Files
@ a3a2b16408b1
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component.rs
a3a2b16408b1
15.2 KiB
application/rls-services+xml
Initial polling thread implementation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | use crate::protocol::eval::{Prompt, EvalError, ValueGroup, PortId as EvalPortId};
use crate::protocol::*;
use crate::runtime2::*;
use crate::runtime2::communication::*;
use super::{CompCtx, CompPDL};
use super::component_context::*;
use super::component_ip::*;
use super::control_layer::*;
use super::consensus::*;
pub enum CompScheduling {
Immediate,
Requeue,
Sleep,
Exit,
}
/// Generic representation of a component (as viewed by a scheduler).
pub(crate) trait Component {
/// Called if the component is created by another component and the messages
/// are being transferred between the two.
fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);
/// Called if the component receives a new message. The component is
/// responsible for deciding where that messages goes.
fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);
/// Called if the component's routine should be executed. The return value
/// can be used to indicate when the routine should be run again.
fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError>;
}
/// Representation of the generic operating mode of a component.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum CompMode {
NonSync, // not in sync mode
Sync, // in sync mode, can interact with other components
SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
BlockedGet, // blocked because we need to receive a message on a particular port
BlockedPut, // component is blocked because the port is blocked
BlockedSelect, // waiting on message to complete the select statement
StartExit, // temporary state: if encountered then we start the shutdown process
BusyExit, // temporary state: waiting for Acks for all the closed ports
Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
}
impl CompMode {
pub(crate) fn is_in_sync_block(&self) -> bool {
use CompMode::*;
match self {
Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => true,
NonSync | StartExit | BusyExit | Exit => false,
}
}
}
/// Component execution state: the execution mode along with some descriptive
/// fields. Fields are public for ergonomic reasons, use member functions when
/// appropriate.
pub(crate) struct CompExecState {
pub mode: CompMode,
pub mode_port: PortId, // valid if blocked on a port (put/get)
pub mode_value: ValueGroup, // valid if blocked on a put
}
impl CompExecState {
pub(crate) fn new() -> Self {
return Self{
mode: CompMode::NonSync,
mode_port: PortId::new_invalid(),
mode_value: ValueGroup::default(),
}
}
pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
self.mode = CompMode::BlockedGet;
self.mode_port = port;
debug_assert!(self.mode_value.values.is_empty());
}
pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedGet &&
self.mode_port == port;
}
pub(crate) fn set_as_blocked_put(&mut self, port: PortId, value: ValueGroup) {
self.mode = CompMode::BlockedPut;
self.mode_port = port;
self.mode_value = value;
}
pub(crate) fn is_blocked_on_put(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedPut &&
self.mode_port == port;
}
}
/// Creates a new component based on its definition. Meaning that if it is a
/// user-defined component then we set up the PDL code state. Otherwise we
/// construct a custom component. This does NOT take care of port and message
/// management.
pub(crate) fn create_component(
protocol: &ProtocolDescription,
definition_id: ProcedureDefinitionId, type_id: TypeId,
arguments: ValueGroup, num_ports: usize
) -> Box<dyn Component> {
let definition = &protocol.heap[definition_id];
debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
if definition.source.is_builtin() {
// Builtin component
let component = match definition.source {
ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
_ => unreachable!(),
};
return component;
} else {
// User-defined component
let prompt = Prompt::new(
&protocol.types, &protocol.heap,
definition_id, type_id, arguments
);
let component = CompPDL::new(prompt, num_ports);
return Box::new(component);
}
}
// -----------------------------------------------------------------------------
// Generic component messaging utilities (for sending and receiving)
// -----------------------------------------------------------------------------
/// Handles control messages in the default way. Note that this function may
/// take a lot of actions in the name of the caller: pending messages may be
/// sent, ports may become blocked/unblocked, etc. So the execution
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
/// state may all change.
pub(crate) fn default_handle_control_message(
exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) {
match message.content {
ControlMessageContent::Ack => {
default_handle_ack(control, message.id, sched_ctx, comp_ctx);
},
ControlMessageContent::BlockPort(port_id) => {
// One of our messages was accepted, but the port should be
// blocked.
let port_handle = comp_ctx.get_port_handle(port_id);
let port_info = comp_ctx.get_port(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
if port_info.state == PortState::Open {
// only when open: we don't do this when closed, and we we don't do this if we're blocked due to peer changes
comp_ctx.set_port_state(port_handle, PortState::BlockedDueToFullBuffers);
}
},
ControlMessageContent::ClosePort(port_id) => {
// Request to close the port. We immediately comply and remove
// the component handle as well
let port_handle = comp_ctx.get_port_handle(port_id);
let peer_comp_id = comp_ctx.get_port(port_handle).peer_comp_id;
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
// One exception to sending an `Ack` is if we just closed the
// port ourselves, meaning that the `ClosePort` messages got
// sent to one another.
