Files
@ b972060a1f92
Branch filter:
Location: CSY/reowolf/src/runtime/setup.rs
b972060a1f92
49.4 KiB
application/rls-services+xml
more optimization-stage benchmarking examples
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 | use crate::common::*;
use crate::runtime::*;
impl TokenTarget {
// subdivides the domain of usize into
// [NET_ENDPOINT][UDP_ENDPOINT ]
// ^0 ^usize::MAX/2 ^usize::MAX
const HALFWAY_INDEX: usize = usize::MAX / 2;
const MAX_INDEX: usize = usize::MAX;
}
impl From<Token> for TokenTarget {
fn from(Token(index): Token) -> Self {
if let Some(shifted) = index.checked_sub(Self::HALFWAY_INDEX) {
TokenTarget::UdpEndpoint { index: shifted }
} else {
TokenTarget::NetEndpoint { index }
}
}
}
impl Into<Token> for TokenTarget {
fn into(self) -> Token {
match self {
TokenTarget::UdpEndpoint { index } => Token(index + Self::HALFWAY_INDEX),
TokenTarget::NetEndpoint { index } => Token(index),
}
}
}
impl Connector {
/// Create a new connector structure with the given protocol description (via Arc to facilitate sharing).
/// The resulting connector will start in the setup phase, and cannot be used for communication until the
/// `connect` procedure completes.
/// # Safety
/// The correctness of the system's underlying distributed algorithms requires that no two
/// connectors have the same ID. If the user does not know the identifiers of other connectors in the
/// system, it is advised to guess it using Connector::random_id (relying on the exceptionally low probability of an error).
/// Sessions with duplicate connector identifiers will not result in any memory unsafety, but cannot be guaranteed
/// to preserve their configured protocols.
/// Fortunately, in most realistic cases, the presence of duplicate connector identifiers will result in an
/// error during `connect`, observed as a peer misbehaving.
pub fn new(
mut logger: Box<dyn Logger>,
proto_description: Arc<ProtocolDescription>,
connector_id: ConnectorId,
) -> Self {
log!(&mut *logger, "Created with connector_id {:?}", connector_id);
let mut id_manager = IdManager::new(connector_id);
let native_component_id = id_manager.new_component_id();
Self {
unphased: ConnectorUnphased {
proto_description,
proto_components: Default::default(),
logger,
native_component_id,
ips: IdAndPortState { id_manager, port_info: Default::default() },
},
phased: ConnectorPhased::Setup(Box::new(ConnectorSetup {
net_endpoint_setups: Default::default(),
udp_endpoint_setups: Default::default(),
})),
}
}
/// Conceptually, this returning [p0, g1] is sugar for:
/// 1. create port pair [p0, g0]
/// 2. create port pair [p1, g1]
/// 3. create udp component with interface of moved ports [p1, g0]
/// 4. return [p0, g1]
pub fn new_udp_mediator_component(
&mut self,
local_addr: SocketAddr,
peer_addr: SocketAddr,
) -> Result<[PortId; 2], WrongStateError> {
let Self { unphased: cu, phased } = self;
match phased {
ConnectorPhased::Communication(..) => Err(WrongStateError),
ConnectorPhased::Setup(setup) => {
let udp_index = setup.udp_endpoint_setups.len();
let udp_cid = cu.ips.id_manager.new_component_id();
// allocates 4 new port identifiers, two for each logical channel,
// one channel per direction (into and out of the component)
let mut npid = || cu.ips.id_manager.new_port_id();
let [nin, nout, uin, uout] = [npid(), npid(), npid(), npid()];
// allocate the native->udp_mediator channel's ports
cu.ips.port_info.map.insert(
nout,
PortInfo {
route: Route::LocalComponent,
polarity: Putter,
peer: Some(uin),
owner: cu.native_component_id,
},
);
cu.ips.port_info.map.insert(
uin,
PortInfo {
route: Route::UdpEndpoint { index: udp_index },
polarity: Getter,
peer: Some(uin),
owner: udp_cid,
},
);
// allocate the udp_mediator->native channel's ports
cu.ips.port_info.map.insert(
uout,
PortInfo {
route: Route::UdpEndpoint { index: udp_index },
polarity: Putter,
peer: Some(uin),
owner: udp_cid,
},
);
cu.ips.port_info.map.insert(
nin,
PortInfo {
route: Route::LocalComponent,
polarity: Getter,
peer: Some(uout),
owner: cu.native_component_id,
},
);
// allocate the two ports owned by the UdpMediator component
// Remember to setup this UdpEndpoint setup during `connect` later.
