Files
@ 966ebed86908
Branch filter:
Location: CSY/reowolf/src/runtime/mod.rs
966ebed86908
34.8 KiB
application/rls-services+xml
simplified the cyclic drainer because it was unnecessarily complex. added a unit test. added some future-proofing for corner case protocols
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | /// cbindgen:ignore
mod communication;
/// cbindgen:ignore
mod endpoints;
pub mod error;
/// cbindgen:ignore
mod logging;
/// cbindgen:ignore
mod setup;
#[cfg(test)]
mod tests;
use crate::common::*;
use error::*;
use mio::net::UdpSocket;
/// The interface between the user's application and a communication session,
/// in which the application plays the part of a (native) component. This structure provides the application
/// with functionality available to all components: the ability to add new channels (port pairs), and to
/// instantiate new components whose definitions are defined in the connector's configured protocol
/// description. Native components have the additional ability to add `dangling' ports backed by local/remote
/// IP addresses, to be coupled with a counterpart once the connector's setup is completed by `connect`.
/// This allows sets of applications to cooperate in constructing shared sessions that span the network.
#[derive(Debug)]
pub struct Connector {
unphased: ConnectorUnphased,
phased: ConnectorPhased,
}
/// Characterizes a type which can write lines of logging text.
/// The implementations provided in the `logging` module are likely to be sufficient,
/// but for added flexibility, users are able to implement their own loggers for use
/// by connectors.
pub trait Logger: Debug + Send + Sync {
fn line_writer(&mut self) -> Option<&mut dyn std::io::Write>;
}
/// A logger that appends the logged strings to a growing byte buffer
#[derive(Debug)]
pub struct VecLogger(ConnectorId, Vec<u8>);
/// A trivial logger that always returns None, such that no logging information is ever written.
#[derive(Debug)]
pub struct DummyLogger;
/// A logger that writes the logged lines to a given file.
#[derive(Debug)]
pub struct FileLogger(ConnectorId, std::fs::File);
// Interface between protocol state and the connector runtime BEFORE all components
// ave begun their branching speculation. See ComponentState::nonsync_run.
pub(crate) struct NonsyncProtoContext<'a> {
ips: &'a mut IdAndPortState,
logger: &'a mut dyn Logger,
unrun_components: &'a mut Vec<(ComponentId, ComponentState)>, // lives for Nonsync phase
proto_component_id: ComponentId, // KEY in id->component map
}
// Interface between protocol state and the connector runtime AFTER all components
// have begun their branching speculation. See ComponentState::sync_run.
pub(crate) struct SyncProtoContext<'a> {
rctx: &'a RoundCtx,
branch_inner: &'a mut ProtoComponentBranchInner, // sub-structure of component branch
predicate: &'a Predicate, // KEY in pred->branch map
}
// The data coupled with a particular protocol component branch, but crucially omitting
// the `ComponentState` such that this may be passed by reference to the state with separate
// access control.
#[derive(Default, Debug, Clone)]
struct ProtoComponentBranchInner {
untaken_choice: Option<u16>,
did_put_or_get: HashSet<PortId>,
inbox: HashMap<PortId, Payload>,
}
// A speculative variable that lives for the duration of the synchronous round.
// Each is assigned a value in domain `SpecVal`.
#[derive(
Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
)]
struct SpecVar(PortId);
// The codomain of SpecVal. Has two associated constants for values FIRING and SILENT,
// but may also enumerate many more values to facilitate finer-grained nondeterministic branching.
#[derive(
Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
)]
struct SpecVal(u16);
// Data associated with a successful synchronous round, retained afterwards such that the
// native component can freely reflect on how it went, reading the messages received at their
// inputs, and reflecting on which of their connector's synchronous batches succeeded.
#[derive(Debug)]
struct RoundEndedNative {
batch_index: usize,
gotten: HashMap<PortId, Payload>,
}
// Implementation of a set in terms of a vector (optimized for reading, not writing)
#[derive(Default)]
struct VecSet<T: std::cmp::Ord> {
// invariant: ordered, deduplicated
vec: Vec<T>,
}
// Allows a connector to remember how to forward payloads towards the component that
// owns their destination port. `LocalComponent` corresponds with messages for components
// managed by the connector itself (hinting for it to look it up in a local structure),
// whereas the other variants direct the connector to forward the messages over the network.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
enum Route {
LocalComponent,
NetEndpoint { index: usize },
UdpEndpoint { index: usize },
}
// The outcome of a synchronous round, representing the distributed consensus.
