Files
@ a1b2108ed856
Branch filter:
Location: CSY/reowolf/src/protocol/eval/value.rs
a1b2108ed856
40.2 KiB
application/rls-services+xml
Prepare fixing another blocking/transfer bug
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 | use std::collections::VecDeque;
use super::store::*;
use crate::protocol::ast::{
AssignmentOperator,
BinaryOperator,
UnaryOperator,
ConcreteType,
ConcreteTypePart,
};
use crate::protocol::parser::token_parsing::*;
pub type StackPos = u32;
pub type HeapPos = u32;
#[derive(Debug, Copy, Clone)]
pub enum ValueId {
Stack(StackPos), // place on stack
Heap(HeapPos, u32), // allocated region + values within that region
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct PortId{
pub(crate) id: u32
}
impl PortId {
pub fn new(id: u32) -> Self {
return Self{ id };
}
}
/// Represents a value stored on the stack or on the heap. Some values contain
/// a `HeapPos`, implying that they're stored in the store's `Heap`. Clearing
/// a `Value` with a `HeapPos` from a stack must also clear the associated
/// region from the `Heap`.
#[derive(Debug, Clone)]
pub enum Value {
// Special types, never encountered during evaluation if the compiler works correctly
Unassigned, // Marker when variables are first declared, immediately followed by assignment
PrevStackBoundary(isize), // Marker for stack frame beginning, so we can pop stack values
Ref(ValueId), // Reference to a value, used by expressions producing references
Binding(StackPos), // Reference to a binding variable (reserved on the stack)
// Builtin types
Input(PortId),
Output(PortId),
Message(HeapPos),
Null,
Bool(bool),
Char(char),
String(HeapPos),
UInt8(u8),
UInt16(u16),
UInt32(u32),
UInt64(u64),
SInt8(i8),
SInt16(i16),
SInt32(i32),
SInt64(i64),
Array(HeapPos),
Tuple(HeapPos),
// Instances of user-defined types
Enum(i64),
Union(i64, HeapPos),
Struct(HeapPos),
}
union_cast_to_value_method_impl!(as_stack_boundary, isize, Value::PrevStackBoundary);
union_cast_to_value_method_impl!(as_ref, ValueId, Value::Ref);
union_cast_to_value_method_impl!(as_input, PortId, Value::Input);
union_cast_to_value_method_impl!(as_output, PortId, Value::Output);
union_cast_to_value_method_impl!(as_message, HeapPos, Value::Message);
union_cast_to_value_method_impl!(as_bool, bool, Value::Bool);
union_cast_to_value_method_impl!(as_char, char, Value::Char);
union_cast_to_value_method_impl!(as_string, HeapPos, Value::String);
union_cast_to_value_method_impl!(as_uint8, u8, Value::UInt8);
union_cast_to_value_method_impl!(as_uint16, u16, Value::UInt16);
union_cast_to_value_method_impl!(as_uint32, u32, Value::UInt32);
union_cast_to_value_method_impl!(as_uint64, u64, Value::UInt64);
union_cast_to_value_method_impl!(as_sint8, i8, Value::SInt8);
union_cast_to_value_method_impl!(as_sint16, i16, Value::SInt16);
union_cast_to_value_method_impl!(as_sint32, i32, Value::SInt32);
union_cast_to_value_method_impl!(as_sint64, i64, Value::SInt64);
union_cast_to_value_method_impl!(as_array, HeapPos, Value::Array);
union_cast_to_value_method_impl!(as_tuple, HeapPos, Value::Tuple);
union_cast_to_value_method_impl!(as_enum, i64, Value::Enum);
union_cast_to_value_method_impl!(as_struct, HeapPos, Value::Struct);
impl Value {
pub(crate) fn as_union(&self) -> (i64, HeapPos) {
match self {
Value::Union(tag, v) => (*tag, *v),
_ => panic!("called as_union on {:?}", self),
}
}
pub(crate) fn as_port_id(&self) -> PortId {
match self {
Value::Input(v) => *v,
Value::Output(v) => *v,
_ => unreachable!(),
}
}
pub(crate) fn is_integer(&self) -> bool {
match self {
Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
_ => false
}
}
pub(crate) fn is_unsigned_integer(&self) -> bool {
match self {
Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
_ => false
}
}
pub(crate) fn is_signed_integer(&self) -> bool {
match self {
Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
_ => false
}
}
pub(crate) fn as_unsigned_integer(&self) -> u64 {
match self {
Value::UInt8(v) => *v as u64,
Value::UInt16(v) => *v as u64,
Value::UInt32(v) => *v as u64,
Value::UInt64(v) => *v as u64,
_ => unreachable!("called as_unsigned_integer on {:?}", self),
}
}
pub(crate) fn as_signed_integer(&self) -> i64 {
match self {
Value::SInt8(v) => *v as i64,
Value::SInt16(v) => *v as i64,
Value::SInt32(v) => *v as i64,
Value::SInt64(v) => *v as i64,
_ => unreachable!("called as_signed_integer on {:?}", self)
}
}
/// Returns the heap position associated with the value. If the value
/// doesn't store anything in the heap then we return `None`.
pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
match self {
Value::Message(v) => Some(*v),
Value::String(v) => Some(*v),
Value::Array(v) => Some(*v),
Value::Tuple(v) => Some(*v),
Value::Union(_, v) => Some(*v),
Value::Struct(v) => Some(*v),
_ => None
}
}
}
/// When providing arguments to a new component, or when transferring values
/// from one component's store to a newly instantiated component, one has to
/// transfer stack and heap values. This `ValueGroup` represents such a
/// temporary group of values with potential heap allocations.
///
/// Constructing such a ValueGroup manually requires some extra care to make
/// sure all elements of `values` point to valid elements of `regions`.
///
/// Again: this is a temporary thing, hopefully removed once we move to a
/// bytecode interpreter.
#[derive(Clone, Debug)]
pub struct ValueGroup {
pub(crate) values: Vec<Value>,
pub(crate) regions: Vec<Vec<Value>>
}
impl ValueGroup {
pub(crate) fn new_stack(values: Vec<Value>) -> Self {
debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
Self{
values,
regions: Vec::new(),
}
}
pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
let mut group = ValueGroup{
values: Vec::with_capacity(values.len()),
regions: Vec::with_capacity(values.len()), // estimation
};
for value in values {
let transferred = group.retrieve_value(value, store);
group.values.push(transferred);
}
group
}
/// Creates a clone of the value group, but leaves the memory inside of the
/// ValueGroup vectors allocated.
pub(crate) fn take(&mut self) -> ValueGroup {
let cloned = self.clone();
self.values.clear();
self.regions.clear();
return cloned;
}
/// Transfers a provided value from a store into a local value with its
/// heap allocations (if any) stored in the ValueGroup. Calling this
/// function will not store the returned value in the `values` member.
fn retrieve_value(&mut self, value: &Value, from_store: &Store) -> Value {
let value = from_store.maybe_read_ref(value);
if let Some(heap_pos) = value.get_heap_pos() {
// Value points to a heap allocation, so transfer the heap values
// internally.
let from_region = &from_store.heap_regions[heap_pos as usize].values;
let mut new_region = Vec::with_capacity(from_region.len());
for value in from_region {
let transferred = self.retrieve_value(value, from_store);
new_region.push(transferred);
}
// Region is constructed, store internally and return the new value.
let new_region_idx = self.regions.len() as HeapPos;
self.regions.push(new_region);
return match value {
Value::Message(_) => Value::Message(new_region_idx),
Value::String(_) => Value::String(new_region_idx),
Value::Array(_) => Value::Array(new_region_idx),
Value::Tuple(_) => Value::Tuple(new_region_idx),
Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
Value::Struct(_) => Value::Struct(new_region_idx),
_ => unreachable!(),
};
} else {
return value.clone();
}
}
/// Transfers the heap values and the stack values into the store. Stack
/// values are pushed onto the Store's stack in the order in which they
/// appear in the value group.
pub(crate) fn into_store(self, store: &mut Store) {
for value in &self.values {
let transferred = self.provide_value(value, store);
store.stack.push(transferred);
}
}
/// Transfers the heap values into the store, but will put the stack values
/// into the provided `VecDeque`. This is mainly used to merge `ValueGroup`
/// instances retrieved by the code by `get` calls into the expression
/// stack.