setup.udp_endpoint_setups.push(UdpEndpointSetup {
local_addr,
peer_addr,
getter_for_incoming: nin,
});
// update owned sets
cu.ips
.port_info
.owned
.entry(cu.native_component_id)
.or_default()
.extend([nin, nout].iter().copied());
cu.ips.port_info.owned.insert(udp_cid, maplit::hashset! {uin, uout});
// Return the native's output, input port pair
Ok([nout, nin])
}
}
}
/// Adds a "dangling" port to the connector in the setup phase,
/// to be formed into channel during the connect procedure with the given
/// transport layer information.
pub fn new_net_port(
&mut self,
polarity: Polarity,
sock_addr: SocketAddr,
endpoint_polarity: EndpointPolarity,
) -> Result<PortId, WrongStateError> {
let Self { unphased: cu, phased } = self;
match phased {
ConnectorPhased::Communication(..) => Err(WrongStateError),
ConnectorPhased::Setup(setup) => {
// allocate a single dangling port with a `None` peer (for now)
let new_pid = cu.ips.id_manager.new_port_id();
cu.ips.port_info.map.insert(
new_pid,
PortInfo {
route: Route::LocalComponent,
peer: None,
owner: cu.native_component_id,
polarity,
},
);
log!(
cu.logger,
"Added net port {:?} with polarity {:?} addr {:?} endpoint_polarity {:?}",
new_pid,
polarity,
&sock_addr,
endpoint_polarity
);
// Remember to setup this NetEndpoint setup during `connect` later.
setup.net_endpoint_setups.push(NetEndpointSetup {
sock_addr,
endpoint_polarity,
getter_for_incoming: new_pid,
});
// update owned set
cu.ips.port_info.owned.entry(cu.native_component_id).or_default().insert(new_pid);
Ok(new_pid)
}
}
}
/// Finalizes the connector's setup procedure and forms a distributed system with
/// all other connectors reachable through network channels. This procedure represents
/// a synchronization barrier, and upon successful return, the connector can no longer add new network ports,
/// but is ready to begin the first communication round.
/// Initially, the connector has a singleton set of _batches_, the only element of which is empty.
/// This single element starts off selected. The selected batch is modified with `put` and `get`,
/// and new batches are added and selected with `next_batch`. See `sync` for an explanation of the
/// purpose of these batches.
pub fn connect(&mut self, timeout: Option<Duration>) -> Result<(), ConnectError> {
use ConnectError as Ce;
let Self { unphased: cu, phased } = self;
match &phased {
ConnectorPhased::Communication { .. } => {
log!(cu.logger, "Call to connecting in connected state");
Err(Ce::AlreadyConnected)
}
ConnectorPhased::Setup(setup) => {
// Idea: Clone `self.unphased`, and then pass the replica to
// `connect_inner` to do the work, attempting to create a new connector structure
// in connected state without encountering any errors.
// If anything goes wrong during `connect_inner`, we simply keep the original `cu`.
// Ideally, we'd simply clone `cu` in its entirety.
// However, it isn't clonable, because of the pesky logger.
// Solution: the original and clone ConnectorUnphased structures
// 'share' the original logger by using `mem::swap` strategically to pass a dummy back and forth,
// such that the real logger is wherever we need it to be without violating any invariants.
let mut cu_clone = ConnectorUnphased {
logger: Box::new(DummyLogger),
proto_components: cu.proto_components.clone(),
native_component_id: cu.native_component_id.clone(),
ips: cu.ips.clone(),
proto_description: cu.proto_description.clone(),
};
// cu has REAL logger...
std::mem::swap(&mut cu.logger, &mut cu_clone.logger);
// ... cu_clone has REAL logger.
match Self::connect_inner(cu_clone, setup, timeout) {
Ok(connected_connector) => {
*self = connected_connector;
Ok(())
}
Err((err, mut logger)) => {
// Put the original logger back in place (in self.unphased, AKA `cu`).
// cu_clone has REAL logger...
std::mem::swap(&mut cu.logger, &mut logger);
// ... cu has REAL logger.
Err(err)
}
}
}
}
}
// Given an immutable setup structure, and my own (cloned) ConnetorUnphased,
// attempt to complete the setup procedure and return a new connector in Connected state.
