iterator<Item = &'b HashSet<Predicate>> + Clone,
old_local: &'b HashSet<Predicate>,
new_local: &'a mut HashSet<Predicate>,
) {
if let Some(set) = set_visitor.next() {
// incomplete solution. keep traversing
for pred in set.iter() {
if let Some(elaborated) = pred.union_with(&partial) {
Self::elaborate_into_new_local_rec(
logger,
elaborated,
set_visitor.clone(),
old_local,
new_local,
)
}
}
} else {
// recursive stop condition. `partial` is a local subtree solution
if !old_local.contains(&partial) {
// ... and it hasn't been found before
log!(logger, "storing NEW LOCAL SOLUTION {:?}", &partial);
new_local.insert(partial);
}
}
}
}
impl GetterBuffer {
fn len(&self) -> usize {
self.getters_and_sends.len()
}
fn pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
self.getters_and_sends.pop()
}
fn getter_add(&mut self, getter: PortId, msg: SendPayloadMsg) {
self.getters_and_sends.push((getter, msg));
}
fn putter_add(&mut self, cu: &mut ConnectorUnphased, putter: PortId, msg: SendPayloadMsg) {
if let Some(&getter) = cu.port_info.peers.get(&putter) {
self.getter_add(getter, msg);
} else {
log!(cu.logger, "Putter {:?} has no known peer!", putter);
panic!("Putter {:?} has no known peer!");
}
}
}
impl SyncProtoContext<'_> {
pub(crate) fn is_firing(&mut self, port: PortId) -> Option<bool> {
let var = self.port_info.spec_var_for(port);
self.predicate.query(var).map(SpecVal::is_firing)
}
pub(crate) fn read_msg(&mut self, port: PortId) -> Option<&Payload> {
self.inbox.get(&port)
}
pub(crate) fn take_choice(&mut self) -> Option<u16> {
self.untaken_choice.take()
}
}
impl<'a, K: Eq + Hash, V> CyclicDrainInner<'a, K, V> {
fn add_input(&mut self, k: K, v: V) {
self.swap.insert(k, v);
}
fn add_output(&mut self, k: K, v: V) {
self.output.insert(k, v);
}
}
impl NonsyncProtoContext<'_> {
pub fn new_component(&mut self, moved_ports: HashSet<PortId>, state: ComponentState) {
// called by a PROTO COMPONENT. moves its own ports.
// 1. sanity check: this component owns these ports
log!(
self.logger,
"Component {:?} added new component with state {:?}, moving ports {:?}",
self.proto_component_id,
&state,
&moved_ports
);
assert!(self.proto_component_ports.is_subset(&moved_ports));
// 2. remove ports from old component & update port->route
let new_id = self.id_manager.new_proto_component_id();
for port in moved_ports.iter() {
self.proto_component_ports.remove(port);
self.port_info.routes.insert(*port, Route::LocalComponent(ComponentId::Proto(new_id)));
}
// 3. create a new component
self.unrun_components.push((new_id, ProtoComponent { state, ports: moved_ports }));
}
pub fn new_port_pair(&mut self) -> [PortId; 2] {
// adds two new associated ports, related to each other, and exposed to the proto component
let [o, i] = [self.id_manager.new_port_id(), self.id_manager.new_port_id()];
self.proto_component_ports.insert(o);
self.proto_component_ports.insert(i);
// {polarity, peer, route} known. {} unknown.
self.port_info.polarities.insert(o, Putter);
self.port_info.polarities.insert(i, Getter);
self.port_info.peers.insert(o, i);
self.port_info.peers.insert(i, o);
let route = Route::LocalComponent(ComponentId::Proto(self.proto_component_id));
self.port_info.routes.insert(o, route);
self.port_info.routes.insert(i, route);
log!(
self.logger,
"Component {:?} port pair (out->in) {:?} -> {:?}",
self.proto_component_id,
o,
i
);
[o, i]
}
}
impl ProtoComponentBranch {
fn feed_msg(&mut self, getter: PortId, payload: Payload) {
let was = self.inbox.insert(getter, payload);
assert!(was.is_none())
}
}
impl<'a, K: Eq + Hash + 'static, V: 'static> CyclicDrainer<'a, K, V> {
fn new(
input: &'a mut HashMap<K, V>,
swap: &'a mut HashMap<K, V>,
output: &'a mut HashMap<K, V>,
) -> Self {
Self { input, inner: CyclicDrainInner { swap, output } }
}
fn cylic_drain<E>(
self,
mut func: impl FnMut(K, V, CyclicDrainInner<'_, K, V>) -> Result<(), E>,
) -> Result<(), E> {
let Self { input, inner: CyclicDrainInner { swap, output } } = self;
// assert!(swap.is_empty());
while !input.is_empty() {
for (k, v) in input.drain() {
func(k, v, CyclicDrainInner { swap, output })?
}
std::mem::swap(input, swap);
}
Ok(())
}
}
|