pub(crate) fn into_stack(self, stack: &mut VecDeque<Value>, store: &mut Store) {
for value in &self.values {
let transferred = self.provide_value(value, store);
stack.push_back(transferred);
}
}
fn provide_value(&self, value: &Value, to_store: &mut Store) -> Value {
if let Some(from_heap_pos) = value.get_heap_pos() {
let from_heap_pos = from_heap_pos as usize;
let to_heap_pos = to_store.alloc_heap();
let to_heap_pos_usize = to_heap_pos as usize;
to_store.heap_regions[to_heap_pos_usize].values.reserve(self.regions[from_heap_pos].len());
for value in &self.regions[from_heap_pos as usize] {
let transferred = self.provide_value(value, to_store);
to_store.heap_regions[to_heap_pos_usize].values.push(transferred);
}
return match value {
Value::Message(_) => Value::Message(to_heap_pos),
Value::String(_) => Value::String(to_heap_pos),
Value::Array(_) => Value::Array(to_heap_pos),
Value::Tuple(_) => Value::Tuple(to_heap_pos),
Value::Union(tag, _) => Value::Union(*tag, to_heap_pos),
Value::Struct(_) => Value::Struct(to_heap_pos),
_ => unreachable!(),
};
} else {
return value.clone();
}
}
}
impl Default for ValueGroup {
/// Returns an empty ValueGroup
fn default() -> Self {
Self { values: Vec::new(), regions: Vec::new() }
}
}
enum ValueKind { Message, String, Array }
pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueId, op: AssignmentOperator, rhs: Value) {
use AssignmentOperator as AO;
macro_rules! apply_int_op {
($lhs:ident, $assignment_tokens:tt, $operator:ident, $rhs:ident) => {
match $lhs {
Value::UInt8(v) => { *v $assignment_tokens $rhs.as_uint8(); },
Value::UInt16(v) => { *v $assignment_tokens $rhs.as_uint16(); },
Value::UInt32(v) => { *v $assignment_tokens $rhs.as_uint32(); },
Value::UInt64(v) => { *v $assignment_tokens $rhs.as_uint64(); },
Value::SInt8(v) => { *v $assignment_tokens $rhs.as_sint8(); },
Value::SInt16(v) => { *v $assignment_tokens $rhs.as_sint16(); },
Value::SInt32(v) => { *v $assignment_tokens $rhs.as_sint32(); },
Value::SInt64(v) => { *v $assignment_tokens $rhs.as_sint64(); },
_ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs),
}
}
}
let lhs = store.read_mut_ref(lhs);
let mut to_dealloc = None;
match op {
AO::Set => {
match lhs {
Value::Unassigned => { *lhs = rhs; },
Value::Input(v) => { *v = rhs.as_input(); },
Value::Output(v) => { *v = rhs.as_output(); },
Value::Message(v) => { to_dealloc = Some(*v); *v = rhs.as_message(); },
Value::Bool(v) => { *v = rhs.as_bool(); },
Value::Char(v) => { *v = rhs.as_char(); },
Value::String(v) => { *v = rhs.as_string().clone(); },
Value::UInt8(v) => { *v = rhs.as_uint8(); },
Value::UInt16(v) => { *v = rhs.as_uint16(); },
Value::UInt32(v) => { *v = rhs.as_uint32(); },
Value::UInt64(v) => { *v = rhs.as_uint64(); },
Value::SInt8(v) => { *v = rhs.as_sint8(); },
Value::SInt16(v) => { *v = rhs.as_sint16(); },
Value::SInt32(v) => { *v = rhs.as_sint32(); },
Value::SInt64(v) => { *v = rhs.as_sint64(); },
Value::Array(v) => { to_dealloc = Some(*v); *v = rhs.as_array(); },
Value::Tuple(v) => { to_dealloc = Some(*v); *v = rhs.as_tuple(); },
Value::Enum(v) => { *v = rhs.as_enum(); },
Value::Union(lhs_tag, lhs_heap_pos) => {
to_dealloc = Some(*lhs_heap_pos);
let (rhs_tag, rhs_heap_pos) = rhs.as_union();
*lhs_tag = rhs_tag;
*lhs_heap_pos = rhs_heap_pos;
}
Value::Struct(v) => { to_dealloc = Some(*v); *v = rhs.as_struct(); },
_ => unreachable!("apply_assignment_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs),
}
},
AO::Concatenated => {
let lhs_heap_pos = lhs.get_heap_pos().unwrap() as usize;
let rhs_heap_pos = rhs.get_heap_pos().unwrap() as usize;
// To prevent borrowing crap, swap out heap region with a temp empty array
let mut total = Vec::new();
std::mem::swap(&mut total, &mut store.heap_regions[lhs_heap_pos].values);
// Push everything onto the swapped vector
let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
total.reserve(rhs_len);
for value_idx in 0..rhs_len {
total.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[value_idx].clone()));
}
// Swap back in place
std::mem::swap(&mut total, &mut store.heap_regions[lhs_heap_pos].values);
// We took ownership of the RHS, but we copied it into the LHS, so
// different form assignment we need to drop the RHS heap pos.