// If anything goes wrong, throw everything in the bin, except for the Logger, which is
// the only structure that sees lasting effects of the failed attempt.
fn connect_inner(
mut cu: ConnectorUnphased,
setup: &ConnectorSetup,
timeout: Option<Duration>,
) -> Result<Self, (ConnectError, Box<dyn Logger>)> {
log!(cu.logger, "~~~ CONNECT called timeout {:?}", timeout);
let deadline = timeout.map(|to| Instant::now() + to);
// `try_complete` is a helper function, which DOES NOT own `cu`, and returns ConnectError on err.
// This outer function takes its output and wraps it alongside `cu` (which it owns)
// as appropriate for Err(...) and OK(...) cases.
let mut try_complete = || {
// connect all endpoints in parallel; send and receive peer ids through ports
let mut endpoint_manager = setup_endpoints_and_pair_ports(
&mut *cu.logger,
&setup.net_endpoint_setups,
&setup.udp_endpoint_setups,
&mut cu.ips.port_info,
&deadline,
)?;
log!(
cu.logger,
"Successfully connected {} endpoints. info now {:#?} {:#?}",
endpoint_manager.net_endpoint_store.endpoint_exts.len(),
&cu.ips.port_info,
&endpoint_manager,
);
// leader election and tree construction. Learn our role in the consensus tree,
// from learning who are our children/parents (neighbors) in the consensus tree.
let neighborhood = init_neighborhood(
cu.ips.id_manager.connector_id,
&mut *cu.logger,
&mut endpoint_manager,
&deadline,
)?;
log!(cu.logger, "Successfully created neighborhood {:?}", &neighborhood);
// Put it all together with an initial round index of zero.
let mut comm = ConnectorCommunication {
round_index: 0,
endpoint_manager,
neighborhood,
native_batches: vec![Default::default()],
round_result: Ok(None), // no previous round yet
};
if cfg!(feature = "session_optimization") {
// Perform the session optimization procedure, which may modify the
// internals of the connector, rerouting ports, moving around connectors etc.
session_optimize(&mut cu, &mut comm, &deadline)?;
}
log!(cu.logger, "connect() finished. setup phase complete");
Ok(comm)
};
match try_complete() {
Ok(comm) => {
Ok(Self { unphased: cu, phased: ConnectorPhased::Communication(Box::new(comm)) })
}
Err(err) => Err((err, cu.logger)),
}
}
}
// Given a set of net_ and udp_ endpoints to setup,
// port information to flesh out (by discovering peers through channels)
// and a deadline in which to do it,
// try to return:
// - An EndpointManager, containing all the set up endpoints
// - new information about ports acquired through the newly-created channels
fn setup_endpoints_and_pair_ports(
logger: &mut dyn Logger,
net_endpoint_setups: &[NetEndpointSetup],
udp_endpoint_setups: &[UdpEndpointSetup],
port_info: &mut PortInfoMap,
deadline: &Option<Instant>,
) -> Result<EndpointManager, ConnectError> {
use ConnectError as Ce;
const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
const RETRY_PERIOD: Duration = Duration::from_millis(200);
// The data for a net endpoint's setup in progress
struct NetTodo {
// becomes completed once sent_local_port && recv_peer_port.is_some()
// we send local port if we haven't already and we receive a writable event
// we recv peer port if we haven't already and we receive a readbale event
todo_endpoint: NetTodoEndpoint,
endpoint_setup: NetEndpointSetup,
sent_local_port: bool, // true <-> I've sent my local port
recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
}
// The data for a udp endpoint's setup in progress
struct UdpTodo {
// becomes completed once we receive our first writable event
getter_for_incoming: PortId,
sock: UdpSocket,
}
// Substructure of `NetTodo`, which represents the endpoint itself
enum NetTodoEndpoint {
Accepting(TcpListener), // awaiting it's peer initiating the connection
PeerInfoRecving(NetEndpoint), // awaiting info about peer port through the channel
}
////////////////////////////////////////////
// Start to construct our return values
let mut poll = Poll::new().map_err(|_| Ce::PollInitFailed)?;
let mut events =
Events::with_capacity((net_endpoint_setups.len() + udp_endpoint_setups.len()) * 2 + 4);
