Files @ b07796bf6c5f
Branch filter:

Location: CSY/reowolf/src/protocol/parser/visitor_linker.rs

b07796bf6c5f 69.2 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
fix nested field access inference test
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
use crate::protocol::ast::*;
use crate::protocol::inputsource::*;
use crate::protocol::parser::{
    symbol_table::*, 
    type_table::*,
    utils::*,
};

use super::visitor::{
    STMT_BUFFER_INIT_CAPACITY,
    EXPR_BUFFER_INIT_CAPACITY,
    TYPE_BUFFER_INIT_CAPACITY,
    Ctx, 
    Visitor2, 
    VisitorResult
};
use std::hint::unreachable_unchecked;

#[derive(PartialEq, Eq)]
enum DefinitionType {
    None,
    Primitive(ComponentId),
    Composite(ComponentId),
    Function(FunctionId)
}

impl DefinitionType {
    fn is_primitive(&self) -> bool { if let Self::Primitive(_) = self { true } else { false } }
    fn is_composite(&self) -> bool { if let Self::Composite(_) = self { true } else { false } }
    fn is_function(&self) -> bool { if let Self::Function(_) = self { true } else { false } }
}

/// This particular visitor will go through the entire AST in a recursive manner
/// and check if all statements and expressions are legal (e.g. no "return"
/// statements in component definitions), and will link certain AST nodes to
/// their appropriate targets (e.g. goto statements, or function calls).
///
/// This visitor will not perform control-flow analysis (e.g. making sure that
/// each function actually returns) and will also not perform type checking. So
/// the linking of function calls and component instantiations will be checked
/// and linked to the appropriate definitions, but the return types and/or
/// arguments will not be checked for validity.
///
/// The visitor visits each statement in a block in a breadth-first manner
/// first. We are thereby sure that we have found all variables/labels in a
/// particular block. In this phase nodes may queue statements for insertion
/// (e.g. the insertion of an `EndIf` statement for a particular `If`
/// statement). These will be inserted after visiting every node, after which
/// the visitor recurses into each statement in a block.
///
/// Because of this scheme expressions will not be visited in the breadth-first
/// pass.
pub(crate) struct ValidityAndLinkerVisitor {
    /// `in_sync` is `Some(id)` if the visitor is visiting the children of a
    /// synchronous statement. A single value is sufficient as nested
    /// synchronous statements are not allowed
    in_sync: Option<SynchronousStatementId>,
    /// `in_while` contains the last encountered `While` statement. This is used
    /// to resolve unlabeled `Continue`/`Break` statements.
    in_while: Option<WhileStatementId>,
    // Traversal state: current scope (which can be used to find the parent
    // scope), the definition variant we are considering, and whether the
    // visitor is performing breadthwise block statement traversal.
    cur_scope: Option<Scope>,
    def_type: DefinitionType,
    performing_breadth_pass: bool,
    // Parent expression (the previous stmt/expression we visited that could be
    // used as an expression parent)
    expr_parent: ExpressionParent,
    // Keeping track of relative position in block in the breadth-first pass.
    // May not correspond to block.statement[index] if any statements are
    // inserted after the breadth-pass
    relative_pos_in_block: u32,
    // Single buffer of statement IDs that we want to traverse in a block.
    // Required to work around Rust borrowing rules and to prevent constant
    // cloning of vectors.
    statement_buffer: Vec<StatementId>,
    // Another buffer, now with expression IDs, to prevent constant cloning of
    // vectors while working around rust's borrowing rules
    expression_buffer: Vec<ExpressionId>,
    // Yet another buffer, now with parser type IDs, similar to above
    parser_type_buffer: Vec<ParserTypeId>,
    // Statements to insert after the breadth pass in a single block
    insert_buffer: Vec<(u32, StatementId)>,
}

impl ValidityAndLinkerVisitor {
    pub(crate) fn new() -> Self {
        Self{
            in_sync: None,
            in_while: None,
            cur_scope: None,
            expr_parent: ExpressionParent::None,
            def_type: DefinitionType::None,
            performing_breadth_pass: false,
            relative_pos_in_block: 0,
            statement_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
            expression_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
            parser_type_buffer: Vec::with_capacity(TYPE_BUFFER_INIT_CAPACITY),
            insert_buffer: Vec::with_capacity(32),
        }
    }

    fn reset_state(&mut self) {
        self.in_sync = None;
        self.in_while = None;
        self.cur_scope = None;
        self.expr_parent = ExpressionParent::None;
        self.def_type = DefinitionType::None;
        self.relative_pos_in_block = 0;
        self.performing_breadth_pass = false;
        self.statement_buffer.clear();
        self.expression_buffer.clear();
        self.parser_type_buffer.clear();
        self.insert_buffer.clear();
    }

    /// Debug call to ensure that we didn't make any mistakes in any of the
    /// employed buffers
    fn check_post_definition_state(&self) {
        debug_assert!(self.statement_buffer.is_empty());
        debug_assert!(self.expression_buffer.is_empty());
        debug_assert!(self.parser_type_buffer.is_empty());
        debug_assert!(self.insert_buffer.is_empty());
    }
}

impl Visitor2 for ValidityAndLinkerVisitor {
    //--------------------------------------------------------------------------
    // Definition visitors
    //--------------------------------------------------------------------------

    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult {
        self.reset_state();

        self.def_type = match &ctx.heap[id].variant {
            ComponentVariant::Primitive => DefinitionType::Primitive(id),
            ComponentVariant::Composite => DefinitionType::Composite(id),
        };
        self.cur_scope = Some(Scope::Definition(id.upcast()));
        self.expr_parent = ExpressionParent::None;

        // Visit types of parameters
        debug_assert!(self.parser_type_buffer.is_empty());
        let comp_def = &ctx.heap[id];
        self.parser_type_buffer.extend(
            comp_def.parameters
                .iter()
                .map(|id| ctx.heap[*id].parser_type)
        );

        let num_types = self.parser_type_buffer.len();
        for idx in 0..num_types {
            self.visit_parser_type(ctx, self.parser_type_buffer[idx])?;
        }

        self.parser_type_buffer.clear();

        // Visit statements in component body
        let body_id = ctx.heap[id].body;
        self.performing_breadth_pass = true;
        self.visit_stmt(ctx, body_id)?;
        self.performing_breadth_pass = false;
        self.visit_stmt(ctx, body_id)?;

        self.check_post_definition_state();
        Ok(())
    }

    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult {
        self.reset_state();

