Files
@ 9573233dccde
Branch filter:
Location: CSY/reowolf/src/protocol/parser/pass_rewriting.rs
9573233dccde
19.6 KiB
application/rls-services+xml
WIP: Revised AST transformation code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | // TODO: File contains a lot of manual AST element construction. Wherein we have
// (for the first time in this compiler) a lot of fields that have no real
// meaning (e.g. the InputSpan of a AST-transformation). What are we going to
// do with this to make the code and datastructures more easily grokable?
// We could do an intermediate AST structure. But considering how close this
// phase of compilation is to bytecode generation, that might be a lot of busy-
// work with few results. Alternatively we may put the AST elements inside
// a special substructure. We could also force ourselves (and put the
// appropriate comments in the code) to not use certain fields anymore after
// a particular stage of compilation.
use crate::collections::*;
use crate::protocol::*;
use super::visitor::*;
pub(crate) struct PassRewriting {
current_scope: BlockStatementId,
statement_buffer: ScopedBuffer<StatementId>,
call_expr_buffer: ScopedBuffer<CallExpressionId>,
expression_buffer: ScopedBuffer<ExpressionId>,
}
impl PassRewriting {
pub(crate) fn new() -> Self {
Self{
current_scope: BlockStatementId::new_invalid(),
statement_buffer: ScopedBuffer::with_capacity(16),
call_expr_buffer: ScopedBuffer::with_capacity(16),
expression_buffer: ScopedBuffer::with_capacity(16),
}
}
}
impl Visitor for PassRewriting {
// --- Visiting procedures
fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
let def = &ctx.heap[id];
let body_id = def.body;
return self.visit_block_stmt(ctx, body_id);
}
fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
let def = &ctx.heap[id];
let body_id = def.body;
return self.visit_block_stmt(ctx, body_id);
}
// --- Visiting statements (that are not the select statement)
fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
let block_stmt = &ctx.heap[id];
let stmt_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
self.current_scope = id;
for stmt_idx in 0..stmt_section.len() {
self.visit_stmt(ctx, stmt_section[stmt_idx])?;
}
stmt_section.forget();
return Ok(())
}
fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
let labeled_stmt = &ctx.heap[id];
let body_id = labeled_stmt.body;
return self.visit_stmt(ctx, body_id);
}
fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
let if_stmt = &ctx.heap[id];
let true_body_id = if_stmt.true_body;
let false_body_id = if_stmt.false_body;
self.visit_block_stmt(ctx, true_body_id)?;
if let Some(false_body_id) = false_body_id {
self.visit_block_stmt(ctx, false_body_id)?;
}
return Ok(())
}
fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
let while_stmt = &ctx.heap[id];
let body_id = while_stmt.body;
return self.visit_block_stmt(ctx, body_id);
}
fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
let sync_stmt = &ctx.heap[id];
let body_id = sync_stmt.body;
return self.visit_block_stmt(ctx, body_id);
}
// --- Visiting the select statement
fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
// We're going to transform the select statement by a block statement
// containing builtin runtime-calls. And to do so we create temporary
// variables and move some other statements around.
let select_stmt = &ctx.heap[id];
let mut total_num_cases = select_stmt.cases.len();
let mut total_num_ports = 0;
// Put heap IDs into temporary buffers to handle borrowing rules
let mut call_id_section = self.call_expr_buffer.start_section();
let mut expr_id_section = self.expression_buffer.start_section();
for case in select_stmt.cases.iter() {
total_num_ports += case.involved_ports.len();
for (call_id, expr_id) in case.involved_ports.iter().copied() {
call_id_section.push(call_id);
expr_id_section.push(expr_id);
}
}
// Transform all of the call expressions by takings its argument (the
// port from which we `get`) and turning it into a temporary variable.
let mut transformed_stmts = Vec::with_capacity(total_num_ports); // TODO: Recompute this preallocated length, put assert at the end
let mut locals = Vec::with_capacity(total_num_ports);
for port_var_idx in 0..call_id_section.len() {
let get_call_expr_id = call_id_section[port_var_idx];
let port_expr_id = expr_id_section[port_var_idx];
// Move the port expression such that it gets assigned to a temporary variable
let variable_id = create_ast_variable(ctx);
let variable_decl_stmt_id = create_ast_variable_declaration_stmt(ctx, variable_id, port_expr_id);
// Replace the original port expression in the call with a reference
// to the replacement variable
let variable_expr_id = create_ast_variable_expr(ctx, variable_id);
let call_expr = &mut ctx.heap[get_call_expr_id];
call_expr.arguments[0] = variable_expr_id.upcast();
transformed_stmts.push(variable_decl_stmt_id.upcast().upcast());
locals.push(variable_id);
}
// Insert runtime calls that facilitate the semantics of the select
// block.
