Files
@ b07796bf6c5f
Branch filter:
Location: CSY/reowolf/src/protocol/parser/mod.rs
b07796bf6c5f
15.1 KiB
application/rls-services+xml
fix nested field access inference test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | mod depth_visitor;
mod symbol_table;
// mod type_table_old;
mod type_table;
mod type_resolver;
mod visitor;
mod visitor_linker;
mod utils;
use depth_visitor::*;
use symbol_table::SymbolTable;
use visitor::Visitor2;
use visitor_linker::ValidityAndLinkerVisitor;
use type_resolver::{TypeResolvingVisitor, ResolveQueue};
use type_table::{TypeTable, TypeCtx};
use crate::protocol::ast::*;
use crate::protocol::inputsource::*;
use crate::protocol::lexer::*;
use std::collections::HashMap;
use crate::protocol::ast_printer::ASTWriter;
// TODO: @fixme, pub qualifier
pub(crate) struct LexedModule {
pub(crate) source: InputSource,
module_name: Vec<u8>,
version: Option<u64>,
root_id: RootId,
}
pub struct Parser {
pub(crate) heap: Heap,
pub(crate) modules: Vec<LexedModule>,
pub(crate) module_lookup: HashMap<Vec<u8>, usize>, // from (optional) module name to `modules` idx
}
impl Parser {
pub fn new() -> Self {
Parser{
heap: Heap::new(),
modules: Vec::new(),
module_lookup: HashMap::new()
}
}
// TODO: @fix, temporary implementation to keep code compilable
pub fn new_with_source(source: InputSource) -> Result<Self, ParseError2> {
let mut parser = Parser::new();
parser.feed(source)?;
Ok(parser)
}
pub fn feed(&mut self, mut source: InputSource) -> Result<RootId, ParseError2> {
// Lex the input source
let mut lex = Lexer::new(&mut source);
let pd = lex.consume_protocol_description(&mut self.heap)?;
// Seek the module name and version
let root = &self.heap[pd];
let mut module_name_pos = InputPosition::default();
let mut module_name = Vec::new();
let mut module_version_pos = InputPosition::default();
let mut module_version = None;
for pragma in &root.pragmas {
match &self.heap[*pragma] {
Pragma::Module(module) => {
if !module_name.is_empty() {
return Err(
ParseError2::new_error(&source, module.position, "Double definition of module name in the same file")
.with_postfixed_info(&source, module_name_pos, "Previous definition was here")
)
}
module_name_pos = module.position.clone();
module_name = module.value.clone();
},
Pragma::Version(version) => {
if module_version.is_some() {
return Err(
ParseError2::new_error(&source, version.position, "Double definition of module version")
.with_postfixed_info(&source, module_version_pos, "Previous definition was here")
)
}
module_version_pos = version.position.clone();
module_version = Some(version.version);
},
}
}
// Add module to list of modules and prevent naming conflicts
let cur_module_idx = self.modules.len();
if let Some(prev_module_idx) = self.module_lookup.get(&module_name) {
// Find `#module` statement in other module again
let prev_module = &self.modules[*prev_module_idx];
let prev_module_pos = self.heap[prev_module.root_id].pragmas
.iter()
.find_map(|p| {
match &self.heap[*p] {
Pragma::Module(module) => Some(module.position.clone()),
_ => None
}
})
.unwrap_or(InputPosition::default());
let module_name_msg = if module_name.is_empty() {
format!("a nameless module")
} else {
format!("module '{}'", String::from_utf8_lossy(&module_name))
};
return Err(
ParseError2::new_error(&source, module_name_pos, &format!("Double definition of {} across files", module_name_msg))
.with_postfixed_info(&prev_module.source, prev_module_pos, "Other definition was here")
);
}
self.modules.push(LexedModule{
source,
module_name: module_name.clone(),
version: module_version,
root_id: pd
});
self.module_lookup.insert(module_name, cur_module_idx);
Ok(pd)
}
pub fn compile(&mut self) {
// Build module lookup
}
fn resolve_symbols_and_types(&mut self) -> Result<(SymbolTable, TypeTable), ParseError2> {
// Construct the symbol table to resolve any imports and/or definitions,
// then use the symbol table to actually annotate all of the imports.