// In the success case, the attached predicate encodes a row in the session's trace table.
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
enum Decision {
Failure, // some connector timed out!
Success(Predicate),
}
// The type of control messages exchanged between connectors over the network
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum Msg {
SetupMsg(SetupMsg),
CommMsg(CommMsg),
}
// Control messages exchanged during the setup phase only
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum SetupMsg {
MyPortInfo(MyPortInfo),
LeaderWave { wave_leader: ConnectorId },
LeaderAnnounce { tree_leader: ConnectorId },
YouAreMyParent,
SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
}
// A data structure encoding the state of a connector, passed around
// during the session optimization procedure.
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct SessionInfo {
serde_proto_description: SerdeProtocolDescription,
port_info: PortInfoMap,
endpoint_incoming_to_getter: Vec<PortId>,
proto_components: HashMap<ComponentId, ComponentState>,
}
// Newtype wrapper for an Arc<ProtocolDescription>,
// such that it can be (de)serialized for transmission over the network.
#[derive(Debug, Clone)]
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
// Control message particular to the communication phase.
// as such, it's annotated with a round_index
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct CommMsg {
round_index: usize,
contents: CommMsgContents,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum CommMsgContents {
SendPayload(SendPayloadMsg),
CommCtrl(CommCtrlMsg),
}
// Connector <-> connector control messages for use in the communication phase
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum CommCtrlMsg {
Suggest { suggestion: Decision }, // child->parent
Announce { decision: Decision }, // parent->child
}
// Speculative payload message, communicating the value for the given
// port's message predecated on the given speculative variable assignments.
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct SendPayloadMsg {
predicate: Predicate,
payload: Payload,
}
// Return result of `Predicate::assignment_union`, communicating the contents
// of the predicate which represents the (consistent) union of their mappings,
// if it exists (no variable mapped distinctly by the input predicates)
#[derive(Debug, PartialEq)]
enum AssignmentUnionResult {
FormerNotLatter,
LatterNotFormer,
Equivalent,
New(Predicate),
Nonexistant,
}
// One of two endpoints for a control channel with a connector on either end.
// The underlying transport is TCP, so we use an inbox buffer to allow
// discrete payload receipt.
struct NetEndpoint {
inbox: Vec<u8>,
stream: TcpStream,
}
// Datastructure used during the setup phase representing a NetEndpoint TO BE SETUP
#[derive(Debug, Clone)]
struct NetEndpointSetup {
getter_for_incoming: PortId,
sock_addr: SocketAddr,
endpoint_polarity: EndpointPolarity,
}
// Datastructure used during the setup phase representing a UdpEndpoint TO BE SETUP
#[derive(Debug, Clone)]
struct UdpEndpointSetup {
getter_for_incoming: PortId,
local_addr: SocketAddr,
peer_addr: SocketAddr,
}
// NetEndpoint annotated with the ID of the port that receives payload
// messages received through the endpoint. This approach assumes that NetEndpoints
// DO NOT multiplex port->port channels, and so a mapping such as this is possible.
// As a result, the messages themselves don't need to carry the PortID with them.
#[derive(Debug)]
struct NetEndpointExt {
net_endpoint: NetEndpoint,
getter_for_incoming: PortId,
}
// Endpoint for a "raw" UDP endpoint. Corresponds to the "Udp Mediator Component"
// described in the literature.
// It acts as an endpoint by receiving messages via the poller etc. (managed by EndpointManager),
// It acts as a native component by managing a (speculative) set of payload messages (an outbox,
// protecting the peer on the other side of the network).
#[derive(Debug)]
struct UdpEndpointExt {
sock: UdpSocket, // already bound and connected
received_this_round: bool,
outgoing_payloads: HashMap<Predicate, Payload>,
getter_for_incoming: PortId,
}
// Meta-data for the connector: its role in the consensus tree.
#[derive(Debug)]
struct Neighborhood {
parent: Option<usize>,
children: VecSet<usize>,
}
// Manages the connector's ID, and manages allocations for connector/port IDs.