if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
default_handle_ack(control, control_id, sched_ctx, comp_ctx);
} else {
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
comp_ctx.remove_peer(sched_ctx, port_handle, peer_comp_id, false); // do not remove if closed
comp_ctx.set_port_state(port_handle, PortState::Closed); // now set to closed
}
},
ControlMessageContent::UnblockPort(port_id) => {
// We were previously blocked (or already closed)
let port_handle = comp_ctx.get_port_handle(port_id);
let port_info = comp_ctx.get_port(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
if port_info.state == PortState::BlockedDueToFullBuffers {
default_handle_unblock_put(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
}
},
ControlMessageContent::PortPeerChangedBlock(port_id) => {
// The peer of our port has just changed. So we are asked to
// temporarily block the port (while our original recipient is
// potentially rerouting some of the in-flight messages) and
// Ack. Then we wait for the `unblock` call.
debug_assert_eq!(message.target_port_id, Some(port_id));
let port_handle = comp_ctx.get_port_handle(port_id);
comp_ctx.set_port_state(port_handle, PortState::BlockedDueToPeerChange);
let port_info = comp_ctx.get_port(port_handle);
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
},
ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
let port_handle = comp_ctx.get_port_handle(message.target_port_id.unwrap());
let port_info = comp_ctx.get_port(port_handle);
debug_assert!(port_info.state == PortState::BlockedDueToPeerChange);
let old_peer_id = port_info.peer_comp_id;
comp_ctx.remove_peer(sched_ctx, port_handle, old_peer_id, false);
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.peer_comp_id = new_comp_id;
port_info.peer_port_id = new_port_id;
comp_ctx.add_peer(port_handle, sched_ctx, new_comp_id, None);
default_handle_unblock_put(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
}
}
}
/// Handles a component initiating the exiting procedure, and closing all of its
/// ports. Should only be called once per component (which is ensured by
/// checking and modifying the mode in the execution state).
pub(crate) fn default_handle_start_exit(
exec_state: &mut CompExecState, control: &mut ControlLayer,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::StartExit);
sched_ctx.log("Component starting exit");
exec_state.mode = CompMode::BusyExit;
// Iterating by index to work around borrowing rules
for port_index in 0..comp_ctx.num_ports() {
let port = comp_ctx.get_port_by_index_mut(port_index);
if port.state == PortState::Closed {
// Already closed, or in the process of being closed
continue;
}
// Mark as closed
let port_id = port.self_id;
port.state = PortState::Closed;
// Notify peer of closing
let port_handle = comp_ctx.get_port_handle(port_id);
let (peer, message) = control.initiate_port_closing(port_handle, comp_ctx);
let peer_info = comp_ctx.get_peer(peer);
peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
}
return CompScheduling::Immediate; // to check if we can shut down immediately
}
/// Handles a component waiting until all peers are notified that it is quitting
/// (i.e. after calling `default_handle_start_exit`).
pub(crate) fn default_handle_busy_exit(
exec_state: &mut CompExecState, control: &ControlLayer,
sched_ctx: &SchedulerCtx
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
if control.has_acks_remaining() {
sched_ctx.log("Component busy exiting, still has `Ack`s remaining");
return CompScheduling::Sleep;
} else {
sched_ctx.log("Component busy exiting, now shutting down");
exec_state.mode = CompMode::Exit;
return CompScheduling::Exit;
}
}
#[inline]
pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling {
debug_assert_eq!(_exec_state.mode, CompMode::Exit);
return CompScheduling::Exit;
}
// -----------------------------------------------------------------------------
// Internal messaging/state utilities
// -----------------------------------------------------------------------------
/// Handles an `Ack` for the control layer.
fn default_handle_ack(
control: &mut ControlLayer, control_id: ControlId,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) {
// Since an `Ack` may cause another one, handle them in a loop
let mut to_ack = control_id;
loop {
let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx);
match action {
AckAction::SendMessage(target_comp, message) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(target_comp);
handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::ScheduleComponent(to_schedule) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(to_schedule);
// Note that the component is intentionally not
// sleeping, so we just wake it up
debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
let key = unsafe { to_schedule.upgrade() };
sched_ctx.runtime.enqueue_work(key);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::None => {}
}
match new_to_ack {
Some(new_to_ack) => to_ack = new_to_ack,
None => break,
}
}
}
/// Little helper for sending the most common kind of `Ack`
fn default_send_ack(
causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle,
sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx
) {
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(ControlMessage{
id: causer_of_ack_id,
sender_comp_id: comp_ctx.id,
target_port_id: None,
content: ControlMessageContent::Ack
}), true);
}
/// Handles the unblocking of a putter port. In case there is a pending message
/// on that port then it will be sent.
fn default_handle_unblock_put(
exec_state: &mut CompExecState, consensus: &mut Consensus,
port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
) {
let port_info = comp_ctx.get_port_mut(port_handle);
let port_id = port_info.self_id;
debug_assert!(port_info.state.is_blocked());
port_info.state = PortState::Open;
if exec_state.is_blocked_on_put(port_id) {
// Annotate the message that we're going to send
let port_info = comp_ctx.get_port(port_handle); // for immutable access
debug_assert_eq!(port_info.kind, PortKind::Putter);
let to_send = exec_state.mode_value.take();
let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send);
// Retrieve peer to send the message
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message(&sched_ctx.runtime, Message::Data(to_send), true);
exec_state.mode = CompMode::Sync; // because we're blocked on a `put`, we must've started in the sync state.
exec_state.mode_port = PortId::new_invalid();
}
}
#[inline]
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
return PortId(port_id.id);
}
#[inline]
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
return EvalPortId{ id: port_id.0 };
}
|