Files
@ a99ae23c30ec
Branch filter:
Location: CSY/reowolf/src/runtime2/native.rs
a99ae23c30ec
21.6 KiB
application/rls-services+xml
WIP on consensus error handling
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | use std::collections::VecDeque;
use std::sync::{Arc, Mutex, Condvar};
use std::sync::atomic::Ordering;
use std::collections::HashMap;
use crate::protocol::ComponentCreationError;
use crate::protocol::eval::ValueGroup;
use super::{ConnectorKey, ConnectorId, RuntimeInner};
use super::branch::{BranchId, FakeTree, QueueKind, SpeculativeState};
use super::scheduler::{SchedulerCtx, ComponentCtx};
use super::port::{Port, PortIdLocal, Channel, PortKind};
use super::consensus::{Consensus, Consistency, find_ports_in_value_group};
use super::connector::{ConnectorScheduling, ConnectorPDL};
use super::inbox::{Message, DataContent, DataMessage, SyncMessage, ControlContent, ControlMessage};
/// Generic connector interface from the scheduler's point of view.
pub(crate) trait Connector {
/// Should run the connector's behaviour up until the next blocking point.
/// One should generally request and handle new messages from the component
/// context. Then perform any logic the component has to do, and in the
/// process perhaps queue up some state changes using the same context.
fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling;
}
pub(crate) struct FinishedSync {
// In the order of the `get` calls
inbox: Vec<ValueGroup>,
}
type SyncDone = Arc<(Mutex<Option<FinishedSync>>, Condvar)>;
type JobQueue = Arc<Mutex<VecDeque<ApplicationJob>>>;
enum ApplicationJob {
NewChannel((Port, Port)),
NewConnector(ConnectorPDL, Vec<PortIdLocal>),
SyncRound(Vec<ApplicationSyncAction>),
Shutdown,
}
// -----------------------------------------------------------------------------
// ConnectorApplication
// -----------------------------------------------------------------------------
/// The connector which an application can directly interface with. Once may set
/// up the next synchronous round, and retrieve the data afterwards.
// TODO: Strong candidate for logic reduction in handling put/get. A lot of code
// is an approximate copy-pasta from the regular component logic. I'm going to
// wait until I'm implementing more native components to see which logic is
// truly common.
pub struct ConnectorApplication {
// Communicating about new jobs and setting up sync rounds
sync_done: SyncDone,
job_queue: JobQueue,
is_in_sync: bool,
// Handling current sync round
sync_desc: Vec<ApplicationSyncAction>,
tree: FakeTree,
consensus: Consensus,
last_finished_handled: Option<BranchId>,
branch_extra: Vec<usize>, // instruction counter per branch
}
impl Connector for ConnectorApplication {
fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
if self.is_in_sync {
let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);
let mut iter_id = self.last_finished_handled.or(self.tree.get_queue_first(QueueKind::FinishedSync));
while let Some(branch_id) = iter_id {
iter_id = self.tree.get_queue_next(branch_id);
self.last_finished_handled = Some(branch_id);
if let Some(solution_branch) = self.consensus.handle_new_finished_sync_branch(branch_id, comp_ctx) {
// Can finish sync round immediately
self.collapse_sync_to_solution_branch(solution_branch, comp_ctx);
return ConnectorScheduling::Immediate;
}
}
return scheduling;
} else {
return self.run_in_deterministic_mode(sched_ctx, comp_ctx);
}
}
}
impl ConnectorApplication {
pub(crate) fn new(runtime: Arc<RuntimeInner>) -> (Self, ApplicationInterface) {
let sync_done = Arc::new(( Mutex::new(None), Condvar::new() ));
let job_queue = Arc::new(Mutex::new(VecDeque::with_capacity(32)));
let connector = ConnectorApplication {
sync_done: sync_done.clone(),
job_queue: job_queue.clone(),
is_in_sync: false,
sync_desc: Vec::new(),
tree: FakeTree::new(),
consensus: Consensus::new(),
last_finished_handled: None,
branch_extra: vec![0],
};
let interface = ApplicationInterface::new(sync_done, job_queue, runtime);
return (connector, interface);
}
fn handle_new_messages(&mut self, comp_ctx: &mut ComponentCtx) {
while let Some(message) = comp_ctx.read_next_message() {
match message {
Message::Data(message) => self.handle_new_data_message(message, comp_ctx),
Message::Sync(message) => self.handle_new_sync_message(message, comp_ctx),
Message::Control(_) => unreachable!("control message in native API component"),
}
}
}
pub(crate) fn handle_new_data_message(&mut self, message: DataMessage, ctx: &mut ComponentCtx) {
// Go through all branches that are awaiting new messages and see if
// there is one that can receive this message.