// Create the call that indicates the start of the select block
{
let num_cases_expression_id = create_ast_literal_integer_expr(ctx, total_num_cases as u64);
let num_ports_expression_id = create_ast_literal_integer_expr(ctx, total_num_ports as u64);
let arguments = vec![
num_cases_expression_id.upcast(),
num_ports_expression_id.upcast()
];
let call_expression_id = create_ast_call_expr(ctx, Method::SelectStart, arguments);
let call_statement_id = create_ast_expression_stmt(ctx, call_expression_id.upcast());
transformed_stmts.push(call_statement_id.upcast());
}
// Create calls for each select case that will register the ports that
// we are waiting on at the runtime.
{
let mut total_port_index = 0;
for case_index in 0..total_num_cases {
let case = &ctx.heap[id].cases[case_index];
let case_num_ports = case.involved_ports.len();
for case_port_index in 0..case_num_ports {
// Arguments to runtime call
let port_variable_id = locals[total_port_index]; // so far this variable contains the temporary variables for the port expressions
let case_index_expr_id = create_ast_literal_integer_expr(ctx, case_index as u64);
let port_index_expr_id = create_ast_literal_integer_expr(ctx, case_port_index as u64);
let port_variable_expr_id = create_ast_variable_expr(ctx, port_variable_id);
let runtime_call_arguments = vec![
case_index_expr_id.upcast(),
port_index_expr_id.upcast(),
port_variable_expr_id.upcast()
];
// Create runtime call, then store it
let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectRegisterCasePort, runtime_call_arguments);
let runtime_call_stmt_id = create_ast_expression_stmt(ctx, runtime_call_expr_id);
transformed_stmts.push(runtime_call_stmt_id.upcast());
total_port_index += 1;
}
}
}
// Create the variable that will hold the result of a completed select
// block. Then create the runtime call that will produce this result
let select_variable_id = create_ast_variable(ctx);
locals.push(select_variable_id);
{
let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectWait, Vec::new());
let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, select_variable_id, runtime_call_expr_id.upcast());
transformed_stmts.push(variable_stmt_id.upcast().upcast());
}
call_id_section.forget();
expr_id_section.forget();
// Now we transform each of the select block case's guard and code into
// a chained if-else statement.
if total_num_cases > 0 {
let cmp_expr_id = create_ast_equality_comparison_expr(ctx, select_variable_id, 0);
let mut (if_stmt_id, end_if_stmt_id) = create_ast_if_statement(ctx, cmp_expr_id.upcast(), )
}
// let block = ctx.heap.alloc_block_statement(|this| BlockStatement{
// this,
// is_implicit: true,
// span: stmt.span,
// statements: vec![],
// end_block: EndBlockStatementId(),
// scope_node: ScopeNode {},
// first_unique_id_in_scope: 0,
// next_unique_id_in_scope: 0,
// locals,
// labels: vec![],
// next: ()
// });
return Ok(())
}
}
impl PassRewriting {
fn create_runtime_call_statement(&self, ctx: &mut Ctx, method: Method, arguments: Vec<ExpressionId>) -> (CallExpressionId, ExpressionStatementId) {
let call_expr_id = ctx.heap.alloc_call_expression(|this| CallExpression{
this,
func_span: InputSpan::new(),
full_span: InputSpan::new(),
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
method,
arguments,
definition: DefinitionId::new_invalid(),
parent: ExpressionParent::None,
unique_id_in_definition: -1,
});
let call_stmt_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
this,
span: InputSpan::new(),
expression: call_expr_id.upcast(),
next: StatementId::new_invalid(),
});
let call_expr = &mut ctx.heap[call_expr_id];
call_expr.parent = ExpressionParent::ExpressionStmt(call_stmt_id);
return (call_expr_id, call_stmt_id);
}
fn create_runtime_select_wait_variable_and_statement(&self, ctx: &mut Ctx) -> (VariableId, MemoryStatementId) {