#[derive(Debug, Clone)]
struct IdManager {
connector_id: ConnectorId,
port_suffix_stream: U32Stream,
component_suffix_stream: U32Stream,
}
// Newtype wrapper around a byte buffer, used for UDP mediators to receive incoming datagrams.
struct IoByteBuffer {
byte_vec: Vec<u8>,
}
// A generator of speculative variables. Created on-demand during the synchronous round
// by the IdManager.
#[derive(Debug)]
struct SpecVarStream {
connector_id: ConnectorId,
port_suffix_stream: U32Stream,
}
// Manages the messy state of the various endpoints, pollers, buffers, etc.
#[derive(Debug)]
struct EndpointManager {
// invariants:
// 1. net and udp endpoints are registered with poll with tokens computed with TargetToken::into
// 2. Events is empty
poll: Poll,
events: Events,
delayed_messages: Vec<(usize, Msg)>,
undelayed_messages: Vec<(usize, Msg)>, // ready to yield
net_endpoint_store: EndpointStore<NetEndpointExt>,
udp_endpoint_store: EndpointStore<UdpEndpointExt>,
io_byte_buffer: IoByteBuffer,
}
// A storage of endpoints, which keeps track of which components have raised
// an event during poll(), signifying that they need to be checked for new incoming data
#[derive(Debug)]
struct EndpointStore<T> {
endpoint_exts: Vec<T>,
polled_undrained: VecSet<usize>,
}
// The information associated with a port identifier, designed for local storage.
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct PortInfo {
owner: ComponentId,
peer: Option<PortId>,
polarity: Polarity,
route: Route,
}
// Similar to `PortInfo`, but designed for communication during the setup procedure.
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct MyPortInfo {
polarity: Polarity,
port: PortId,
owner: ComponentId,
}
// Newtype around port info map, allowing the implementation of some
// useful methods
#[derive(Default, Debug, Clone, serde::Serialize, serde::Deserialize)]
struct PortInfoMap {
// invariant: self.invariant_preserved()
// `owned` is redundant information, allowing for fast lookup
// of a component's owned ports (which occurs during the sync round a lot)
map: HashMap<PortId, PortInfo>,
owned: HashMap<ComponentId, HashSet<PortId>>,
}
// A convenient substructure for containing port info and the ID manager.
// Houses the bulk of the connector's persistent state between rounds.
// It turns out several situations require access to both things.
#[derive(Debug, Clone)]
struct IdAndPortState {
port_info: PortInfoMap,
id_manager: IdManager,
}
// A component's setup-phase-specific data
#[derive(Debug)]
struct ConnectorCommunication {
round_index: usize,
endpoint_manager: EndpointManager,
neighborhood: Neighborhood,
native_batches: Vec<NativeBatch>,
round_result: Result<Option<RoundEndedNative>, SyncError>,
}
// A component's data common to both setup and communication phases
#[derive(Debug)]
struct ConnectorUnphased {
proto_description: Arc<ProtocolDescription>,
proto_components: HashMap<ComponentId, ComponentState>,
logger: Box<dyn Logger>,
ips: IdAndPortState,
native_component_id: ComponentId,
}
// A connector's phase-specific data
#[derive(Debug)]
enum ConnectorPhased {
Setup(Box<ConnectorSetup>),
Communication(Box<ConnectorCommunication>),
}
// A connector's setup-phase-specific data
#[derive(Debug)]
struct ConnectorSetup {
net_endpoint_setups: Vec<NetEndpointSetup>,
udp_endpoint_setups: Vec<UdpEndpointSetup>,
}
// A newtype wrapper for a map from speculative variable to speculative value
// A missing mapping corresponds with "unspecified".
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
struct Predicate {
assigned: BTreeMap<SpecVar, SpecVal>,
}
// Identifies a child of this connector in the _solution tree_.
// Each connector creates its own local solutions for the consensus procedure during `sync`,
// from the solutions of its children. Those children are either locally-managed components,
// (which are leaves in the solution tree), or other connectors reachable through the given
// network endpoint (which are internal nodes in the solution tree).
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
enum SubtreeId {
LocalComponent(ComponentId),
NetEndpoint { index: usize },
}
// An accumulation of the connector's knowledge of all (a) the local solutions its children
// in the solution tree have found, and (b) its own solutions derivable from those of its children.