let [mut net_polled_undrained, udp_polled_undrained] = [VecSet::default(), VecSet::default()];
let mut delayed_messages = vec![];
let mut last_retry_at = Instant::now();
let mut io_byte_buffer = IoByteBuffer::default();
// Create net/udp todo structures, each already registered with poll
let mut net_todos = net_endpoint_setups
.iter()
.enumerate()
.map(|(index, endpoint_setup)| {
let token = TokenTarget::NetEndpoint { index }.into();
log!(logger, "Net endpoint {} beginning setup with {:?}", index, &endpoint_setup);
let todo_endpoint = if let EndpointPolarity::Active = endpoint_setup.endpoint_polarity {
let mut stream = TcpStream::connect(endpoint_setup.sock_addr)
.map_err(|_| Ce::TcpInvalidConnect(endpoint_setup.sock_addr))?;
poll.registry().register(&mut stream, token, BOTH).unwrap();
NetTodoEndpoint::PeerInfoRecving(NetEndpoint { stream, inbox: vec![] })
} else {
let mut listener = TcpListener::bind(endpoint_setup.sock_addr)
.map_err(|_| Ce::BindFailed(endpoint_setup.sock_addr))?;
poll.registry().register(&mut listener, token, BOTH).unwrap();
NetTodoEndpoint::Accepting(listener)
};
Ok(NetTodo {
todo_endpoint,
sent_local_port: false,
recv_peer_port: None,
endpoint_setup: endpoint_setup.clone(),
})
})
.collect::<Result<Vec<NetTodo>, ConnectError>>()?;
let udp_todos = udp_endpoint_setups
.iter()
.enumerate()
.map(|(index, endpoint_setup)| {
let mut sock = UdpSocket::bind(endpoint_setup.local_addr)
.map_err(|_| Ce::BindFailed(endpoint_setup.local_addr))?;
sock.connect(endpoint_setup.peer_addr)
.map_err(|_| Ce::UdpConnectFailed(endpoint_setup.peer_addr))?;
poll.registry()
.register(&mut sock, TokenTarget::UdpEndpoint { index }.into(), Interest::WRITABLE)
.unwrap();
Ok(UdpTodo { sock, getter_for_incoming: endpoint_setup.getter_for_incoming })
})
.collect::<Result<Vec<UdpTodo>, ConnectError>>()?;
// Initially no net connections have failed, and all udp and net endpoint setups are incomplete
let mut net_connect_to_retry: HashSet<usize> = Default::default();
let mut setup_incomplete: HashSet<TokenTarget> = {
let net_todo_targets_iter =
(0..net_todos.len()).map(|index| TokenTarget::NetEndpoint { index });
let udp_todo_targets_iter =
(0..udp_todos.len()).map(|index| TokenTarget::UdpEndpoint { index });
net_todo_targets_iter.chain(udp_todo_targets_iter).collect()
};
// progress by reacting to poll events. continue until every endpoint is set up
while !setup_incomplete.is_empty() {
// recompute the timeout for the poll call
let remaining = match (deadline, net_connect_to_retry.is_empty()) {
(None, true) => None,
(None, false) => Some(RETRY_PERIOD),
(Some(deadline), is_empty) => {
let dur_to_timeout =
deadline.checked_duration_since(Instant::now()).ok_or(Ce::Timeout)?;
Some(if is_empty { dur_to_timeout } else { dur_to_timeout.min(RETRY_PERIOD) })
}
};
// block until either
// (a) `events` has been populated with 1+ elements
// (b) timeout elapses, or
// (c) RETRY_PERIOD elapses
poll.poll(&mut events, remaining).map_err(|_| Ce::PollFailed)?;
if last_retry_at.elapsed() > RETRY_PERIOD {
// Retry all net connections and reset `last_retry_at`
last_retry_at = Instant::now();
for net_index in net_connect_to_retry.drain() {
// Restart connect procedure for this net endpoint
let net_todo = &mut net_todos[net_index];
log!(
logger,
"Restarting connection with endpoint {:?} {:?}",
net_index,
net_todo.endpoint_setup.sock_addr
);
match &mut net_todo.todo_endpoint {
NetTodoEndpoint::PeerInfoRecving(endpoint) => {
let mut new_stream = TcpStream::connect(net_todo.endpoint_setup.sock_addr)
.expect("mio::TcpStream connect should not fail!");
std::mem::swap(&mut endpoint.stream, &mut new_stream);
let token = TokenTarget::NetEndpoint { index: net_index }.into();
poll.registry().register(&mut endpoint.stream, token, BOTH).unwrap();
}
_ => unreachable!(),
}
}
}
for event in events.iter() {
let token = event.token();
// figure out which endpoint the event belonged to
let token_target = TokenTarget::from(token);
match token_target {
TokenTarget::UdpEndpoint { index } => {
// UdpEndpoints are easy to complete.