let variable_id = create_ast_variable(ctx);
let variable_expr_id = create_ast_variable_expr(ctx, variable_id);
let runtime_call_expr_id = ctx.heap.alloc_call_expression(|this| CallExpression{
this,
func_span: InputSpan::new(),
full_span: InputSpan::new(),
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
method: Method::SelectWait,
arguments: Vec::new(),
definition: DefinitionId::new_invalid(),
parent: ExpressionParent::None,
unique_id_in_definition: -1
});
let initial_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
this,
operator_span: InputSpan::new(),
full_span: InputSpan::new(),
left: variable_expr_id.upcast(),
operation: AssignmentOperator::Set,
right: runtime_call_expr_id.upcast(),
parent: ExpressionParent::None,
unique_id_in_definition: -1
});
let variable_statement_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
this,
span: InputSpan::new(),
variable: variable_id,
initial_expr: initial_expr_id,
next: StatementId::new_invalid()
});
let variable_expr = &mut ctx.heap[variable_expr_id];
variable_expr.parent = ExpressionParent::Expression(initial_expr_id.upcast(), 0);
let runtime_call_expr = &mut ctx.heap[runtime_call_expr_id];
runtime_call_expr.parent = ExpressionParent::Expression(initial_expr_id.upcast(), 1);
let initial_expr = &mut ctx.heap[initial_expr_id];
initial_expr.parent = ExpressionParent::Memory(variable_statement_id);
return (variable_id, variable_statement_id);
}
}
// -----------------------------------------------------------------------------
// Utilities to create compiler-generated AST nodes
// -----------------------------------------------------------------------------
fn create_ast_variable(ctx: &mut Ctx) -> VariableId {
return ctx.heap.alloc_variable(|this| Variable{
this,
kind: VariableKind::Local,
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
identifier: Identifier::new_empty(InputSpan::new()),
relative_pos_in_block: -1,
unique_id_in_scope: -1,
});
}
fn create_ast_variable_expr(ctx: &mut Ctx, variable_id: VariableId) -> VariableExpressionId {
return ctx.heap.alloc_variable_expression(|this| VariableExpression{
this,
identifier: Identifier::new_empty(InputSpan::new()),
declaration: Some(variable_id),
used_as_binding_target: false,
parent: ExpressionParent::None,
unique_id_in_definition: -1
});
}
fn create_ast_call_expr(ctx: &mut Ctx, method: Method, arguments: Vec<ExpressionId>) -> CallExpressionId {
let call_expression_id = ctx.heap.alloc_call_expression(|this| CallExpression{
this,
func_span: InputSpan::new(),
full_span: InputSpan::new(),
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
method,
arguments,
definition: DefinitionId::new_invalid(),
parent: ExpressionParent::None,
unique_id_in_definition: -1,
});
for (argument_index, argument_id) in arguments.iter().cloned().enumerate() {
let argument_expr = &mut ctx.heap[argument_id];
*argument_expr.parent_mut() = ExpressionParent::Expression(call_expression_id.upcat(), argument_index as u32);
}
return call_expression_id;
}
fn create_ast_literal_integer_expr(ctx: &mut Ctx, unsigned_value: u64) -> LiteralExpressionId {
return ctx.heap.alloc_literal_expression(|this| LiteralExpression{
this,
span: InputSpan::new(),
value: Literal::Integer(LiteralInteger{
unsigned_value,
negated: false,
}),
parent: ExpressionParent::None,
unique_id_in_definition: -1
});
}
fn create_ast_equality_comparison_expr(ctx: &mut Ctx, variable_id: VariableId, value: u64) -> BinaryExpressionId {
let var_expr_id = create_ast_variable_expr(ctx, variable_id);
let int_expr_id = create_ast_literal_integer_expr(ctx, value);
let cmp_expr_id = ctx.heap.alloc_binary_expression(|this| BinaryExpression{
this,
operator_span: InputSpan::new(),
full_span: InputSpan::new(),
left: var_expr_id.upcast(),
operation: BinaryOperator::Equality,
right: int_expr_id.upcast(),