if !self.consensus.handle_new_data_message(&message, ctx) {
// Old message, so drop it
return;
}
let mut iter_id = self.tree.get_queue_first(QueueKind::AwaitingMessage);
while let Some(branch_id) = iter_id {
iter_id = self.tree.get_queue_next(branch_id);
let branch = &self.tree[branch_id];
if branch.awaiting_port != message.data_header.target_port { continue; }
if !self.consensus.branch_can_receive(branch_id, &message) { continue; }
// This branch can receive, so fork and given it the message
let receiving_branch_id = self.tree.fork_branch(branch_id);
debug_assert!(receiving_branch_id.index as usize == self.branch_extra.len());
self.branch_extra.push(self.branch_extra[branch_id.index as usize]); // copy instruction index
self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
let receiving_branch = &mut self.tree[receiving_branch_id];
receiving_branch.insert_message(message.data_header.target_port, message.content.as_message().unwrap().clone());
self.consensus.notify_of_received_message(receiving_branch_id, &message);
// And prepare the branch for running
self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
}
}
pub(crate) fn handle_new_sync_message(&mut self, message: SyncMessage, ctx: &mut ComponentCtx) {
if let Some(solution_branch_id) = self.consensus.handle_new_sync_message(message, ctx) {
self.collapse_sync_to_solution_branch(solution_branch_id, ctx);
}
}
fn run_in_sync_mode(&mut self, _sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
debug_assert!(self.is_in_sync);
self.handle_new_messages(comp_ctx);
let branch_id = self.tree.pop_from_queue(QueueKind::Runnable);
if branch_id.is_none() {
return ConnectorScheduling::NotNow;
}
let branch_id = branch_id.unwrap();
let branch = &mut self.tree[branch_id];
let mut instruction_idx = self.branch_extra[branch_id.index as usize];
if instruction_idx >= self.sync_desc.len() {
// Performed last instruction, so this branch is officially at the
// end of the synchronous interaction.
let consistency = self.consensus.notify_of_finished_branch(branch_id);
if consistency == Consistency::Valid {
branch.sync_state = SpeculativeState::ReachedSyncEnd;
self.tree.push_into_queue(QueueKind::FinishedSync, branch_id);
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
} else {
// We still have instructions to perform
let cur_instruction = &self.sync_desc[instruction_idx];
self.branch_extra[branch_id.index as usize] += 1;
match &cur_instruction {
ApplicationSyncAction::Put(port_id, content) => {
let port_id = *port_id;
let (sync_header, data_header) = self.consensus.handle_message_to_send(branch_id, port_id, &content, comp_ctx);
let message = Message::Data(DataMessage {
sync_header,
data_header,
content: DataContent::Message(content.clone()),
});
comp_ctx.submit_message(message);
self.tree.push_into_queue(QueueKind::Runnable, branch_id);
return ConnectorScheduling::Immediate;
},
ApplicationSyncAction::Get(port_id) => {
let port_id = *port_id;
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
branch.awaiting_port = port_id;
self.tree.push_into_queue(QueueKind::AwaitingMessage, branch_id);
let mut any_message_received = false;
for message in comp_ctx.get_read_data_messages(port_id) {
if self.consensus.branch_can_receive(branch_id, &message) {
// This branch can receive the message, so we do the
// fork-and-receive dance
let receiving_branch_id = self.tree.fork_branch(branch_id);
let branch = &mut self.tree[receiving_branch_id];
debug_assert!(receiving_branch_id.index as usize == self.branch_extra.len());
self.branch_extra.push(instruction_idx + 1);
branch.insert_message(port_id, message.content.as_message().unwrap().clone());
self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
self.consensus.notify_of_received_message(receiving_branch_id, &message);
self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
any_message_received = true;
}
}
if any_message_received {
return ConnectorScheduling::Immediate;
}
}
}
}
if self.tree.queue_is_empty(QueueKind::Runnable) {
return ConnectorScheduling::NotNow;
} else {
return ConnectorScheduling::Later;
}
}
fn run_in_deterministic_mode(&mut self, _sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
debug_assert!(!self.is_in_sync);
// In non-sync mode the application component doesn't really do anything
// except performing jobs submitted from the API. This is the only
// case where we expect to be woken up.