// Their setup event just has to succeed without error
if !setup_incomplete.contains(&token_target) {
// spurious wakeup. this endpoint has already been set up!
continue;
}
let udp_todo: &UdpTodo = &udp_todos[index];
if event.is_error() {
return Err(Ce::BindFailed(udp_todo.sock.local_addr().unwrap()));
}
setup_incomplete.remove(&token_target);
}
TokenTarget::NetEndpoint { index } => {
// NetEndpoints are complex to complete,
// they must accept/connect to their peer,
// and then exchange port info successfully
let net_todo = &mut net_todos[index];
if let NetTodoEndpoint::Accepting(listener) = &mut net_todo.todo_endpoint {
// Passive endpoint that will first try accept the peer's connection
match listener.accept() {
Err(e) if err_would_block(&e) => continue, // spurious wakeup
Err(_) => {
log!(logger, "accept() failure on index {}", index);
return Err(Ce::AcceptFailed(listener.local_addr().unwrap()));
}
Ok((mut stream, peer_addr)) => {
// successfully accepted the active peer
// reusing the token, but now for the stream and not the listener
poll.registry().deregister(listener).unwrap();
poll.registry().register(&mut stream, token, BOTH).unwrap();
log!(
logger,
"Endpoint[{}] accepted a connection from {:?}",
index,
peer_addr
);
let net_endpoint = NetEndpoint { stream, inbox: vec![] };
net_todo.todo_endpoint =
NetTodoEndpoint::PeerInfoRecving(net_endpoint);
}
}
}
// OK now let's try and finish exchanging port info
if let NetTodoEndpoint::PeerInfoRecving(net_endpoint) =
&mut net_todo.todo_endpoint
{
if event.is_error() {
// event signals some error! :(
if net_todo.endpoint_setup.endpoint_polarity
== EndpointPolarity::Passive
{
// breaking as the acceptor is currently unrecoverable
return Err(Ce::AcceptFailed(
net_endpoint.stream.local_addr().unwrap(),
));
}
// this actively-connecting endpoint failed to connect!
// We will schedule it for a retry
net_connect_to_retry.insert(index);
continue;
}
// event wasn't ERROR
if net_connect_to_retry.contains(&index) {
// spurious wakeup. already scheduled to retry connect later
continue;
}
if !setup_incomplete.contains(&token_target) {
// spurious wakeup. this endpoint has already been completed!
if event.is_readable() {
net_polled_undrained.insert(index);
}
continue;
}
let local_info = port_info
.map
.get(&net_todo.endpoint_setup.getter_for_incoming)
.expect("Net Setup's getter port info isn't known"); // unreachable
if event.is_writable() && !net_todo.sent_local_port {
// can write and didn't send setup msg yet? Do so!
let _ = net_endpoint.stream.set_nodelay(true);
let msg = Msg::SetupMsg(SetupMsg::MyPortInfo(MyPortInfo {
owner: local_info.owner,
polarity: local_info.polarity,
port: net_todo.endpoint_setup.getter_for_incoming,
}));
net_endpoint
.send(&msg, &mut io_byte_buffer)
.map_err(|e| {
Ce::NetEndpointSetupError(
net_endpoint.stream.local_addr().unwrap(),
e,
)
})
.unwrap();
log!(logger, "endpoint[{}] sent msg {:?}", index, &msg);
net_todo.sent_local_port = true;
}
if event.is_readable() && net_todo.recv_peer_port.is_none() {
// can read and didn't finish recving setup msg yet? Do so!
let maybe_msg = net_endpoint.try_recv(logger).map_err(|e| {
Ce::NetEndpointSetupError(
net_endpoint.stream.local_addr().unwrap(),
e,
)
})?;
if maybe_msg.is_some() && !net_endpoint.inbox.is_empty() {
net_polled_undrained.insert(index);
}
match maybe_msg {
None => {} // msg deserialization incomplete
Some(Msg::SetupMsg(SetupMsg::MyPortInfo(peer_info))) => {
log!(
logger,
"endpoint[{}] got peer info {:?}",
index,
peer_info
);
if peer_info.polarity == local_info.polarity {
return Err(ConnectError::PortPeerPolarityMismatch(
net_todo.endpoint_setup.getter_for_incoming,
));
}
net_todo.recv_peer_port = Some(peer_info.port);
// finally learned the peer of this port!