// This structure starts off each round with an empty set, and accumulates solutions as they are found
// by local components, or received over the network in control messages.
// IMPORTANT: solutions, once found, don't go away until the end of the round. That is to
// say that these sets GROW until the round is over, and all solutions are reset.
#[derive(Debug)]
struct SolutionStorage {
// invariant: old_local U new_local solutions are those that can be created from
// the UNION of one element from each set in `subtree_solution`.
// invariant is maintained by potentially populating new_local whenever subtree_solutions is populated.
old_local: HashSet<Predicate>, // already sent to this connector's parent OR decided
new_local: HashSet<Predicate>, // not yet sent to this connector's parent OR decided
// this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
subtree_solutions: Vec<HashSet<Predicate>>,
subtree_id_to_index: HashMap<SubtreeId, usize>,
}
// Stores the transient data of a synchronous round.
// Some of it is for bookkeeping, and the rest is a temporary mirror of fields of
// `ConnectorUnphased`, such that any changes are safely contained within RoundCtx,
// and can be undone if the round fails.
struct RoundCtx {
solution_storage: SolutionStorage,
spec_var_stream: SpecVarStream,
payload_inbox: Vec<(PortId, SendPayloadMsg)>,
deadline: Option<Instant>,
ips: IdAndPortState,
}
// A trait intended to limit the access of the ConnectorUnphased structure
// such that we don't accidentally modify any important component/port data
// while the results of the round are undecided. Why? Any actions during Connector::sync
// are _speculative_ until the round is decided, and we need a safe way of rolling
// back any changes.
trait CuUndecided {
fn logger(&mut self) -> &mut dyn Logger;
fn proto_description(&self) -> &ProtocolDescription;
fn native_component_id(&self) -> ComponentId;
fn logger_and_protocol_description(&mut self) -> (&mut dyn Logger, &ProtocolDescription);
}
// Represents a set of synchronous port operations that the native component
// has described as an "option" for completing during the synchronous rounds.
// Operations contained here succeed together or not at all.
// A native with N=2+ batches are expressing an N-way nondeterministic choice
#[derive(Debug, Default)]
struct NativeBatch {
// invariant: putters' and getters' polarities respected
to_put: HashMap<PortId, Payload>,
to_get: HashSet<PortId>,
}
// Parallels a mio::Token type, but more clearly communicates
// the way it identifies the evented structre it corresponds to.
// See runtime/setup for methods converting between TokenTarget and mio::Token
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
enum TokenTarget {
NetEndpoint { index: usize },
UdpEndpoint { index: usize },
}
// Returned by the endpoint manager as a result of comm_recv, telling the connector what happened,
// such that it can know when to continue polling, and when to block.
enum CommRecvOk {
TimeoutWithoutNew,
NewPayloadMsgs,
NewControlMsg { net_index: usize, msg: CommCtrlMsg },
}
////////////////
fn err_would_block(err: &std::io::Error) -> bool {
err.kind() == std::io::ErrorKind::WouldBlock
}
impl<T: std::cmp::Ord> VecSet<T> {
fn new(mut vec: Vec<T>) -> Self {
// establish the invariant
vec.sort();
vec.dedup();
Self { vec }
}
fn contains(&self, element: &T) -> bool {
self.vec.binary_search(element).is_ok()
}
// Insert the given element. Returns whether it was already present.
fn insert(&mut self, element: T) -> bool {
match self.vec.binary_search(&element) {
Ok(_) => false,
Err(index) => {
self.vec.insert(index, element);
true
}
}
}
fn iter(&self) -> std::slice::Iter<T> {
self.vec.iter()
}
fn pop(&mut self) -> Option<T> {
self.vec.pop()
}
}
impl PortInfoMap {
fn ports_owned_by(&self, owner: ComponentId) -> impl Iterator<Item = &PortId> {
self.owned.get(&owner).into_iter().flat_map(HashSet::iter)
}
fn spec_var_for(&self, port: PortId) -> SpecVar {
// Every port maps to a speculative variable
// Two distinct ports map to the same variable
// IFF they are two ends of the same logical channel.