// Note that we have to communicate to the scheduler when we've received
// ports or created components (hence: given away ports) *before* we
// enter a sync round.
let mut queue = self.job_queue.lock().unwrap();
while let Some(job) = queue.pop_front() {
match job {
ApplicationJob::NewChannel((endpoint_a, endpoint_b)) => {
comp_ctx.push_port(endpoint_a);
comp_ctx.push_port(endpoint_b);
return ConnectorScheduling::Immediate;
}
ApplicationJob::NewConnector(connector, initial_ports) => {
comp_ctx.push_component(connector, initial_ports);
return ConnectorScheduling::Later;
},
ApplicationJob::SyncRound(mut description) => {
// Entering sync mode
comp_ctx.notify_sync_start();
self.sync_desc = description;
self.is_in_sync = true;
debug_assert!(self.last_finished_handled.is_none());
debug_assert!(self.branch_extra.len() == 1);
let first_branch_id = self.tree.start_sync();
self.tree.push_into_queue(QueueKind::Runnable, first_branch_id);
debug_assert!(first_branch_id.index == 1);
self.consensus.start_sync(comp_ctx);
self.consensus.notify_of_new_branch(BranchId::new_invalid(), first_branch_id);
self.branch_extra.push(0); // set first branch to first instruction
return ConnectorScheduling::Immediate;
},
ApplicationJob::Shutdown => {
debug_assert!(queue.is_empty());
return ConnectorScheduling::Exit;
}
}
}
// Queue was empty
return ConnectorScheduling::NotNow;
}
fn collapse_sync_to_solution_branch(&mut self, branch_id: BranchId, comp_ctx: &mut ComponentCtx) {
debug_assert!(self.branch_extra[branch_id.index as usize] >= self.sync_desc.len()); // finished program
// Notifying tree, consensus algorithm and context of ending sync
let mut fake_vec = Vec::new();
let mut solution_branch = self.tree.end_sync(branch_id);
self.consensus.end_sync(branch_id, &mut fake_vec);
for port in fake_vec {
debug_assert!(comp_ctx.get_port_by_id(port).is_some());
}
comp_ctx.notify_sync_end(&[]);
// Turning hashmapped inbox into vector of values
let mut inbox = Vec::with_capacity(solution_branch.inbox.len());
for action in &self.sync_desc {
match action {
ApplicationSyncAction::Put(_, _) => {},
ApplicationSyncAction::Get(port_id) => {
debug_assert!(solution_branch.inbox.contains_key(port_id));
inbox.push(solution_branch.inbox.remove(port_id).unwrap());
},
}
}
// Notifying interface of ending sync
self.is_in_sync = false;
self.sync_desc.clear();
self.branch_extra.truncate(1);
self.last_finished_handled = None;
let (results, notification) = &*self.sync_done;
let mut results = results.lock().unwrap();
*results = Some(FinishedSync{ inbox });
notification.notify_one();
}
}
// -----------------------------------------------------------------------------
// ApplicationInterface
// -----------------------------------------------------------------------------
#[derive(Debug)]
pub enum ChannelCreationError {
InSync,
}
#[derive(Debug)]
pub enum ApplicationStartSyncError {
AlreadyInSync,
NoSyncActions,
IncorrectPortKind,
UnownedPort,
}
#[derive(Debug)]
pub enum ApplicationEndSyncError {
NotInSync,
}
pub enum ApplicationSyncAction {
Put(PortIdLocal, ValueGroup),
Get(PortIdLocal),
}
/// The interface to a `ApplicationConnector`. This allows setting up the
/// interactions the `ApplicationConnector` performs within a synchronous round.
pub struct ApplicationInterface {
sync_done: SyncDone,
job_queue: JobQueue,
runtime: Arc<RuntimeInner>,
is_in_sync: bool,
connector_id: ConnectorId,
owned_ports: Vec<(PortKind, PortIdLocal)>,
}
impl ApplicationInterface {
fn new(sync_done: SyncDone, job_queue: JobQueue, runtime: Arc<RuntimeInner>) -> Self {
return Self{
sync_done, job_queue, runtime,
is_in_sync: false,
connector_id: ConnectorId::new_invalid(),
owned_ports: Vec::new(),
}
}
/// Creates a new channel. Can only fail if the application interface is
/// currently in sync mode.
pub fn create_channel(&mut self) -> Result<Channel, ChannelCreationError> {
if self.is_in_sync {
return Err(ChannelCreationError::InSync);
}
let (getter_port, putter_port) = self.runtime.create_channel(self.connector_id);
debug_assert_eq!(getter_port.kind, PortKind::Getter);
let getter_id = getter_port.self_id;
let putter_id = putter_port.self_id;
{
let mut lock = self.job_queue.lock().unwrap();
lock.push_back(ApplicationJob::NewChannel((getter_port, putter_port)));
}
// Add to owned ports for error checking while creating a connector
self.owned_ports.reserve(2);
self.owned_ports.push((PortKind::Putter, putter_id));
self.owned_ports.push((PortKind::Getter, getter_id));
return Ok(Channel{ putter_id, getter_id });
}
/// Creates a new connector. Note that it is not scheduled immediately, but
/// depends on the `ApplicationConnector` to run, followed by the created
/// connector being scheduled.