port_info
.map
.get_mut(&net_todo.endpoint_setup.getter_for_incoming)
.unwrap()
.peer = Some(peer_info.port);
// learned the info of this peer port
port_info.map.entry(peer_info.port).or_insert({
port_info
.owned
.entry(peer_info.owner)
.or_default()
.insert(peer_info.port);
PortInfo {
peer: Some(net_todo.endpoint_setup.getter_for_incoming),
polarity: peer_info.polarity,
owner: peer_info.owner,
route: Route::NetEndpoint { index },
}
});
}
Some(inappropriate_msg) => {
log!(
logger,
"delaying msg {:?} during channel setup phase",
inappropriate_msg
);
delayed_messages.push((index, inappropriate_msg));
}
}
}
// is the setup for this net_endpoint now complete?
if net_todo.sent_local_port && net_todo.recv_peer_port.is_some() {
// yes! connected, sent my info and received peer's info
setup_incomplete.remove(&token_target);
log!(logger, "endpoint[{}] is finished!", index);
}
}
}
}
}
events.clear();
}
log!(logger, "Endpoint setup complete! Cleaning up and building structures");
let net_endpoint_exts = net_todos
.into_iter()
.enumerate()
.map(|(index, NetTodo { todo_endpoint, endpoint_setup, .. })| NetEndpointExt {
net_endpoint: match todo_endpoint {
NetTodoEndpoint::PeerInfoRecving(mut net_endpoint) => {
let token = TokenTarget::NetEndpoint { index }.into();
poll.registry()
.reregister(&mut net_endpoint.stream, token, Interest::READABLE)
.unwrap();
net_endpoint
}
_ => unreachable!(),
},
getter_for_incoming: endpoint_setup.getter_for_incoming,
})
.collect();
let udp_endpoint_exts = udp_todos
.into_iter()
.enumerate()
.map(|(index, udp_todo)| {
let UdpTodo { mut sock, getter_for_incoming } = udp_todo;
let token = TokenTarget::UdpEndpoint { index }.into();
poll.registry().reregister(&mut sock, token, Interest::READABLE).unwrap();
UdpEndpointExt {
sock,
outgoing_payloads: Default::default(),
received_this_round: false,
getter_for_incoming,
}
})
.collect();
let endpoint_manager = EndpointManager {
poll,
events,
undelayed_messages: delayed_messages, // no longer delayed
delayed_messages: Default::default(),
net_endpoint_store: EndpointStore {
endpoint_exts: net_endpoint_exts,
polled_undrained: net_polled_undrained,
},
udp_endpoint_store: EndpointStore {
endpoint_exts: udp_endpoint_exts,
polled_undrained: udp_polled_undrained,
},
io_byte_buffer,
};
Ok(endpoint_manager)
}
// Given a fully-formed endpoint manager,
// construct the consensus tree with:
// 1. decentralized leader election
// 2. centralized tree construction
fn init_neighborhood(
connector_id: ConnectorId,
logger: &mut dyn Logger,
em: &mut EndpointManager,
deadline: &Option<Instant>,
) -> Result<Neighborhood, ConnectError> {
use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
// storage structure for the state of a distributed wave
// (for readability)
#[derive(Debug)]
struct WaveState {
parent: Option<usize>,
leader: ConnectorId,
}
// kick off a leader-election wave rooted at myself
// given the desired wave information
// (e.g. don't inform my parent if they exist)
fn do_wave(
em: &mut EndpointManager,
awaiting: &mut HashSet<usize>,
ws: &WaveState,
) -> Result<(), ConnectError> {
awaiting.clear();
let msg = S(Sm::LeaderWave { wave_leader: ws.leader });
for index in em.index_iter() {
if Some(index) != ws.parent {
em.send_to_setup(index, &msg)?;
awaiting.insert(index);
}
}
Ok(())
}
///////////////////////
/*
Conceptually, we have two distinct disstributed algorithms back-to-back
1. Leader election using echo algorithm with extinction.
- Each connector initiates a wave tagged with their ID
- Connectors participate in waves of GREATER ID, abandoning previous waves
- Only the wave of the connector with GREATEST ID completes, whereupon they are the leader
2. Tree construction
- The leader broadcasts their leadership with msg A
- Upon receiving their first announcement, connectors reply B, and send A to all peers
- A controller exits once they have received A or B from each neighbor
The actual implementation is muddier, because non-leaders aren't aware of termiantion of algorithm 1,
so they rely on receipt of the leader's announcement to realize that algorithm 2 has begun.