        // Set internal statement indices
        self.def_type = DefinitionType::Function(id);
        self.cur_scope = Some(Scope::Definition(id.upcast()));
        self.expr_parent = ExpressionParent::None;

        // Visit types of parameters
        debug_assert!(self.parser_type_buffer.is_empty());
        let func_def = &ctx.heap[id];
        self.parser_type_buffer.extend(
            func_def.parameters
                .iter()
                .map(|id| ctx.heap[*id].parser_type)
        );
        self.parser_type_buffer.push(func_def.return_type);

        let num_types = self.parser_type_buffer.len();
        for idx in 0..num_types {
            self.visit_parser_type(ctx, self.parser_type_buffer[idx])?;
        }

        self.parser_type_buffer.clear();

        // Visit statements in function body
        let body_id = ctx.heap[id].body;
        self.performing_breadth_pass = true;
        self.visit_stmt(ctx, body_id)?;
        self.performing_breadth_pass = false;
        self.visit_stmt(ctx, body_id)?;

        self.check_post_definition_state();
        Ok(())
    }

    //--------------------------------------------------------------------------
    // Statement visitors
    //--------------------------------------------------------------------------

    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
        self.visit_block_stmt_with_hint(ctx, id, None)
    }

    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let variable_id = ctx.heap[id].variable;
            self.checked_local_add(ctx, self.relative_pos_in_block, variable_id)?;
        } else {
            let variable_id = ctx.heap[id].variable;
            let parser_type_id = ctx.heap[variable_id].parser_type;
            self.visit_parser_type(ctx, parser_type_id)?;

            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
        }

        Ok(())
    }

    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let (from_id, to_id) = {
                let stmt = &ctx.heap[id];
                (stmt.from, stmt.to)
            };
            self.checked_local_add(ctx, self.relative_pos_in_block, from_id)?;
            self.checked_local_add(ctx, self.relative_pos_in_block, to_id)?;
        } else {
            let chan_stmt = &ctx.heap[id];
            let from_type_id = ctx.heap[chan_stmt.from].parser_type;
            let to_type_id = ctx.heap[chan_stmt.to].parser_type;
            self.visit_parser_type(ctx, from_type_id)?;
            self.visit_parser_type(ctx, to_type_id)?;
        }

        Ok(())
    }

    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Add label to block lookup
            self.checked_label_add(ctx, id)?;

            // Modify labeled statement itself
            let labeled = &mut ctx.heap[id];
            labeled.relative_pos_in_block = self.relative_pos_in_block;
            labeled.in_sync = self.in_sync.clone();
        }

        let body_id = ctx.heap[id].body;
        self.visit_stmt(ctx, body_id)?;

        Ok(())
    }

    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let position = ctx.heap[id].position;
            let end_if_id = ctx.heap.alloc_end_if_statement(|this| {
                EndIfStatement {
                    this,
                    start_if: id,
                    position,
                    next: None,
                }
            });
            let stmt = &mut ctx.heap[id];
            stmt.end_if = Some(end_if_id);
            self.insert_buffer.push((self.relative_pos_in_block + 1, end_if_id.upcast()));
        } else {
            // Traverse expression and bodies
            let (test_id, true_id, false_id) = {
                let stmt = &ctx.heap[id];
                (stmt.test, stmt.true_body, stmt.false_body)
            };

            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            self.expr_parent = ExpressionParent::If(id);
            self.visit_expr(ctx, test_id)?;
            self.expr_parent = ExpressionParent::None;

            self.visit_stmt(ctx, true_id)?;
            self.visit_stmt(ctx, false_id)?;
        }

        Ok(())
    }

    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let position = ctx.heap[id].position;
            let end_while_id = ctx.heap.alloc_end_while_statement(|this| {
                EndWhileStatement {
                    this,
                    start_while: id,
                    position,
                    next: None,
                }
            });
            let stmt = &mut ctx.heap[id];
            stmt.end_while = Some(end_while_id);
            stmt.in_sync = self.in_sync.clone();

            self.insert_buffer.push((self.relative_pos_in_block + 1, end_while_id.upcast()));
        } else {
            let (test_id, body_id) = {
                let stmt = &ctx.heap[id];
                (stmt.test, stmt.body)
            };
            let old_while = self.in_while.replace(id);
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            self.expr_parent = ExpressionParent::While(id);
            self.visit_expr(ctx, test_id)?;
            self.expr_parent = ExpressionParent::None;

            self.visit_stmt(ctx, body_id)?;
            self.in_while = old_while;
        }

        Ok(())
    }

    fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Should be able to resolve break statements with a label in the
            // breadth pass, no need to do after resolving all labels
            let target_end_while = {
                let stmt = &ctx.heap[id];
                let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?;
                let target_while = &ctx.heap[target_while_id];
                debug_assert!(target_while.end_while.is_some());
                target_while.end_while.unwrap()
            };

            let stmt = &mut ctx.heap[id];
            stmt.target = Some(target_end_while);
        }

        Ok(())
    }

    fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let target_while_id = {
                let stmt = &ctx.heap[id];
                self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?
            };

            let stmt = &mut ctx.heap[id];
            stmt.target = Some(target_while_id)
        }

        Ok(())
    }

    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Check for validity of synchronous statement
            let cur_sync_position = ctx.heap[id].position;
            if self.in_sync.is_some() {
                // Nested synchronous statement
                let old_sync = &ctx.heap[self.in_sync.unwrap()];
                return Err(
                    ParseError2::new_error(&ctx.module.source, cur_sync_position, "Illegal nested synchronous statement")
                        .with_postfixed_info(&ctx.module.source, old_sync.position, "It is nested in this synchronous statement")
                );
            }

            if !self.def_type.is_primitive() {
                return Err(ParseError2::new_error(
                    &ctx.module.source, cur_sync_position,
                    "Synchronous statements may only be used in primitive components"
                ));
            }

            // Append SynchronousEnd pseudo-statement
            let sync_end_id = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement{
                this,
                position: cur_sync_position,
                start_sync: id,
                next: None,
            });
            let sync_start = &mut ctx.heap[id];
            sync_start.end_sync = Some(sync_end_id);
            self.insert_buffer.push((self.relative_pos_in_block + 1, sync_end_id.upcast()));
        } else {
            let sync_body = ctx.heap[id].body;
            let old = self.in_sync.replace(id);
            self.visit_stmt_with_hint(ctx, sync_body, Some(id))?;
            self.in_sync = old;
        }