to_dealloc = Some(rhs_heap_pos as u32);
},
AO::Multiplied => { apply_int_op!(lhs, *=, op, rhs) },
AO::Divided => { apply_int_op!(lhs, /=, op, rhs) },
AO::Remained => { apply_int_op!(lhs, %=, op, rhs) },
AO::Added => { apply_int_op!(lhs, +=, op, rhs) },
AO::Subtracted => { apply_int_op!(lhs, -=, op, rhs) },
AO::ShiftedLeft => { apply_int_op!(lhs, <<=, op, rhs) },
AO::ShiftedRight => { apply_int_op!(lhs, >>=, op, rhs) },
AO::BitwiseAnded => { apply_int_op!(lhs, &=, op, rhs) },
AO::BitwiseXored => { apply_int_op!(lhs, ^=, op, rhs) },
AO::BitwiseOred => { apply_int_op!(lhs, |=, op, rhs) },
}
if let Some(heap_pos) = to_dealloc {
store.drop_heap_pos(heap_pos);
}
}
pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOperator, rhs: &Value) -> Value {
use BinaryOperator as BO;
macro_rules! apply_int_op_and_return_self {
($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
return match $lhs {
Value::UInt8(v) => { Value::UInt8( *v $operator_tokens $rhs.as_uint8() ) },
Value::UInt16(v) => { Value::UInt16(*v $operator_tokens $rhs.as_uint16()) },
Value::UInt32(v) => { Value::UInt32(*v $operator_tokens $rhs.as_uint32()) },
Value::UInt64(v) => { Value::UInt64(*v $operator_tokens $rhs.as_uint64()) },
Value::SInt8(v) => { Value::SInt8( *v $operator_tokens $rhs.as_sint8() ) },
Value::SInt16(v) => { Value::SInt16(*v $operator_tokens $rhs.as_sint16()) },
Value::SInt32(v) => { Value::SInt32(*v $operator_tokens $rhs.as_sint32()) },
Value::SInt64(v) => { Value::SInt64(*v $operator_tokens $rhs.as_sint64()) },
_ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
};
}
}
macro_rules! apply_int_op_and_return_bool {
($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
return match $lhs {
Value::UInt8(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint8() ) },
Value::UInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint16()) },
Value::UInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint32()) },
Value::UInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint64()) },
Value::SInt8(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint8() ) },
Value::SInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint16()) },
Value::SInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint32()) },
Value::SInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint64()) },
_ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
};
}
}
// We need to handle concatenate in a special way because it needs the store
// mutably.
if op == BO::Concatenate {
let target_heap_pos = store.alloc_heap();
let lhs_heap_pos;
let rhs_heap_pos;
let lhs = store.maybe_read_ref(lhs);
let rhs = store.maybe_read_ref(rhs);
let value_kind;
match lhs {
Value::Message(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = rhs.as_message();
value_kind = ValueKind::Message;
},
Value::String(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = rhs.as_string();
value_kind = ValueKind::String;
},
Value::Array(lhs_pos) => {
lhs_heap_pos = *lhs_pos;
rhs_heap_pos = rhs.as_array();
value_kind = ValueKind::Array;
},
_ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
}
let lhs_heap_pos = lhs_heap_pos as usize;
let rhs_heap_pos = rhs_heap_pos as usize;
let mut concatenated = Vec::new();
let lhs_len = store.heap_regions[lhs_heap_pos].values.len();
let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
concatenated.reserve(lhs_len + rhs_len);
for idx in 0..lhs_len {
concatenated.push(store.clone_value(store.heap_regions[lhs_heap_pos].values[idx].clone()));
}
for idx in 0..rhs_len {
concatenated.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[idx].clone()));
}
store.heap_regions[target_heap_pos as usize].values = concatenated;
return match value_kind{
ValueKind::Message => Value::Message(target_heap_pos),
ValueKind::String => Value::String(target_heap_pos),
ValueKind::Array => Value::Array(target_heap_pos),
};
}
// If any of the values are references, retrieve the thing they're referring
// to.