let info = self.map.get(&port).unwrap();
SpecVar(match info.polarity {
Getter => port,
Putter => info.peer.unwrap(),
})
}
fn invariant_preserved(&self) -> bool {
// for every port P with some owner O,
// P is in O's owned set
for (port, info) in self.map.iter() {
match self.owned.get(&info.owner) {
Some(set) if set.contains(port) => {}
_ => {
println!("{:#?}\n WITH port {:?}", self, port);
return false;
}
}
}
// for every port P owned by every owner O,
// P's owner is O
for (&owner, set) in self.owned.iter() {
for port in set {
match self.map.get(port) {
Some(info) if info.owner == owner => {}
_ => {
println!("{:#?}\n WITH owner {:?} port {:?}", self, owner, port);
return false;
}
}
}
}
true
}
}
impl SpecVarStream {
fn next(&mut self) -> SpecVar {
let phantom_port: PortId =
Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }
.into();
SpecVar(phantom_port)
}
}
impl IdManager {
fn new(connector_id: ConnectorId) -> Self {
Self {
connector_id,
port_suffix_stream: Default::default(),
component_suffix_stream: Default::default(),
}
}
fn new_spec_var_stream(&self) -> SpecVarStream {
// Spec var stream starts where the current port_id stream ends, with gap of SKIP_N.
// This gap is entirely unnecessary (i.e. 0 is fine)
// It's purpose is only to make SpecVars easier to spot in logs.
// E.g. spot the spec var: { v0_0, v1_2, v1_103 }
const SKIP_N: u32 = 100;
let port_suffix_stream = self.port_suffix_stream.clone().n_skipped(SKIP_N);
SpecVarStream { connector_id: self.connector_id, port_suffix_stream }
}
fn new_port_id(&mut self) -> PortId {
Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
}
fn new_component_id(&mut self) -> ComponentId {
Id { connector_id: self.connector_id, u32_suffix: self.component_suffix_stream.next() }
.into()
}
}
impl Drop for Connector {
fn drop(&mut self) {
log!(self.unphased.logger(), "Connector dropping. Goodbye!");
}
}
// Given a slice of ports, return the first, if any, port is present repeatedly
fn duplicate_port(slice: &[PortId]) -> Option<PortId> {
let mut vec = Vec::with_capacity(slice.len());
for port in slice.iter() {
match vec.binary_search(port) {
Err(index) => vec.insert(index, *port),
Ok(_) => return Some(*port),
}
}
None
}
impl Connector {
/// Generate a random connector identifier from the system's source of randomness.
pub fn random_id() -> ConnectorId {
type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
unsafe {
let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
// getrandom is the canonical crate for a small, secure rng
getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
// safe! representations of all valid Byte8 values are valid ConnectorId values
std::mem::transmute::<_, _>(bytes.assume_init())
}
}
/// Returns true iff the connector is in connected state, i.e., it's setup phase is complete,
/// and it is ready to participate in synchronous rounds of communication.
pub fn is_connected(&self) -> bool {
// If designed for Rust usage, connectors would be exposed as an enum type from the start.
// consequently, this "phased" business would also include connector variants and this would
// get a lot closer to the connector impl. itself.
// Instead, the C-oriented implementation doesn't distinguish connector states as types,
// and distinguish them as enum variants instead
match self.phased {
ConnectorPhased::Setup(..) => false,
ConnectorPhased::Communication(..) => true,
}
}
/// Enables the connector's current logger to be swapped out for another
pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
std::mem::swap(&mut self.unphased.logger, &mut new_logger);
new_logger
}
/// Access the connector's current logger
pub fn get_logger(&mut self) -> &mut dyn Logger {
&mut *self.unphased.logger
}
/// Create a new synchronous channel, returning its ends as a pair of ports,
/// with polarity output, input respectively. Available during either setup/communication phase.
/// # Panics
/// This function panics if the connector's (large) port id space is exhausted.
pub fn new_port_pair(&mut self) -> [PortId; 2] {
let cu = &mut self.unphased;
// adds two new associated ports, related to each other, and exposed to the native
let mut new_cid = || cu.ips.id_manager.new_port_id();
// allocate two fresh port identifiers
let [o, i] = [new_cid(), new_cid()];
// store info for each:
// - they are each others' peers
// - they are owned by a local component with id `cid`
// - polarity putter, getter respectively
cu.ips.port_info.map.insert(
o,
PortInfo {
route: Route::LocalComponent,
peer: Some(i),
owner: cu.native_component_id,
polarity: Putter,
},
);
cu.ips.port_info.map.insert(
i,
PortInfo {
route: Route::LocalComponent,
peer: Some(o),
owner: cu.native_component_id,
polarity: Getter,
},
);
cu.ips
.port_info
.owned
.entry(cu.native_component_id)
.or_default()
.extend([o, i].iter().copied());
log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
[o, i]
}
/// Instantiates a new component for the connector runtime to manage, and passing
/// the given set of ports from the interface of the native component, to that of the
/// newly created component (passing their ownership).