        Ok(())
    }

    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let stmt = &ctx.heap[id];
            if !self.def_type.is_function() {
                return Err(
                    ParseError2::new_error(&ctx.module.source, stmt.position, "Return statements may only appear in function bodies")
                );
            }
        } else {
            // If here then we are within a function
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            self.expr_parent = ExpressionParent::Return(id);
            self.visit_expr(ctx, ctx.heap[id].expression)?;
            self.expr_parent = ExpressionParent::None;
        }

        Ok(())
    }

    fn visit_assert_stmt(&mut self, ctx: &mut Ctx, id: AssertStatementId) -> VisitorResult {
        let stmt = &ctx.heap[id];
        if self.performing_breadth_pass {
            if self.def_type.is_function() {
                // TODO: We probably want to allow this. Mark the function as
                //  using asserts, and then only allow calls to these functions
                //  within components. Such a marker will cascade through any
                //  functions that then call an asserting function
                return Err(
                    ParseError2::new_error(&ctx.module.source, stmt.position, "Illegal assert statement in a function")
                );
            }

            // We are in a component of some sort, but we also need to be within a
            // synchronous statement
            if self.in_sync.is_none() {
                return Err(
                    ParseError2::new_error(&ctx.module.source, stmt.position, "Illegal assert statement outside of a synchronous block")
                );
            }
        } else {
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            let expr_id = stmt.expression;

            self.expr_parent = ExpressionParent::Assert(id);
            self.visit_expr(ctx, expr_id)?;
            self.expr_parent = ExpressionParent::None;
        }

        Ok(())
    }

    fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult {
        if !self.performing_breadth_pass {
            // Must perform goto label resolving after the breadth pass, this
            // way we are able to find all the labels in current and outer
            // scopes.
            let target_id = self.find_label(ctx, &ctx.heap[id].label)?;
            ctx.heap[id].target = Some(target_id);

            let target = &ctx.heap[target_id];
            if self.in_sync != target.in_sync {
                // We can only goto the current scope or outer scopes. Because
                // nested sync statements are not allowed so if the value does
                // not match, then we must be inside a sync scope
                debug_assert!(self.in_sync.is_some());
                let goto_stmt = &ctx.heap[id];
                let sync_stmt = &ctx.heap[self.in_sync.unwrap()];
                return Err(
                    ParseError2::new_error(&ctx.module.source, goto_stmt.position, "Goto may not escape the surrounding synchronous block")
                        .with_postfixed_info(&ctx.module.source, target.position, "This is the target of the goto statement")
                        .with_postfixed_info(&ctx.module.source, sync_stmt.position, "Which will jump past this statement")
                );
            }
        }

        Ok(())
    }

    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
        // Link the call expression following the new statement
        if self.performing_breadth_pass {
            // TODO: Cleanup error messages, can be done cleaner
            // Make sure new statement occurs within a composite component
            let call_expr_id = ctx.heap[id].expression;
            if !self.def_type.is_composite() {
                let new_stmt = &ctx.heap[id];
                return Err(
                    ParseError2::new_error(&ctx.module.source, new_stmt.position, "Instantiating components may only be done in composite components")
                );
            }

            // We make sure that we point to a symbolic method. Checking that it
            // points to a component is done in the depth pass.
            let call_expr = &ctx.heap[call_expr_id];
            if let Method::Symbolic(_) = &call_expr.method {
                // We're fine
            } else {
                return Err(
                    ParseError2::new_error(&ctx.module.source, call_expr.position, "Must instantiate a component")
                );
            }
        } else {
            // Just call `visit_call_expr`. We do some extra work we don't have
            // to, but this prevents silly mistakes.
            let call_expr_id = ctx.heap[id].expression;

            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            self.expr_parent = ExpressionParent::New(id);
            self.visit_call_expr(ctx, call_expr_id)?;
            self.expr_parent = ExpressionParent::None;
        }

        Ok(())
    }

    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
        if !self.performing_breadth_pass {
            let expr_id = ctx.heap[id].expression;

            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
            self.expr_parent = ExpressionParent::ExpressionStmt(id);
            self.visit_expr(ctx, expr_id)?;
            self.expr_parent = ExpressionParent::None;
        }

        Ok(())
    }


    //--------------------------------------------------------------------------
    // Expression visitors
    //--------------------------------------------------------------------------

    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let upcast_id = id.upcast();
        let assignment_expr = &mut ctx.heap[id];

        let left_expr_id = assignment_expr.left;
        let right_expr_id = assignment_expr.right;
        let old_expr_parent = self.expr_parent;
        assignment_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
        self.visit_expr(ctx, left_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
        self.visit_expr(ctx, right_expr_id)?;
        self.expr_parent = old_expr_parent;
        Ok(())
    }

    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);
        let upcast_id = id.upcast();
        let conditional_expr = &mut ctx.heap[id];

        let test_expr_id = conditional_expr.test;
        let true_expr_id = conditional_expr.true_expression;
        let false_expr_id = conditional_expr.false_expression;

        let old_expr_parent = self.expr_parent;
        conditional_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
        self.visit_expr(ctx, test_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
        self.visit_expr(ctx, true_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
        self.visit_expr(ctx, false_expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);
        let upcast_id = id.upcast();
        let binary_expr = &mut ctx.heap[id];
        let left_expr_id = binary_expr.left;
        let right_expr_id = binary_expr.right;

        let old_expr_parent = self.expr_parent;
        binary_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
        self.visit_expr(ctx, left_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
        self.visit_expr(ctx, right_expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let unary_expr = &mut ctx.heap[id];
        let expr_id = unary_expr.expression;

        let old_expr_parent = self.expr_parent;
        unary_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
        self.visit_expr(ctx, expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);
        let upcast_id = id.upcast();
        let indexing_expr = &mut ctx.heap[id];

        let subject_expr_id = indexing_expr.subject;
        let index_expr_id = indexing_expr.index;

        let old_expr_parent = self.expr_parent;
        indexing_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
        self.visit_expr(ctx, subject_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
        self.visit_expr(ctx, index_expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);
        let upcast_id = id.upcast();
        let slicing_expr = &mut ctx.heap[id];

        let subject_expr_id = slicing_expr.subject;
        let from_expr_id = slicing_expr.from_index;
        let to_expr_id = slicing_expr.to_index;

        let old_expr_parent = self.expr_parent;
        slicing_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
        self.visit_expr(ctx, subject_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
        self.visit_expr(ctx, from_expr_id)?;
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
        self.visit_expr(ctx, to_expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let select_expr = &mut ctx.heap[id];
        let expr_id = select_expr.subject;

        let old_expr_parent = self.expr_parent;
        select_expr.parent = old_expr_parent;