let lhs = store.maybe_read_ref(lhs);
let rhs = store.maybe_read_ref(rhs);
match op {
BO::Concatenate => unreachable!(),
BO::LogicalOr => {
return Value::Bool(lhs.as_bool() || rhs.as_bool());
},
BO::LogicalAnd => {
return Value::Bool(lhs.as_bool() && rhs.as_bool());
},
BO::BitwiseOr => { apply_int_op_and_return_self!(lhs, |, op, rhs); },
BO::BitwiseXor => { apply_int_op_and_return_self!(lhs, ^, op, rhs); },
BO::BitwiseAnd => { apply_int_op_and_return_self!(lhs, &, op, rhs); },
BO::Equality => { Value::Bool(apply_equality_operator(store, lhs, rhs)) },
BO::Inequality => { Value::Bool(apply_inequality_operator(store, lhs, rhs)) },
BO::LessThan => { apply_int_op_and_return_bool!(lhs, <, op, rhs); },
BO::GreaterThan => { apply_int_op_and_return_bool!(lhs, >, op, rhs); },
BO::LessThanEqual => { apply_int_op_and_return_bool!(lhs, <=, op, rhs); },
BO::GreaterThanEqual => { apply_int_op_and_return_bool!(lhs, >=, op, rhs); },
BO::ShiftLeft => { apply_int_op_and_return_self!(lhs, <<, op, rhs); },
BO::ShiftRight => { apply_int_op_and_return_self!(lhs, >>, op, rhs); },
BO::Add => { apply_int_op_and_return_self!(lhs, +, op, rhs); },
BO::Subtract => { apply_int_op_and_return_self!(lhs, -, op, rhs); },
BO::Multiply => { apply_int_op_and_return_self!(lhs, *, op, rhs); },
BO::Divide => { apply_int_op_and_return_self!(lhs, /, op, rhs); },
BO::Remainder => { apply_int_op_and_return_self!(lhs, %, op, rhs); }
}
}
pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value: &Value) -> Value {
use UnaryOperator as UO;
macro_rules! apply_int_expr_and_return {
($value:ident, $apply:tt, $op:ident) => {
return match $value {
Value::UInt8(v) => Value::UInt8($apply *v),
Value::UInt16(v) => Value::UInt16($apply *v),
Value::UInt32(v) => Value::UInt32($apply *v),
Value::UInt64(v) => Value::UInt64($apply *v),
Value::SInt8(v) => Value::SInt8($apply *v),
Value::SInt16(v) => Value::SInt16($apply *v),
Value::SInt32(v) => Value::SInt32($apply *v),
Value::SInt64(v) => Value::SInt64($apply *v),
_ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
}
}
}
// If the value is a reference, retrieve the thing it is referring to
let value = store.maybe_read_ref(value);
match op {
UO::Positive => {
debug_assert!(value.is_integer());
return value.clone();
},
UO::Negative => {
// TODO: Error on negating unsigned integers
return match value {
Value::SInt8(v) => Value::SInt8(-*v),
Value::SInt16(v) => Value::SInt16(-*v),
Value::SInt32(v) => Value::SInt32(-*v),
Value::SInt64(v) => Value::SInt64(-*v),
_ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
}
},
UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op); },
UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
}
}
pub(crate) fn apply_casting(store: &mut Store, output_type: &ConcreteType, subject: &Value) -> Result<Value, String> {
// To simplify the casting logic: if the output type is not a simple
// integer/boolean/character, then the type checker made sure that the two
// types must be equal, hence we can do a simple clone.