parent: ExpressionParent::None,
unique_id_in_definition: -1,
});
let var_expr = &mut ctx.heap[var_expr_id];
var_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 0);
let int_expr = &mut ctx.heap[int_expr_id];
int_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 1);
return cmp_expr_id;
}
fn create_ast_expression_stmt(ctx: &mut Ctx, expression_id: ExpressionId) -> ExpressionStatementId {
let statement_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
this,
span: InputSpan::new(),
expression: expression_id,
next: StatementId::new_invalid(),
});
let expression = &mut ctx.heap[expression_id];
*expression.parent_mut() = ExpressionParent::ExpressionStmt(statement_id);
return statement_id;
}
fn create_ast_variable_declaration_stmt(ctx: &mut Ctx, variable_id: VariableId, initial_value_expr_id: ExpressionId) -> MemoryStatementId {
// Create the assignment expression, assigning the initial value to the variable
let variable_expr_id = create_ast_variable_expr(ctx, variable_id);
let assignment_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
this,
operator_span: InputSpan::new(),
full_span: InputSpan::new(),
left: variable_expr_id.upcast(),
operation: AssignmentOperator::Set,
right: initial_value_expr_id,
parent: ExpressionParent::None,
unique_id_in_definition: -1,
});
// Create the memory statement
let memory_stmt_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
this,
span: InputSpan::new(),
variable: variable_id,
initial_expr: assignment_expr_id,
next: StatementId::new_invalid(),
});
// Set all parents which we can access
let variable_expr = &mut ctx.heap[variable_expr_id];
variable_expr.parent = ExpressionParent::Expression(assignment_expr_id.upcast(), 0);
let value_expr = &mut ctx.heap[initial_value_expr_id];
*value_expr.parent_mut() = ExpressionParent::Expression(assignment_expr_id.upcast(), 1);
let assignment_expr = &mut ctx.heap[assignment_expr_id];
assignment_expr.parent = ExpressionParent::Memory(memory_stmt_id);
return memory_stmt_id;
}
fn create_ast_if_statement(ctx: &mut Ctx, condition_expression_id: ExpressionId, true_body: BlockStatementId, false_body: Option<BlockStatementId>) -> (IfStatementId, EndIfStatementId) {
// Create if statement and the end-if statement
let if_stmt_id = ctx.heap.alloc_if_statement(|this| IfStatement{
this,
span: InputSpan::new(),
test: condition_expression_id,
true_body,
false_body,
end_if: EndIfStatementId::new_invalid()
});
let end_if_stmt_id = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
this,
start_if: if_stmt_id,
next: StatementId::new_invalid(),
});
// Link the statements up as much as we can
let if_stmt = &mut ctx.heap[if_stmt_id];
if_stmt.end_if = end_if_stmt_id;
let condition_expr = &mut ctx.heap[condition_expression_id];
*condition_expr.parent_mut() = ExpressionParent::If(if_stmt_id);
let true_body_stmt = &ctx.heap[true_body];
let true_body_end_stmt = &mut ctx.heap[true_body_stmt.end_block];
true_body_end_stmt.next = end_if_stmt_id.upcast();
if let Some(false_body) = false_body {
let false_body_stmt = &ctx.heap[false_body];
let false_body_end_stmt = &mut ctx.heap[false_body_stmt.end_block];
false_body_end_stmt.next = end_if_stmt_id.upcast();
}
return (if_stmt_id, end_if_stmt_id);
}
fn set_ast_if_statement_false_body(ctx: &mut Ctx, if_statement_id: IfStatementId, end_if_statement_id: EndIfStatementId, false_body: BlockStatementId) {
// Point if-statement to "false body"
let if_stmt = &mut ctx.heap[if_statement_id];
debug_assert!(if_stmt.false_body.is_none()); // simplifies logic, not necessary
if_stmt.false_body = Some(false_body);
// Point end of false body to the end of the if statement
let false_body_stmt = &ctx.heap[false_body];
let false_body_end_stmt = &mut ctx.heap[false_body_stmt.end_block];
false_body_end_stmt.next = end_if_statement_id.upcast();
}
|