        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
        self.visit_expr(ctx, expr_id)?;
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let upcast_id = id.upcast();
        let array_expr = &mut ctx.heap[id];

        let old_num_exprs = self.expression_buffer.len();
        self.expression_buffer.extend(&array_expr.elements);
        let new_num_exprs = self.expression_buffer.len();

        let old_expr_parent = self.expr_parent;
        array_expr.parent = old_expr_parent;

        for field_expr_idx in old_num_exprs..new_num_exprs {
            let field_expr_id = self.expression_buffer[field_expr_idx];
            self.expr_parent = ExpressionParent::Expression(upcast_id, field_expr_idx as u32);
            self.visit_expr(ctx, field_expr_id)?;
        }

        self.expression_buffer.truncate(old_num_exprs);
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        const FIELD_NOT_FOUND_SENTINEL: usize = usize::max_value();

        let constant_expr = &mut ctx.heap[id];
        let old_expr_parent = self.expr_parent;
        constant_expr.parent = old_expr_parent;

        match &mut constant_expr.value {
            Literal::Null | Literal::True | Literal::False |
            Literal::Character(_) | Literal::Integer(_) => {
                // Just the parent has to be set, done above
            },
            Literal::Struct(literal) => {
                let upcast_id = id.upcast();

                // Retrieve and set the literal's definition
                let definition = self.find_symbol_of_type(
                    &ctx.module.source, ctx.module.root_id, &ctx.symbols, &ctx.types,
                    &literal.identifier, TypeClass::Struct
                )?;
                literal.definition = Some(definition.ast_definition);

                let definition = definition.definition.as_struct();

                // Make sure all fields are specified, none are specified twice
                // and all fields exist on the struct definition
                let mut specified = Vec::new(); // TODO: @performance
                specified.resize(definition.fields.len(), false);

                for field in &mut literal.fields {
                    // Find field in the struct definition
                    field.field_idx = FIELD_NOT_FOUND_SENTINEL;
                    for (def_field_idx, def_field) in definition.fields.iter().enumerate() {
                        if field.identifier == def_field.identifier {
                            field.field_idx = def_field_idx;
                            break;
                        }
                    }

                    // Check if not found
                    if field.field_idx == FIELD_NOT_FOUND_SENTINEL {
                        return Err(ParseError2::new_error(
                            &ctx.module.source, field.identifier.position,
                            &format!(
                                "This field does not exist on the struct '{}'",
                                &String::from_utf8_lossy(&literal.identifier.value),
                            )
                        ));
                    }

                    // Check if specified more than once
                    if specified[field.field_idx] {
                        return Err(ParseError2::new_error(
                            &ctx.module.source, field.identifier.position,
                            "This field is specified more than once"
                        ));
                    }

                    specified[field.field_idx] = true;
                }

                if !specified.iter().all(|v| *v) {
                    // Some fields were not specified
                    let mut not_specified = String::new();
                    for (def_field_idx, is_specified) in specified.iter().enumerate() {
                        if !is_specified {
                            if !not_specified.is_empty() { not_specified.push_str(", ") }
                            let field_ident = &definition.fields[def_field_idx].identifier;
                            not_specified.push_str(&String::from_utf8_lossy(&field_ident.value));
                        }
                    }

                    return Err(ParseError2::new_error(
                        &ctx.module.source, literal.identifier.position,
                        &format!("Not all fields are specified, [{}] are missing", not_specified)
                    ));
                }

                // Need to traverse fields expressions in struct and evaluate
                // the poly args
                let old_num_exprs = self.expression_buffer.len();
                self.expression_buffer.extend(literal.fields.iter().map(|v| v.value));
                let new_num_exprs = self.expression_buffer.len();

                self.visit_literal_poly_args(ctx, id)?;

                for expr_idx in old_num_exprs..new_num_exprs {
                    let expr_id = self.expression_buffer[expr_idx];
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
                    self.visit_expr(ctx, expr_id)?;
                }

                self.expression_buffer.truncate(old_num_exprs);
            }
        }

        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let call_expr = &mut ctx.heap[id];
        let num_expr_args = call_expr.arguments.len();

        // Resolve the method to the appropriate definition and check the
        // legality of the particular method call.
        // TODO: @cleanup Unify in some kind of signature call, see similar
        //  cleanup comments with this `match` format.
        let num_definition_args;
        match &mut call_expr.method {
            Method::Create => {
                num_definition_args = 1;
            },
            Method::Fires => {
                if !self.def_type.is_primitive() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'fires' may only occur in primitive component definitions"
                    ));
                }
                if self.in_sync.is_none() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'fires' may only occur inside synchronous blocks"
                    ));
                }
                num_definition_args = 1;
            },
            Method::Get => {
                if !self.def_type.is_primitive() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'get' may only occur in primitive component definitions"
                    ));
                }
                if self.in_sync.is_none() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'get' may only occur inside synchronous blocks"
                    ));
                }
                num_definition_args = 1;
            },
            Method::Put => {
                if !self.def_type.is_primitive() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'put' may only occur in primitive component definitions"
                    ));
                }
                if self.in_sync.is_none() {
                    return Err(ParseError2::new_error(
                        &ctx.module.source, call_expr.position,
                        "A call to 'put' may only occur inside synchronous blocks"
                    ));
                }
                num_definition_args = 2;
            }
            Method::Symbolic(symbolic) => {
                // Find symbolic procedure
                let expected_type = if let ExpressionParent::New(_) = self.expr_parent {
                    // Expect to find a component
                    TypeClass::Component
                } else {
                    // Expect to find a function
                    TypeClass::Function
                };

                let definition = self.find_symbol_of_type(
                    &ctx.module.source, ctx.module.root_id, &ctx.symbols, &ctx.types,
                    &symbolic.identifier, expected_type
                )?;

                symbolic.definition = Some(definition.ast_definition);
                match &definition.definition {
                    DefinedTypeVariant::Function(definition) => {
                        num_definition_args = definition.arguments.len();
                    },
                    DefinedTypeVariant::Component(definition) => {
                        num_definition_args = definition.arguments.len();
                    }
                    _ => unreachable!(),
                }
            }
        }