use ConcreteTypePart as CTP;
let part = &output_type.parts[0];
match part {
CTP::Bool | CTP::Character |
CTP::UInt8 | CTP::UInt16 | CTP::UInt32 | CTP::UInt64 |
CTP::SInt8 | CTP::SInt16 | CTP::SInt32 | CTP::SInt64 => {
// Do the checking of these below
debug_assert_eq!(output_type.parts.len(), 1);
},
_ => {
return Ok(store.clone_value(subject.clone()));
},
}
// Note: character is not included, needs per-type checking
macro_rules! unchecked_cast {
($input: expr, $output_part: expr) => {
return Ok(match $output_part {
CTP::UInt8 => Value::UInt8($input as u8),
CTP::UInt16 => Value::UInt16($input as u16),
CTP::UInt32 => Value::UInt32($input as u32),
CTP::UInt64 => Value::UInt64($input as u64),
CTP::SInt8 => Value::SInt8($input as i8),
CTP::SInt16 => Value::SInt16($input as i16),
CTP::SInt32 => Value::SInt32($input as i32),
CTP::SInt64 => Value::SInt64($input as i64),
_ => unreachable!()
})
}
}
macro_rules! from_unsigned_cast {
($input:expr, $input_type:ty, $output_part:expr) => {
{
let target_type_name = match $output_part {
CTP::Bool => return Ok(Value::Bool($input != 0)),
CTP::Character => if $input <= u8::MAX as $input_type {
return Ok(Value::Char(($input as u8) as char))
} else {
KW_TYPE_CHAR_STR
},
CTP::UInt8 => if $input <= u8::MAX as $input_type {
return Ok(Value::UInt8($input as u8))
} else {
KW_TYPE_UINT8_STR
},
CTP::UInt16 => if $input <= u16::MAX as $input_type {
return Ok(Value::UInt16($input as u16))
} else {
KW_TYPE_UINT16_STR
},
CTP::UInt32 => if $input <= u32::MAX as $input_type {
return Ok(Value::UInt32($input as u32))
} else {
KW_TYPE_UINT32_STR
},
CTP::UInt64 => return Ok(Value::UInt64($input as u64)), // any unsigned int to u64 is fine
CTP::SInt8 => if $input <= i8::MAX as $input_type {
return Ok(Value::SInt8($input as i8))
} else {
KW_TYPE_SINT8_STR
},
CTP::SInt16 => if $input <= i16::MAX as $input_type {
return Ok(Value::SInt16($input as i16))
} else {
KW_TYPE_SINT16_STR
},
CTP::SInt32 => if $input <= i32::MAX as $input_type {
return Ok(Value::SInt32($input as i32))
} else {
KW_TYPE_SINT32_STR
},
CTP::SInt64 => if $input <= i64::MAX as $input_type {
return Ok(Value::SInt64($input as i64))
} else {
KW_TYPE_SINT64_STR
},
_ => unreachable!(),
};
return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
}
}
}
macro_rules! from_signed_cast {
// Programmer note: for signed checking we cannot do
// output_type::MAX as input_type,
//
// because if the output type's width is larger than the input type,
// then the cast results in a negative number. So we mask with the
// maximum possible value the input type can become. As in:
// (output_type::MAX as input_type) & input_type::MAX
//
// This way:
// 1. output width is larger than input width: fine in all cases, we
// simply compare against the max input value, which is always true.
// 2. output width is equal to input width: by masking we "remove the
// signed bit from the unsigned number" and again compare against the
// maximum input value.
// 3. output width is smaller than the input width: masking does nothing
// because the signed bit is never set, and we simply compare against
// the maximum possible output value.
//
// A similar kind of mechanism for the minimum value, but here we do
// a binary OR. We do a:
// (output_type::MIN as input_type) & input_type::MIN
//
// This way:
// 1. output width is larger than input width: initial cast truncates to
// 0, then we OR with the actual minimum value, so we attain the
// minimum value of the input type.
// 2. output width is equal to input width: we OR the minimum value with
// itself.
// 3. output width is smaller than input width: the cast produces the
// min value of the output type, the subsequent OR does nothing, as it
// essentially just sets the signed bit (which must already be set,
// since we're dealing with a signed minimum value)
//
// After all of this expanding, we simply hope the compiler does a best
// effort constant expression evaluation, and presto!