/// # Errors
/// Error is returned if the moved ports are not owned by the native component,
/// if the given component name is not defined in the connector's protocol,
/// the given sequence of ports contains a duplicate port,
/// or if the component is unfit for instantiation with the given port sequence.
/// # Panics
/// This function panics if the connector's (large) component id space is exhausted.
pub fn add_component(
&mut self,
identifier: &[u8],
ports: &[PortId],
) -> Result<(), AddComponentError> {
// Check for error cases first before modifying `cu`
use AddComponentError as Ace;
let cu = &self.unphased;
if let Some(port) = duplicate_port(ports) {
return Err(Ace::DuplicatePort(port));
}
let expected_polarities = cu.proto_description.component_polarities(identifier)?;
if expected_polarities.len() != ports.len() {
return Err(Ace::WrongNumberOfParamaters { expected: expected_polarities.len() });
}
for (&expected_polarity, &port) in expected_polarities.iter().zip(ports.iter()) {
let info = cu.ips.port_info.map.get(&port).ok_or(Ace::UnknownPort(port))?;
if info.owner != cu.native_component_id {
return Err(Ace::UnknownPort(port));
}
if info.polarity != expected_polarity {
return Err(Ace::WrongPortPolarity { port, expected_polarity });
}
}
// No errors! Time to modify `cu`
// create a new component and identifier
let cu = &mut self.unphased;
let new_cid = cu.ips.id_manager.new_component_id();
cu.proto_components.insert(new_cid, cu.proto_description.new_component(identifier, ports));
// update the ownership of moved ports
for port in ports.iter() {
match cu.ips.port_info.map.get_mut(port) {
Some(port_info) => port_info.owner = new_cid,
None => unreachable!(),
}
}
if let Some(set) = cu.ips.port_info.owned.get_mut(&cu.native_component_id) {
set.retain(|x| !ports.contains(x));
}
cu.ips.port_info.owned.insert(new_cid, ports.iter().copied().collect());
Ok(())
}
}
impl Predicate {
#[inline]
pub fn singleton(k: SpecVar, v: SpecVal) -> Self {
Self::default().inserted(k, v)
}
#[inline]
pub fn inserted(mut self, k: SpecVar, v: SpecVal) -> Self {
self.assigned.insert(k, v);
self
}
// Return true whether `self` is a subset of `maybe_superset`
pub fn assigns_subset(&self, maybe_superset: &Self) -> bool {
for (var, val) in self.assigned.iter() {
match maybe_superset.assigned.get(var) {
Some(val2) if val2 == val => {}
_ => return false, // var unmapped, or mapped differently
}
}
// `maybe_superset` mirrored all my assignments!
true
}
/// Given the two predicates {self, other}, return that whose
/// assignments are the union of those of both.
fn assignment_union(&self, other: &Self) -> AssignmentUnionResult {
use AssignmentUnionResult as Aur;
// iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
let [mut s, mut o] = [s_it.next(), o_it.next()];
// populate lists of assignments in self but not other and vice versa.
// do this by incrementally unfolding the iterators, keeping an eye
// on the ordering between the head elements [s, o].
// whenever s<o, other is certainly missing element 's', etc.
let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
loop {
match [s, o] {
[None, None] => break, // both iterators are empty
[None, Some(x)] => {
// self's iterator is empty.
// all remaning elements are in other but not self
o_not_s.push(x);
o_not_s.extend(o_it);
break;
}
[Some(x), None] => {
// other's iterator is empty.