        // Check the poly args and the number of variables in the call
        // expression
        self.visit_call_poly_args(ctx, id)?;
        let call_expr = &mut ctx.heap[id];
        if num_expr_args != num_definition_args {
            return Err(ParseError2::new_error(
                &ctx.module.source, call_expr.position,
                &format!(
                    "This call expects {} arguments, but {} were provided",
                    num_definition_args, num_expr_args
                )
            ));
        }

        // Recurse into all of the arguments and set the expression's parent
        let upcast_id = id.upcast();

        let old_num_exprs = self.expression_buffer.len();
        self.expression_buffer.extend(&call_expr.arguments);
        let new_num_exprs = self.expression_buffer.len();

        let old_expr_parent = self.expr_parent;
        call_expr.parent = old_expr_parent;

        for arg_expr_idx in old_num_exprs..new_num_exprs {
            let arg_expr_id = self.expression_buffer[arg_expr_idx];
            self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32);
            self.visit_expr(ctx, arg_expr_id)?;
        }

        self.expression_buffer.truncate(old_num_exprs);
        self.expr_parent = old_expr_parent;

        Ok(())
    }

    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
        debug_assert!(!self.performing_breadth_pass);

        let var_expr = &ctx.heap[id];
        let variable_id = self.find_variable(ctx, self.relative_pos_in_block, &var_expr.identifier)?;
        let var_expr = &mut ctx.heap[id];
        var_expr.declaration = Some(variable_id);
        var_expr.parent = self.expr_parent;

        Ok(())
    }

    //--------------------------------------------------------------------------
    // ParserType visitors
    //--------------------------------------------------------------------------

    fn visit_parser_type(&mut self, ctx: &mut Ctx, id: ParserTypeId) -> VisitorResult {
        let old_num_types = self.parser_type_buffer.len();
        match self.visit_parser_type_without_buffer_cleanup(ctx, id) {
            Ok(_) => {
                debug_assert_eq!(self.parser_type_buffer.len(), old_num_types);
                Ok(())
            },
            Err(err) => {
                self.parser_type_buffer.truncate(old_num_types);
                Err(err)
            }
        }
    }
}

impl ValidityAndLinkerVisitor {
    //--------------------------------------------------------------------------
    // Special traversal
    //--------------------------------------------------------------------------

    /// Will visit a statement with a hint about its wrapping statement. This is
    /// used to distinguish block statements with a wrapping synchronous
    /// statement from normal block statements.
    fn visit_stmt_with_hint(&mut self, ctx: &mut Ctx, id: StatementId, hint: Option<SynchronousStatementId>) -> VisitorResult {
        if let Statement::Block(block_stmt) = &ctx.heap[id] {
            let block_id = block_stmt.this;
            self.visit_block_stmt_with_hint(ctx, block_id, hint)
        } else {
            self.visit_stmt(ctx, id)
        }
    }

    fn visit_block_stmt_with_hint(&mut self, ctx: &mut Ctx, id: BlockStatementId, hint: Option<SynchronousStatementId>) -> VisitorResult {
        if self.performing_breadth_pass {
            // Performing a breadth pass, so don't traverse into the statements
            // of the block.
            return Ok(())
        }

        // Set parent scope and relative position in the parent scope. Remember
        // these values to set them back to the old values when we're done with
        // the traversal of the block's statements.
        let body = &mut ctx.heap[id];
        body.parent_scope = self.cur_scope.clone();
        body.relative_pos_in_parent = self.relative_pos_in_block;

        let old_scope = self.cur_scope.replace(match hint {
            Some(sync_id) => Scope::Synchronous((sync_id, id)),
            None => Scope::Regular(id),
        });
        let old_relative_pos = self.relative_pos_in_block;

        // Copy statement IDs into buffer
        let old_num_stmts = self.statement_buffer.len();
        {
            let body = &ctx.heap[id];
            self.statement_buffer.extend_from_slice(&body.statements);
        }
        let new_num_stmts = self.statement_buffer.len();

        // Perform the breadth-first pass. Its main purpose is to find labeled
        // statements such that we can find the `goto`-targets immediately when
        // performing the depth pass
        self.performing_breadth_pass = true;
        for stmt_idx in old_num_stmts..new_num_stmts {
            self.relative_pos_in_block = (stmt_idx - old_num_stmts) as u32;
            self.visit_stmt(ctx, self.statement_buffer[stmt_idx])?;
        }

        if !self.insert_buffer.is_empty() {
            let body = &mut ctx.heap[id];
            for (insert_idx, (pos, stmt)) in self.insert_buffer.drain(..).enumerate() {
                body.statements.insert(pos as usize + insert_idx, stmt);
            }
        }

        // And the depth pass. Because we're not actually visiting any inserted
        // nodes because we're using the statement buffer, we may safely use the
        // relative_pos_in_block counter.
        self.performing_breadth_pass = false;
        for stmt_idx in old_num_stmts..new_num_stmts {
            self.relative_pos_in_block = (stmt_idx - old_num_stmts) as u32;
            self.visit_stmt(ctx, self.statement_buffer[stmt_idx])?;
        }

        self.cur_scope = old_scope;
        self.relative_pos_in_block = old_relative_pos;

        // Pop statement buffer
        debug_assert!(self.insert_buffer.is_empty(), "insert buffer not empty after depth pass");
        self.statement_buffer.truncate(old_num_stmts);

        Ok(())
    }

    /// Visits a particular ParserType in the AST and resolves temporary and
    /// implicitly inferred types into the appropriate tree. Note that a
    /// ParserType node is a tree. Only call this function on the root node of
    /// that tree to prevent doing work more than once.
    fn visit_parser_type_without_buffer_cleanup(&mut self, ctx: &mut Ctx, id: ParserTypeId) -> VisitorResult {
        use ParserTypeVariant as PTV;
        debug_assert!(!self.performing_breadth_pass);

        let init_num_types = self.parser_type_buffer.len();
        self.parser_type_buffer.push(id);