($input:expr, $input_type:ty, $output_type:expr) => {
{
let target_type_name = match $output_type {
CTP::Bool => return Ok(Value::Bool($input != 0)),
CTP::Character => if $input >= 0 && $input <= (u8::max as $input_type & <$input_type>::MAX) {
return Ok(Value::Char(($input as u8) as char))
} else {
KW_TYPE_CHAR_STR
},
CTP::UInt8 => if $input >= 0 && $input <= ((u8::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::UInt8($input as u8));
} else {
KW_TYPE_UINT8_STR
},
CTP::UInt16 => if $input >= 0 && $input <= ((u16::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::UInt16($input as u16));
} else {
KW_TYPE_UINT16_STR
},
CTP::UInt32 => if $input >= 0 && $input <= ((u32::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::UInt32($input as u32));
} else {
KW_TYPE_UINT32_STR
},
CTP::UInt64 => if $input >= 0 && $input <= ((u64::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::UInt64($input as u64));
} else {
KW_TYPE_UINT64_STR
},
CTP::SInt8 => if $input >= ((i8::MIN as $input_type) | <$input_type>::MIN) && $input <= ((i8::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::SInt8($input as i8));
} else {
KW_TYPE_SINT8_STR
},
CTP::SInt16 => if $input >= ((i16::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i16::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::SInt16($input as i16));
} else {
KW_TYPE_SINT16_STR
},
CTP::SInt32 => if $input >= ((i32::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i32::MAX as $input_type) & <$input_type>::MAX) {
return Ok(Value::SInt32($input as i32));
} else {
KW_TYPE_SINT32_STR
},
CTP::SInt64 => return Ok(Value::SInt64($input as i64)),
_ => unreachable!(),
};
return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
}
}
}
// If here, then the types might still be equal, but at least we're dealing
// with a simple integer/boolean/character input and output type.
let subject = store.maybe_read_ref(subject);
match subject {
Value::Bool(val) => {
match part {
CTP::Bool => return Ok(Value::Bool(*val)),
CTP::Character => return Ok(Value::Char(1 as char)),
_ => unchecked_cast!(*val, part),
}
},
Value::Char(val) => {
match part {
CTP::Bool => return Ok(Value::Bool(*val != 0 as char)),
CTP::Character => return Ok(Value::Char(*val)),
_ => unchecked_cast!(*val, part),
}
},
Value::UInt8(val) => from_unsigned_cast!(*val, u8, part),
Value::UInt16(val) => from_unsigned_cast!(*val, u16, part),
Value::UInt32(val) => from_unsigned_cast!(*val, u32, part),
Value::UInt64(val) => from_unsigned_cast!(*val, u64, part),
Value::SInt8(val) => from_signed_cast!(*val, i8, part),
Value::SInt16(val) => from_signed_cast!(*val, i16, part),
Value::SInt32(val) => from_signed_cast!(*val, i32, part),
Value::SInt64(val) => from_signed_cast!(*val, i64, part),
_ => unreachable!("mismatch between 'cast' type checking and 'cast' evaluation"),
}
}
/// Recursively checks for equality.
pub(crate) fn apply_equality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
let lhs = store.maybe_read_ref(lhs);
let rhs = store.maybe_read_ref(rhs);
fn eval_equality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
let lhs_len = lhs_vals.len();
if lhs_len != rhs_vals.len() {
return false;
}
for idx in 0..lhs_len {
let lhs_val = &lhs_vals[idx];
let rhs_val = &rhs_vals[idx];
if !apply_equality_operator(store, lhs_val, rhs_val) {
return false;
}
}
return true;
}
match lhs {
Value::Input(v) => *v == rhs.as_input(),
Value::Output(v) => *v == rhs.as_output(),
Value::Message(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_message()),
Value::Null => todo!("remove null"),
Value::Bool(v) => *v == rhs.as_bool(),
Value::Char(v) => *v == rhs.as_char(),
Value::String(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_string()),
Value::UInt8(v) => *v == rhs.as_uint8(),
Value::UInt16(v) => *v == rhs.as_uint16(),
Value::UInt32(v) => *v == rhs.as_uint32(),
Value::UInt64(v) => *v == rhs.as_uint64(),
Value::SInt8(v) => *v == rhs.as_sint8(),
Value::SInt16(v) => *v == rhs.as_sint16(),
Value::SInt32(v) => *v == rhs.as_sint32(),
Value::SInt64(v) => *v == rhs.as_sint64(),
Value::Array(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_array()),
Value::Tuple(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_tuple()),
Value::Enum(v) => *v == rhs.as_enum(),
Value::Union(lhs_tag, lhs_pos) => {
let (rhs_tag, rhs_pos) = rhs.as_union();
if *lhs_tag != rhs_tag {
return false;
}
eval_equality_heap(store, *lhs_pos, rhs_pos)
},