// If the type table is constructed correctly then all imports MUST be
// resolvable.
// TODO: Update once namespaced identifiers are implemented
let symbol_table = SymbolTable::new(&self.heap, &self.modules)?;
// Not pretty, but we need to work around rust's borrowing rules, it is
// totally safe to mutate the contents of an AST element that we are
// not borrowing anywhere else.
// TODO: Maybe directly access heap's members to allow borrowing from
// mutliple members of Heap? Not pretty though...
let mut module_index = 0;
let mut import_index = 0;
loop {
if module_index >= self.modules.len() {
break;
}
let module_root_id = self.modules[module_index].root_id;
let import_id = {
let root = &self.heap[module_root_id];
if import_index >= root.imports.len() {
module_index += 1;
import_index = 0;
continue
}
root.imports[import_index]
};
let import = &mut self.heap[import_id];
match import {
Import::Module(import) => {
debug_assert!(import.module_id.is_none(), "module import already resolved");
let target_module_id = symbol_table.resolve_module(&import.module_name)
.expect("module import is resolved by symbol table");
import.module_id = Some(target_module_id)
},
Import::Symbols(import) => {
debug_assert!(import.module_id.is_none(), "module of symbol import already resolved");
let target_module_id = symbol_table.resolve_module(&import.module_name)
.expect("symbol import's module is resolved by symbol table");
import.module_id = Some(target_module_id);
for symbol in &mut import.symbols {
debug_assert!(symbol.definition_id.is_none(), "symbol import already resolved");
let (_, target_definition_id) = symbol_table.resolve_symbol(module_root_id, &symbol.alias)
.expect("symbol import is resolved by symbol table")
.as_definition()
.expect("symbol import does not resolve to namespace symbol");
symbol.definition_id = Some(target_definition_id);
}
}
}
}
// All imports in the AST are now annotated. We now use the symbol table
// to construct the type table.
let mut type_ctx = TypeCtx::new(&symbol_table, &mut self.heap, &self.modules);
let type_table = TypeTable::new(&mut type_ctx)?;
Ok((symbol_table, type_table))
}
// TODO: @fix, temporary impl to keep code compilable
pub fn parse(&mut self) -> Result<RootId, ParseError2> {
assert_eq!(self.modules.len(), 1, "Fix meeeee");
let root_id = self.modules[0].root_id;
let (mut symbol_table, mut type_table) = self.resolve_symbols_and_types()?;
// TODO: @cleanup
let mut ctx = visitor::Ctx{
heap: &mut self.heap,
module: &self.modules[0],
symbols: &mut symbol_table,
types: &mut type_table,
};
let mut visit = ValidityAndLinkerVisitor::new();
visit.visit_module(&mut ctx)?;
let mut type_visit = TypeResolvingVisitor::new();
let mut queue = ResolveQueue::new();
TypeResolvingVisitor::queue_module_definitions(&ctx, &mut queue);
while !queue.is_empty() {
let top = queue.pop().unwrap();
println!("Resolving root={}, def={}, mono={:?}", top.root_id.index, top.definition_id.index, top.monomorph_types);
type_visit.handle_module_definition(&mut ctx, &mut queue, top)?;
}
if let Err((position, message)) = Self::parse_inner(&mut self.heap, root_id) {
return Err(ParseError2::new_error(&self.modules[0].source, position, &message))
}
// let mut writer = ASTWriter::new();
// let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
// writer.write_ast(&mut file, &self.heap);
Ok(root_id)
}
pub fn parse_inner(h: &mut Heap, pd: RootId) -> VisitorResult {
// TODO: @cleanup, slowly phasing out old compiler
// NestedSynchronousStatements::new().visit_protocol_description(h, pd)?;
// ChannelStatementOccurrences::new().visit_protocol_description(h, pd)?;
// FunctionStatementReturns::new().visit_protocol_description(h, pd)?;
// ComponentStatementReturnNew::new().visit_protocol_description(h, pd)?;
// CheckBuiltinOccurrences::new().visit_protocol_description(h, pd)?;
// BuildSymbolDeclarations::new().visit_protocol_description(h, pd)?;