        'resolve_loop: while self.parser_type_buffer.len() > init_num_types {
            let parser_type_id = self.parser_type_buffer.pop().unwrap();
            let parser_type = &ctx.heap[parser_type_id];

            let (symbolic_pos, symbolic_variant, num_inferred_to_allocate) = match &parser_type.variant {
                PTV::Message | PTV::Bool |
                PTV::Byte | PTV::Short | PTV::Int | PTV::Long |
                PTV::String |
                PTV::IntegerLiteral | PTV::Inferred => {
                    // Builtin types or types that do not require recursion
                    continue 'resolve_loop;
                },
                PTV::Array(subtype_id) |
                PTV::Input(subtype_id) |
                PTV::Output(subtype_id) => {
                    // Requires recursing
                    self.parser_type_buffer.push(*subtype_id);
                    continue 'resolve_loop;
                },
                PTV::Symbolic(symbolic) => {
                    // Retrieve poly_vars from function/component definition to
                    // match against.
                    let (definition_id, poly_vars) = match self.def_type {
                        DefinitionType::None => unreachable!(),
                        DefinitionType::Primitive(id) => (id.upcast(), &ctx.heap[id].poly_vars),
                        DefinitionType::Composite(id) => (id.upcast(), &ctx.heap[id].poly_vars),
                        DefinitionType::Function(id) => (id.upcast(), &ctx.heap[id].poly_vars),
                    };

                    let mut symbolic_variant = None;
                    for (poly_var_idx, poly_var) in poly_vars.iter().enumerate() {
                        if symbolic.identifier == *poly_var {
                            // Type refers to a polymorphic variable.
                            // TODO: @hkt Maybe allow higher-kinded types?
                            if !symbolic.poly_args.is_empty() {
                                return Err(ParseError2::new_error(
                                    &ctx.module.source, symbolic.identifier.position,
                                    "Polymorphic arguments to a polymorphic variable (higher-kinded types) are not allowed (yet)"
                                ));
                            }
                            symbolic_variant = Some(SymbolicParserTypeVariant::PolyArg(definition_id, poly_var_idx));
                        }
                    }

                    if let Some(symbolic_variant) = symbolic_variant {
                        // Identifier points to a symbolic type
                        (symbolic.identifier.position, symbolic_variant, 0)
                    } else {
                        // Must be a user-defined type, otherwise an error
                        let found_type = find_type_definition(
                            &ctx.symbols, &ctx.types, ctx.module.root_id, &symbolic.identifier
                        ).as_parse_error(&ctx.module.source)?;

                        // TODO: @function_ptrs: Allow function pointers at some
                        //  point in the future
                        if found_type.definition.type_class().is_proc_type() {
                            return Err(ParseError2::new_error(
                                &ctx.module.source, symbolic.identifier.position,
                                &format!(
                                    "This identifier points to a {} type, expected a datatype",
                                    found_type.definition.type_class()
                                )
                            ));
                        }

                        // If the type is polymorphic then we have two cases: if
                        // the programmer did not specify the polyargs then we
                        // assume we're going to infer all of them. Otherwise we
                        // make sure that they match in count.
                        if !found_type.poly_args.is_empty() && symbolic.poly_args.is_empty() {
                            // All inferred
                            (
                                symbolic.identifier.position,
                                SymbolicParserTypeVariant::Definition(found_type.ast_definition),
                                found_type.poly_args.len()
                            )
                        } else if symbolic.poly_args.len() != found_type.poly_args.len() {
                            return Err(ParseError2::new_error(
                                &ctx.module.source, symbolic.identifier.position,
                                &format!(
                                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
                                    found_type.poly_args.len(), symbolic.poly_args.len()
                                )
                            ))
                        } else {
                            // If here then the type is not polymorphic, or all
                            // types are properly specified by the user.
                            for specified_poly_arg in &symbolic.poly_args {
                                self.parser_type_buffer.push(*specified_poly_arg);
                            }

                            (
                                symbolic.identifier.position,
                                SymbolicParserTypeVariant::Definition(found_type.ast_definition),
                                0
                            )
                        }
                    }
                }
            };

            // If here then type is symbolic, perform a mutable borrow to set
            // the target of the symbolic type.
            for _ in 0..num_inferred_to_allocate {
                // TODO: @hack, not very user friendly to manually allocate
                //  `inferred` ParserTypes with the InputPosition of the
                //  symbolic type's identifier.
                // We reuse the `parser_type_buffer` to temporarily store these
                // and we'll take them out later
                self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
                    this,
                    pos: symbolic_pos,
                    variant: ParserTypeVariant::Inferred,
                }));
            }

            if let PTV::Symbolic(symbolic) = &mut ctx.heap[parser_type_id].variant {
                for _ in 0..num_inferred_to_allocate {
                    symbolic.poly_args.push(self.parser_type_buffer.pop().unwrap());
                }
                symbolic.variant = Some(symbolic_variant);
            } else {
                unreachable!();
            }
        }

        Ok(())
    }

    //--------------------------------------------------------------------------
    // Utilities
    //--------------------------------------------------------------------------

    /// Adds a local variable to the current scope. It will also annotate the
    /// `Local` in the AST with its relative position in the block.
    fn checked_local_add(&mut self, ctx: &mut Ctx, relative_pos: u32, id: LocalId) -> Result<(), ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        // Make sure we do not conflict with any global symbols
        {
            let ident = &ctx.heap[id].identifier;
            if let Some(symbol) = ctx.symbols.resolve_symbol(ctx.module.root_id, &ident.value) {
                return Err(
                    ParseError2::new_error(&ctx.module.source, ident.position, "Local variable declaration conflicts with symbol")
                        .with_postfixed_info(&ctx.module.source, symbol.position, "Conflicting symbol is found here")
                );
            }
        }

        let local = &mut ctx.heap[id];
        local.relative_pos_in_block = relative_pos;

        // Make sure we do not shadow any variables in any of the scopes. Note
        // that variables in parent scopes may be declared later
        let local = &ctx.heap[id];
        let mut scope = self.cur_scope.as_ref().unwrap();
        let mut local_relative_pos = self.relative_pos_in_block;

        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let block = &ctx.heap[scope.to_block()];
            for other_local_id in &block.locals {
                let other_local = &ctx.heap[*other_local_id];
                // Position check in case another variable with the same name
                // is defined in a higher-level scope, but later than the scope
                // in which the current variable resides.
                if local.this != *other_local_id &&
                    local_relative_pos >= other_local.relative_pos_in_block &&
                    local.identifier == other_local.identifier {
                    // Collision within this scope
                    return Err(
                        ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with another variable")
                            .with_postfixed_info(&ctx.module.source, other_local.position, "Previous variable is found here")
                    );
                }
            }