NOTE the distinction between PARENT and LEADER
*/
log!(logger, "beginning neighborhood construction");
if em.num_net_endpoints() == 0 {
log!(logger, "Edge case of no neighbors! No parent an no children!");
return Ok(Neighborhood { parent: None, children: VecSet::new(vec![]) });
}
log!(logger, "Have {} endpoints. Must participate in distributed alg.", em.num_net_endpoints());
let mut awaiting = HashSet::with_capacity(em.num_net_endpoints());
// 1+ neighbors. Leader can only be learned by receiving messages
// loop ends when I know my sink tree parent (implies leader was elected)
let election_result: WaveState = {
// initially: No parent, I'm the best leader.
let mut best_wave = WaveState { parent: None, leader: connector_id };
// start a wave for this initial state
do_wave(em, &mut awaiting, &best_wave)?;
// with 1+ neighbors, progress is only made in response to incoming messages
em.undelay_all();
'election: loop {
log!(logger, "Election loop. awaiting {:?}...", awaiting.iter());
let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
match msg {
S(Sm::LeaderAnnounce { tree_leader }) => {
// A neighbor explicitly tells me who is the leader
// they become my parent, and I adopt their announced leader
let election_result =
WaveState { leader: tree_leader, parent: Some(recv_index) };
log!(logger, "Election lost! Result {:?}", &election_result);
assert!(election_result.leader >= best_wave.leader);
assert_ne!(election_result.leader, connector_id);
break 'election election_result;
}
S(Sm::LeaderWave { wave_leader }) => {
use Ordering as O;
match wave_leader.cmp(&best_wave.leader) {
O::Less => log!(
logger,
"Ignoring wave with Id {:?}<{:?}",
wave_leader,
best_wave.leader
),
O::Greater => {
log!(
logger,
"Joining wave with Id {:?}>{:?}",
wave_leader,
best_wave.leader
);
best_wave = WaveState { leader: wave_leader, parent: Some(recv_index) };
log!(logger, "New wave state {:?}", &best_wave);
do_wave(em, &mut awaiting, &best_wave)?;
if awaiting.is_empty() {
log!(logger, "Special case! Only neighbor is parent. Replying to {:?} msg {:?}", recv_index, &msg);
em.send_to_setup(recv_index, &msg)?;
}
}
O::Equal => {
assert!(awaiting.remove(&recv_index));
log!(
logger,
"Wave reply from index {:?} for leader {:?}. Now awaiting {} replies",
recv_index,
best_wave.leader,
awaiting.len()
);
if awaiting.is_empty() {
if let Some(parent) = best_wave.parent {
log!(
logger,
"Sub-wave done! replying to parent {:?} msg {:?}",
parent,
&msg
);
em.send_to_setup(parent, &msg)?;
} else {
let election_result: WaveState = best_wave;
log!(logger, "Election won! Result {:?}", &election_result);
break 'election election_result;
}
}
}
}
}
msg @ S(Sm::YouAreMyParent) | msg @ S(Sm::MyPortInfo(_)) => {
log!(logger, "Endpont {:?} sent unexpected msg! {:?}", recv_index, &msg);
return Err(Ce::SetupAlgMisbehavior);
}
msg @ S(Sm::SessionScatter { .. })
| msg @ S(Sm::SessionGather { .. })
| msg @ Msg::CommMsg { .. } => {
log!(logger, "delaying msg {:?} during election algorithm", msg);
em.delayed_messages.push((recv_index, msg));
}
}
}
};
// starting algorithm 2. Send a message to every neighbor
// namely, send "YouAreMyParent" to parent (if they exist),
// and LeaderAnnounce to everyone else
log!(logger, "Starting tree construction. Step 1: send one msg per neighbor");
awaiting.clear();
for index in em.index_iter() {
if Some(index) == election_result.parent {
em.send_to_setup(index, &S(Sm::YouAreMyParent))?;
} else {
awaiting.insert(index);
em.send_to_setup(
index,
&S(Sm::LeaderAnnounce { tree_leader: election_result.leader }),
)?;
}
}
// Receive one message from each neighbor to learn
// whether they consider me their parent or not.