// all remaning elements are in self but not other
s_not_o.push(x);
s_not_o.extend(s_it);
break;
}
[Some((sid, sb)), Some((oid, ob))] => {
if sid < oid {
// o is missing this element
s_not_o.push((sid, sb));
s = s_it.next();
} else if sid > oid {
// s is missing this element
o_not_s.push((oid, ob));
o = o_it.next();
} else if sb != ob {
assert_eq!(sid, oid);
// both predicates assign the variable but differ on the value
// No predicate exists which satisfies both!
return Aur::Nonexistant;
} else {
// both predicates assign the variable to the same value
s = s_it.next();
o = o_it.next();
}
}
}
}
// Observed zero inconsistencies. A unified predicate exists...
match [s_not_o.is_empty(), o_not_s.is_empty()] {
[true, true] => Aur::Equivalent, // ... equivalent to both.
[false, true] => Aur::FormerNotLatter, // ... equivalent to self.
[true, false] => Aur::LatterNotFormer, // ... equivalent to other.
[false, false] => {
// ... which is the union of the predicates' assignments but
// is equivalent to neither self nor other.
let mut new = self.clone();
for (&id, &b) in o_not_s {
new.assigned.insert(id, b);
}
Aur::New(new)
}
}
}
// Compute the union of the assignments of the two given predicates, if it exists.
// It doesn't exist if there is some value which the predicates assign to different values.
pub(crate) fn union_with(&self, other: &Self) -> Option<Self> {
let mut res = self.clone();
for (&channel_id, &assignment_1) in other.assigned.iter() {
match res.assigned.insert(channel_id, assignment_1) {
Some(assignment_2) if assignment_1 != assignment_2 => return None,
_ => {}
}
}
Some(res)
}
pub(crate) fn query(&self, var: SpecVar) -> Option<SpecVal> {
self.assigned.get(&var).copied()
}
}
impl RoundCtx {
// remove an arbitrary buffered message, along with the ID of the getter who receives it
fn getter_pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
self.payload_inbox.pop()
}
// buffer a message along with the ID of the getter who receives it
fn getter_push(&mut self, getter: PortId, msg: SendPayloadMsg) {
self.payload_inbox.push((getter, msg));
}
// buffer a message along with the ID of the putter who sent it
fn putter_push(&mut self, cu: &mut impl CuUndecided, putter: PortId, msg: SendPayloadMsg) {
if let Some(getter) = self.ips.port_info.map.get(&putter).unwrap().peer {
log!(cu.logger(), "Putter add (putter:{:?} => getter:{:?})", putter, getter);
self.getter_push(getter, msg);
} else {
log!(cu.logger(), "Putter {:?} has no known peer!", putter);
panic!("Putter {:?} has no known peer!");
}
}
}
impl<T: Debug + std::cmp::Ord> Debug for VecSet<T> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
f.debug_set().entries(self.vec.iter()).finish()
}
}
impl Debug for Predicate {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
struct Assignment<'a>((&'a SpecVar, &'a SpecVal));
impl Debug for Assignment<'_> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "{:?}={:?}", (self.0).0, (self.0).1)
}
}
f.debug_set().entries(self.assigned.iter().map(Assignment)).finish()
}
}
impl serde::Serialize for SerdeProtocolDescription {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let inner: &ProtocolDescription = &self.0;
inner.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
Ok(Self(Arc::new(inner)))
}
}
impl IdParts for SpecVar {
fn id_parts(self) -> (ConnectorId, U32Suffix) {
self.0.id_parts()
}
}
impl Debug for SpecVar {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
let (a, b) = self.id_parts();
write!(f, "v{}_{}", a, b)
}
}
impl SpecVal {
const FIRING: Self = SpecVal(1);
const SILENT: Self = SpecVal(0);
fn is_firing(self) -> bool {
self == Self::FIRING
// all else treated as SILENT
}
fn iter_domain() -> impl Iterator<Item = Self> {
(0..).map(SpecVal)
}
}
impl Debug for SpecVal {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl Default for IoByteBuffer {
fn default() -> Self {
let mut byte_vec = Vec::with_capacity(Self::CAPACITY);
unsafe {
// safe! this vector is guaranteed to have sufficient capacity
byte_vec.set_len(Self::CAPACITY);
}
Self { byte_vec }
}
}
impl IoByteBuffer {
const CAPACITY: usize = u16::MAX as usize + 1000;
fn as_mut_slice(&mut self) -> &mut [u8] {
self.byte_vec.as_mut_slice()
}
}
impl Debug for IoByteBuffer {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "IoByteBuffer")
}
}
|