            // Current scope is fine, move to parent scope if any
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
            scope = block.parent_scope.as_ref().unwrap();
            if let Scope::Definition(definition_id) = scope {
                // At outer scope, check parameters of function/component
                for parameter_id in ctx.heap[*definition_id].parameters() {
                    let parameter = &ctx.heap[*parameter_id];
                    if local.identifier == parameter.identifier {
                        return Err(
                            ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with parameter")
                                .with_postfixed_info(&ctx.module.source, parameter.position, "Parameter definition is found here")
                        );
                    }
                }

                break;
            }

            // If here, then we are dealing with a block-like parent block
            local_relative_pos = ctx.heap[scope.to_block()].relative_pos_in_parent;
        }

        // No collisions at all
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
        block.locals.push(id);

        Ok(())
    }

    /// Finds a variable in the visitor's scope that must appear before the
    /// specified relative position within that block.
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier) -> Result<VariableId, ParseError2> {
        debug_assert!(self.cur_scope.is_some());
        debug_assert!(identifier.num_namespaces > 0);

        // TODO: Update once globals are possible as well
        if identifier.num_namespaces > 1 {
            todo!("Implement namespaced constant seeking")
        }

        // TODO: May still refer to an alias of a global symbol using a single
        //  identifier in the namespace.
        // No need to use iterator over namespaces if here
        let mut scope = self.cur_scope.as_ref().unwrap();
        
        loop {
            debug_assert!(scope.is_block());
            let block = &ctx.heap[scope.to_block()];
            
            for local_id in &block.locals {
                let local = &ctx.heap[*local_id];
                
                if local.relative_pos_in_block < relative_pos && local.identifier == *identifier {
                    return Ok(local_id.upcast());
                }
            }

            debug_assert!(block.parent_scope.is_some());
            scope = block.parent_scope.as_ref().unwrap();
            if !scope.is_block() {
                // Definition scope, need to check arguments to definition
                match scope {
                    Scope::Definition(definition_id) => {
                        let definition = &ctx.heap[*definition_id];
                        for parameter_id in definition.parameters() {
                            let parameter = &ctx.heap[*parameter_id];
                            if parameter.identifier == *identifier {
                                return Ok(parameter_id.upcast());
                            }
                        }
                    },
                    _ => unreachable!(),
                }

                // Variable could not be found
                return Err(ParseError2::new_error(
                    &ctx.module.source, identifier.position, "This variable is not declared"
                ));
            } else {
                relative_pos = block.relative_pos_in_parent;
            }
        }
    }

    /// Adds a particular label to the current scope. Will return an error if
    /// there is another label with the same name visible in the current scope.
    fn checked_label_add(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> Result<(), ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        // Make sure label is not defined within the current scope or any of the
        // parent scope.
        let label = &ctx.heap[id];
        let mut scope = self.cur_scope.as_ref().unwrap();

        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let block = &ctx.heap[scope.to_block()];
            for other_label_id in &block.labels {
                let other_label = &ctx.heap[*other_label_id];
                if other_label.label == label.label {
                    // Collision
                    return Err(
                        ParseError2::new_error(&ctx.module.source, label.position, "Label name conflicts with another label")
                            .with_postfixed_info(&ctx.module.source, other_label.position, "Other label is found here")
                    );
                }
            }

            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
            scope = block.parent_scope.as_ref().unwrap();
            if !scope.is_block() {
                break;
            }
        }

        // No collisions
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
        block.labels.push(id);

        Ok(())
    }

    /// Finds a particular labeled statement by its identifier. Once found it
    /// will make sure that the target label does not skip over any variable
    /// declarations within the scope in which the label was found.
    fn find_label(&self, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        let mut scope = self.cur_scope.as_ref().unwrap();
        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let relative_scope_pos = ctx.heap[scope.to_block()].relative_pos_in_parent;

            let block = &ctx.heap[scope.to_block()];
            for label_id in &block.labels {
                let label = &ctx.heap[*label_id];
                if label.label == *identifier {
                    for local_id in &block.locals {
                        // TODO: Better to do this in control flow analysis, it
                        //  is legal to skip over a variable declaration if it
                        //  is not actually being used. I might be missing
                        //  something here when laying out the bytecode...
                        let local = &ctx.heap[*local_id];
                        if local.relative_pos_in_block > relative_scope_pos && local.relative_pos_in_block < label.relative_pos_in_block {
                            return Err(
                                ParseError2::new_error(&ctx.module.source, identifier.position, "This target label skips over a variable declaration")
                                    .with_postfixed_info(&ctx.module.source, label.position, "Because it jumps to this label")
                                    .with_postfixed_info(&ctx.module.source, local.position, "Which skips over this variable")
                            );
                        }
                    }
                    return Ok(*label_id);
                }
            }

            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
            scope = block.parent_scope.as_ref().unwrap();
            if !scope.is_block() {
                return Err(ParseError2::new_error(&ctx.module.source, identifier.position, "Could not find this label"));
            }

        }
    }

    /// Finds a particular symbol in the symbol table which must correspond to
    /// a definition of a particular type.
    // Note: root_id, symbols and types passed in explicitly to prevent
    //  borrowing errors
    fn find_symbol_of_type<'a>(
        &self, source: &InputSource, root_id: RootId, symbols: &SymbolTable, types: &'a TypeTable,
        identifier: &NamespacedIdentifier, expected_type_class: TypeClass
    ) -> Result<&'a DefinedType, ParseError2> {
        // Find symbol associated with identifier
        let find_result = find_type_definition(symbols, types, root_id, identifier)
            .as_parse_error(source)?;

        let definition_type_class = find_result.definition.type_class();
        if expected_type_class != definition_type_class {
            return Err(ParseError2::new_error(
                source, identifier.position,
                &format!(
                    "Expected to find a {}, this symbol points to a {}",
                    expected_type_class, definition_type_class
                )
            ))
        }

        Ok(find_result)
    }

    /// This function will check if the provided while statement ID has a block
    /// statement that is one of our current parents.
    fn has_parent_while_scope(&self, ctx: &Ctx, id: WhileStatementId) -> bool {
        debug_assert!(self.cur_scope.is_some());
        let mut scope = self.cur_scope.as_ref().unwrap();
        let while_stmt = &ctx.heap[id];
        loop {
            debug_assert!(scope.is_block());
            let block = scope.to_block();
            if while_stmt.body == block.upcast() {
                return true;
            }

            let block = &ctx.heap[block];
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
            scope = block.parent_scope.as_ref().unwrap();
            if !scope.is_block() {
                return false;
            }
        }
    }