// LinkCallExpressions::new().visit_protocol_description(h, pd)?;
// BuildScope::new().visit_protocol_description(h, pd)?;
// ResolveVariables::new().visit_protocol_description(h, pd)?;
LinkStatements::new().visit_protocol_description(h, pd)?;
// BuildLabels::new().visit_protocol_description(h, pd)?;
// ResolveLabels::new().visit_protocol_description(h, pd)?;
AssignableExpressions::new().visit_protocol_description(h, pd)?;
IndexableExpressions::new().visit_protocol_description(h, pd)?;
SelectableExpressions::new().visit_protocol_description(h, pd)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::fs::File;
use std::io::Read;
use std::path::Path;
use super::*;
// #[test]
fn positive_tests() {
for resource in TestFileIter::new("testdata/parser/positive", "pdl") {
let resource = resource.expect("read testdata filepath");
// println!(" * running: {}", &resource);
let path = Path::new(&resource);
let source = InputSource::from_file(&path).unwrap();
// println!("DEBUG -- input:\n{}", String::from_utf8_lossy(&source.input));
let mut parser = Parser::new_with_source(source).expect("parse source");
match parser.parse() {
Ok(_) => {}
Err(err) => {
println!(" > file: {}", &resource);
println!("{}", err);
assert!(false);
}
}
}
}
// #[test]
fn negative_tests() {
for resource in TestFileIter::new("testdata/parser/negative", "pdl") {
let resource = resource.expect("read testdata filepath");
let path = Path::new(&resource);
let expect = path.with_extension("txt");
let mut source = InputSource::from_file(&path).unwrap();
let mut parser = Parser::new_with_source(source).expect("construct parser");
match parser.parse() {
Ok(pd) => {
println!("Expected parse error:");
let mut cev: Vec<u8> = Vec::new();
let mut f = File::open(expect).unwrap();
f.read_to_end(&mut cev).unwrap();
println!("{}", String::from_utf8_lossy(&cev));
assert!(false);
}
Err(err) => {
let expected = format!("{}", err);
println!("{}", &expected);
let mut cev: Vec<u8> = Vec::new();
let mut f = File::open(expect).unwrap();
f.read_to_end(&mut cev).unwrap();
println!("{}", String::from_utf8_lossy(&cev));
assert_eq!(expected.as_bytes(), cev);
}
}
}
}
// #[test]
fn counterexample_tests() {
for resource in TestFileIter::new("testdata/parser/counterexamples", "pdl") {
let resource = resource.expect("read testdata filepath");
let path = Path::new(&resource);
let source = InputSource::from_file(&path).unwrap();
let mut parser = Parser::new_with_source(source).expect("construct parser");
fn print_header(s: &str) {
println!("{}", "=".repeat(80));
println!(" > File: {}", s);
println!("{}", "=".repeat(80));
}
match parser.parse() {
Ok(parsed) => {
print_header(&resource);
println!("\n SUCCESS\n\n --- source:\n{}", String::from_utf8_lossy(&parser.modules[0].source.input));
},
Err(err) => {
print_header(&resource);
println!(
"\n FAILURE\n\n --- error:\n{}\n --- source:\n{}",
err,
String::from_utf8_lossy(&parser.modules[0].source.input)
)
}
}
}
}
struct TestFileIter {
iter: std::fs::ReadDir,
root: String,
extension: String
}
impl TestFileIter {
fn new(root_dir: &str, extension: &str) -> Self {
let path = Path::new(root_dir);
assert!(path.is_dir(), "root '{}' is not a directory", root_dir);
let iter = std::fs::read_dir(path).expect("list dir contents");
Self {
iter,
root: root_dir.to_string(),
extension: extension.to_string(),
}
}
}
impl Iterator for TestFileIter {
type Item = Result<String, String>;
fn next(&mut self) -> Option<Self::Item> {
while let Some(entry) = self.iter.next() {
if let Err(e) = entry {
return Some(Err(format!("failed to read dir entry, because: {}", e)));
}
let entry = entry.unwrap();
let path = entry.path();
if !path.is_file() { continue; }
let extension = path.extension();
if extension.is_none() { continue; }
let extension = extension.unwrap().to_string_lossy();
if extension != self.extension { continue; }
return Some(Ok(path.to_string_lossy().to_string()));
}
None
}
}
}
|