Value::Struct(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_struct()),
_ => unreachable!("apply_equality_operator to lhs {:?}", lhs),
}
}
/// Recursively checks for inequality
pub(crate) fn apply_inequality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
let lhs = store.maybe_read_ref(lhs);
let rhs = store.maybe_read_ref(rhs);
fn eval_inequality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
let lhs_len = lhs_vals.len();
if lhs_len != rhs_vals.len() {
return true;
}
for idx in 0..lhs_len {
let lhs_val = &lhs_vals[idx];
let rhs_val = &rhs_vals[idx];
if apply_inequality_operator(store, lhs_val, rhs_val) {
return true;
}
}
return false;
}
match lhs {
Value::Input(v) => *v != rhs.as_input(),
Value::Output(v) => *v != rhs.as_output(),
Value::Message(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_message()),
Value::Null => todo!("remove null"),
Value::Bool(v) => *v != rhs.as_bool(),
Value::Char(v) => *v != rhs.as_char(),
Value::String(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_string()),
Value::UInt8(v) => *v != rhs.as_uint8(),
Value::UInt16(v) => *v != rhs.as_uint16(),
Value::UInt32(v) => *v != rhs.as_uint32(),
Value::UInt64(v) => *v != rhs.as_uint64(),
Value::SInt8(v) => *v != rhs.as_sint8(),
Value::SInt16(v) => *v != rhs.as_sint16(),
Value::SInt32(v) => *v != rhs.as_sint32(),
Value::SInt64(v) => *v != rhs.as_sint64(),
Value::Array(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_array()),
Value::Tuple(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_tuple()),
Value::Enum(v) => *v != rhs.as_enum(),
Value::Union(lhs_tag, lhs_pos) => {
let (rhs_tag, rhs_pos) = rhs.as_union();
if *lhs_tag != rhs_tag {
return true;
}
eval_inequality_heap(store, *lhs_pos, rhs_pos)
},
Value::Struct(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_struct()),
_ => unreachable!("apply_inequality_operator to lhs {:?}", lhs)
}
}
/// Recursively applies binding operator. Essentially an equality operator with
/// special handling if the LHS contains a binding reference to a stack
/// stack variable.
// Note: that there is a lot of `Value.clone()` going on here. As always: this
// is potentially cloning the references to heap values, not actually cloning
// those heap regions into a new heap region.
pub(crate) fn apply_binding_operator(store: &mut Store, lhs: Value, rhs: Value) -> bool {
let lhs = store.maybe_read_ref(&lhs).clone();
let rhs = store.maybe_read_ref(&rhs).clone();
fn eval_binding_heap(store: &mut Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
let lhs_len = store.heap_regions[lhs_pos as usize].values.len();
let rhs_len = store.heap_regions[rhs_pos as usize].values.len();
if lhs_len != rhs_len {
return false;
}
for idx in 0..lhs_len {
// More rust shenanigans... I'm going to calm myself by saying that
// this is just a temporary evaluator implementation.
let lhs_val = store.heap_regions[lhs_pos as usize].values[idx].clone();
let rhs_val = store.heap_regions[rhs_pos as usize].values[idx].clone();
if !apply_binding_operator(store, lhs_val, rhs_val) {
return false;
}
}
return true;
}
match lhs {
Value::Binding(var_pos) => {
let to_write = store.clone_value(rhs.clone());
store.write(ValueId::Stack(var_pos), to_write);
return true;
},
Value::Input(v) => v == rhs.as_input(),
Value::Output(v) => v == rhs.as_output(),
Value::Message(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_message()),
Value::Null => todo!("remove null"),
Value::Bool(v) => v == rhs.as_bool(),
Value::Char(v) => v == rhs.as_char(),
Value::String(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_string()),
Value::UInt8(v) => v == rhs.as_uint8(),
Value::UInt16(v) => v == rhs.as_uint16(),
Value::UInt32(v) => v == rhs.as_uint32(),
Value::UInt64(v) => v == rhs.as_uint64(),
Value::SInt8(v) => v == rhs.as_sint8(),
Value::SInt16(v) => v == rhs.as_sint16(),
Value::SInt32(v) => v == rhs.as_sint32(),
Value::SInt64(v) => v == rhs.as_sint64(),
Value::Array(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_array()),
Value::Tuple(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_tuple()),
Value::Enum(v) => v == rhs.as_enum(),
Value::Union(lhs_tag, lhs_pos) => {
let (rhs_tag, rhs_pos) = rhs.as_union();
if lhs_tag != rhs_tag {
return false;
}
eval_binding_heap(store, lhs_pos, rhs_pos)
},
Value::Struct(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_struct()),
_ => unreachable!("apply_binding_operator to lhs {:?}", lhs),
}
}
|