    /// This function should be called while dealing with break/continue
    /// statements. It will try to find the targeted while statement, using the
    /// target label if provided. If a valid target is found then the loop's
    /// ID will be returned, otherwise a parsing error is constructed.
    /// The provided input position should be the position of the break/continue
    /// statement.
    fn resolve_break_or_continue_target(&self, ctx: &Ctx, position: InputPosition, label: &Option<Identifier>) -> Result<WhileStatementId, ParseError2> {
        let target = match label {
            Some(label) => {
                let target_id = self.find_label(ctx, label)?;

                // Make sure break target is a while statement
                let target = &ctx.heap[target_id];
                if let Statement::While(target_stmt) = &ctx.heap[target.body] {
                    // Even though we have a target while statement, the break might not be
                    // present underneath this particular labeled while statement
                    if !self.has_parent_while_scope(ctx, target_stmt.this) {
                        ParseError2::new_error(&ctx.module.source, label.position, "Break statement is not nested under the target label's while statement")
                            .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here");
                    }

                    target_stmt.this
                } else {
                    return Err(
                        ParseError2::new_error(&ctx.module.source, label.position, "Incorrect break target label, it must target a while loop")
                            .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here")
                    );
                }
            },
            None => {
                // Use the enclosing while statement, the break must be
                // nested within that while statement
                if self.in_while.is_none() {
                    return Err(
                        ParseError2::new_error(&ctx.module.source, position, "Break statement is not nested under a while loop")
                    );
                }

                self.in_while.unwrap()
            }
        };

        // We have a valid target for the break statement. But we need to
        // make sure we will not break out of a synchronous block
        {
            let target_while = &ctx.heap[target];
            if target_while.in_sync != self.in_sync {
                // Break is nested under while statement, so can only escape a
                // sync block if the sync is nested inside the while statement.
                debug_assert!(self.in_sync.is_some());
                let sync_stmt = &ctx.heap[self.in_sync.unwrap()];
                return Err(
                    ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block")
                        .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop")
                        .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block")
                );
            }
        }

        Ok(target)
    }

    // TODO: @cleanup, merge with function below
    fn visit_call_poly_args(&mut self, ctx: &mut Ctx, call_id: CallExpressionId) -> VisitorResult {
        let call_expr = &ctx.heap[call_id];

        // Determine the polyarg signature
        let num_expected_poly_args = match &call_expr.method {
            Method::Create => {
                0
            },
            Method::Fires => {
                1
            },
            Method::Get => {
                1
            },
            Method::Put => {
                1
            }
            Method::Symbolic(symbolic) => {
                let definition = &ctx.heap[symbolic.definition.unwrap()];
                match definition {
                    Definition::Function(definition) => definition.poly_vars.len(),
                    Definition::Component(definition) => definition.poly_vars.len(),
                    _ => {
                        debug_assert!(false, "expected function or component definition while visiting call poly args");
                        unreachable!();
                    }
                }
            }
        };

        // We allow zero polyargs to imply all args are inferred. Otherwise the
        // number of arguments must be equal
        if call_expr.poly_args.is_empty() {
            if num_expected_poly_args != 0 {
                // Infer all polyargs
                // TODO: @cleanup Not nice to use method position as implicitly
                //  inferred parser type pos.
                let pos = call_expr.position();
                for _ in 0..num_expected_poly_args {
                    self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType {
                        this,
                        pos,
                        variant: ParserTypeVariant::Inferred,
                    }));
                }

                let call_expr = &mut ctx.heap[call_id];
                call_expr.poly_args.reserve(num_expected_poly_args);
                for _ in 0..num_expected_poly_args {
                    call_expr.poly_args.push(self.parser_type_buffer.pop().unwrap());
                }
            }
            Ok(())
        } else if call_expr.poly_args.len() == num_expected_poly_args {
            // Number of args is not 0, so parse all the specified ParserTypes
            let old_num_types = self.parser_type_buffer.len();
            self.parser_type_buffer.extend(&call_expr.poly_args);
            while self.parser_type_buffer.len() > old_num_types {
                let parser_type_id = self.parser_type_buffer.pop().unwrap();
                self.visit_parser_type(ctx, parser_type_id)?;
            }
            self.parser_type_buffer.truncate(old_num_types);
            Ok(())
        } else {
            return Err(ParseError2::new_error(
                &ctx.module.source, call_expr.position,
                &format!(
                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
                    num_expected_poly_args, call_expr.poly_args.len()
                )
            ));
        }
    }

    fn visit_literal_poly_args(&mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId) -> VisitorResult {
        let literal_expr = &ctx.heap[lit_id];
        let literal_pos = literal_expr.position;
        let (num_specified, num_expected) = match &literal_expr.value {
            Literal::Null | Literal::False | Literal::True |
            Literal::Character(_) | Literal::Integer(_) => {
                // Not really an error, but a programmer error as we're likely
                // doing work twice
                debug_assert!(false, "called visit_literal_poly_args on a non-polymorphic literal");
                unreachable!();
            },
            Literal::Struct(literal) => {
                let definition = &ctx.heap[literal.definition.unwrap()];
                let num_expected = match definition {
                    Definition::Struct(definition) => definition.poly_vars.len(),
                    _ => {
                        debug_assert!(false, "expected struct literal while visiting literal poly args");
                        unreachable!();
                    }
                };
                let num_specified = literal.poly_args.len();

                // Visit all embedded parser types (they might not be of the
                // correct length, but we check this below)
                let old_num_types = self.parser_type_buffer.len();
                self.parser_type_buffer.extend(&literal.poly_args);
                while self.parser_type_buffer.len() > old_num_types {
                    let parser_type_id = self.parser_type_buffer.pop().unwrap();
                    self.visit_parser_type(ctx, parser_type_id)?;
                }
                self.parser_type_buffer.truncate(old_num_types);

                (num_specified, num_expected)
            }
        };

        if num_specified == 0 {
            // None are specified
            if num_expected != 0 {
                // So assumed to all be inferred
                for _ in 0..num_expected {
                    self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
                        this, pos: literal_pos, variant: ParserTypeVariant::Inferred
                    }));
                }

                let literal = match &mut ctx.heap[lit_id].value {
                    Literal::Struct(literal) => literal,
                    _ => unreachable!(),
                };
                literal.poly_args.reserve(num_expected);
                for _ in 0..num_expected {
                    literal.poly_args.push(self.parser_type_buffer.pop().unwrap());
                }
            }
        } else if num_specified != num_expected {
            // Incorrect specification of poly args
            return Err(ParseError2::new_error(
                &ctx.module.source, literal_pos,
                &format!(
                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
                    num_expected, num_specified
                )
            ))
        }

        Ok(())
    }
}