pub fn create_connector(&mut self, module: &str, routine: &str, arguments: ValueGroup) -> Result<(), ComponentCreationError> {
if self.is_in_sync {
return Err(ComponentCreationError::InSync);
}
// Retrieve ports and make sure that we own the ones that are currently
// specified. This is also checked by the scheduler, but that is done
// asynchronously.
let mut initial_ports = Vec::new();
find_ports_in_value_group(&arguments, &mut initial_ports);
for initial_port in &initial_ports {
if !self.owned_ports.iter().any(|(_, v)| v == initial_port) {
return Err(ComponentCreationError::UnownedPort);
}
}
// We own all ports, so remove them on this side
for initial_port in &initial_ports {
let position = self.owned_ports.iter().position(|(_, v)| v == initial_port).unwrap();
self.owned_ports.remove(position);
}
let prompt = self.runtime.protocol_description.new_component_v2(module.as_bytes(), routine.as_bytes(), arguments)?;
let connector = ConnectorPDL::new(prompt);
// Put on job queue
{
let mut queue = self.job_queue.lock().unwrap();
queue.push_back(ApplicationJob::NewConnector(connector, initial_ports));
}
self.wake_up_connector_with_ping();
return Ok(());
}
/// Queues up a description of a synchronous round to run. Will not actually
/// run the synchronous behaviour in blocking fashion. The results *must* be
/// retrieved using `try_wait` or `wait` for the interface to be considered
/// in non-sync mode.
// TODO: Maybe change API in the future. For now it does the job
pub fn perform_sync_round(&mut self, actions: Vec<ApplicationSyncAction>) -> Result<(), ApplicationStartSyncError> {
if self.is_in_sync {
return Err(ApplicationStartSyncError::AlreadyInSync);
}
// Check the action ports for consistency
for action in &actions {
let (port_id, expected_kind) = match action {
ApplicationSyncAction::Put(port_id, _) => (*port_id, PortKind::Putter),
ApplicationSyncAction::Get(port_id) => (*port_id, PortKind::Getter),
};
match self.find_port_by_id(port_id) {
Some(port_kind) => {
if port_kind != expected_kind {
return Err(ApplicationStartSyncError::IncorrectPortKind)
}
},
None => {
return Err(ApplicationStartSyncError::UnownedPort);
}
}
}
// Everything is consistent, go into sync mode and send the actions off
// to the component that will actually perform the sync round
self.is_in_sync = true;
{
let (is_done, _) = &*self.sync_done;
let mut lock = is_done.lock().unwrap();
*lock = None;
}
{
let mut lock = self.job_queue.lock().unwrap();
lock.push_back(ApplicationJob::SyncRound(actions));
}
self.wake_up_connector_with_ping();
return Ok(())
}
/// Wait until the next sync-round is finished, returning the received
/// messages in order of `get` calls.
pub fn wait(&mut self) -> Result<Vec<ValueGroup>, ApplicationEndSyncError> {
if !self.is_in_sync {
return Err(ApplicationEndSyncError::NotInSync);
}
let (is_done, condition) = &*self.sync_done;
let mut lock = is_done.lock().unwrap();
lock = condition.wait_while(lock, |v| v.is_none()).unwrap(); // wait while not done
self.is_in_sync = false;
return Ok(lock.take().unwrap().inbox);
}
/// Called by runtime to set associated connector's ID.
pub(crate) fn set_connector_id(&mut self, id: ConnectorId) {
self.connector_id = id;
}
fn wake_up_connector_with_ping(&self) {
let connector = self.runtime.get_component_public(self.connector_id);
connector.inbox.insert_message(Message::Control(ControlMessage {
id: 0,
sending_component_id: self.connector_id,
content: ControlContent::Ping,
}));
let should_wake_up = connector.sleeping
.compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
.is_ok();
if should_wake_up {
let key = unsafe{ ConnectorKey::from_id(self.connector_id) };
self.runtime.push_work(key);
}
}
fn find_port_by_id(&self, port_id: PortIdLocal) -> Option<PortKind> {
return self.owned_ports.iter()
.find(|(_, owned_id)| *owned_id == port_id)
.map(|(port_kind, _)| *port_kind);
}
}
impl Drop for ApplicationInterface {
fn drop(&mut self) {
{
let mut lock = self.job_queue.lock().unwrap();
lock.push_back(ApplicationJob::Shutdown);
}
self.wake_up_connector_with_ping();
self.runtime.decrement_active_interfaces();
}
}
|