let mut children = vec![];
em.undelay_all();
while !awaiting.is_empty() {
log!(logger, "Tree construction_loop loop. awaiting {:?}...", awaiting.iter());
let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
match msg {
S(Sm::LeaderAnnounce { .. }) => {
// `recv_index` is not my child
log!(
logger,
"Got reply from non-child index {:?}. Children: {:?}",
recv_index,
children.iter()
);
if !awaiting.remove(&recv_index) {
return Err(Ce::SetupAlgMisbehavior);
}
}
S(Sm::YouAreMyParent) => {
if !awaiting.remove(&recv_index) {
log!(
logger,
"Got reply from child index {:?}. Children before... {:?}",
recv_index,
children.iter()
);
return Err(Ce::SetupAlgMisbehavior);
}
// `recv_index` is my child
children.push(recv_index);
}
msg @ S(Sm::MyPortInfo(_)) | msg @ S(Sm::LeaderWave { .. }) => {
log!(logger, "discarding old message {:?} during election", msg);
}
msg @ S(Sm::SessionScatter { .. })
| msg @ S(Sm::SessionGather { .. })
| msg @ Msg::CommMsg { .. } => {
log!(logger, "delaying msg {:?} during election", msg);
em.delayed_messages.push((recv_index, msg));
}
}
}
// Neighborhood complete!
children.shrink_to_fit();
let neighborhood =
Neighborhood { parent: election_result.parent, children: VecSet::new(children) };
log!(logger, "Neighborhood constructed {:?}", &neighborhood);
Ok(neighborhood)
}
// Connectors collect a map of type ConnectorId=>SessionInfo,
// representing a global view of the session's state at the leader.
// The leader rewrites its contents however they like (currently: nothing happens)
// and the map is again broadcasted, for each peer to make their local changes to
// reflect the results of the rewrite.
fn session_optimize(
cu: &mut ConnectorUnphased,
comm: &mut ConnectorCommunication,
deadline: &Option<Instant>,
) -> Result<(), ConnectError> {
use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
log!(cu.logger, "Beginning session optimization");
// populate session_info_map from a message per child
let mut unoptimized_map: HashMap<ConnectorId, SessionInfo> = Default::default();
let mut awaiting: HashSet<usize> = comm.neighborhood.children.iter().copied().collect();
comm.endpoint_manager.undelay_all();
while !awaiting.is_empty() {
log!(
cu.logger,
"Session gather loop. awaiting info from children {:?}...",
awaiting.iter()
);
let (recv_index, msg) =
comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
match msg {
S(Sm::SessionGather { unoptimized_map: child_unoptimized_map }) => {
if !awaiting.remove(&recv_index) {
log!(
cu.logger,
"Wasn't expecting session info from {:?}. Got {:?}",
recv_index,
&child_unoptimized_map
);
return Err(Ce::SetupAlgMisbehavior);
}
unoptimized_map.extend(child_unoptimized_map.into_iter());
}
msg @ S(Sm::YouAreMyParent)
| msg @ S(Sm::MyPortInfo(..))
| msg @ S(Sm::LeaderAnnounce { .. })
| msg @ S(Sm::LeaderWave { .. }) => {
log!(cu.logger, "discarding old message {:?} during election", msg);
}
msg @ S(Sm::SessionScatter { .. }) => {
log!(
cu.logger,
"Endpoint {:?} sent unexpected scatter! {:?} I've not contributed yet!",
recv_index,
&msg
);
return Err(Ce::SetupAlgMisbehavior);
}
msg @ Msg::CommMsg(..) => {
log!(cu.logger, "delaying msg {:?} during session optimization", msg);
comm.endpoint_manager.delayed_messages.push((recv_index, msg));
}
}
}
log!(
cu.logger,
"Gathered all children's maps. ConnectorId set is... {:?}",
unoptimized_map.keys()
);
// add my own session info to the map
let my_session_info = SessionInfo {
port_info: cu.ips.port_info.clone(),
proto_components: cu.proto_components.clone(),
serde_proto_description: SerdeProtocolDescription(cu.proto_description.clone()),
endpoint_incoming_to_getter: comm
.endpoint_manager
.net_endpoint_store
.endpoint_exts
.iter()
.map(|ee| ee.getter_for_incoming)
.collect(),
};
unoptimized_map.insert(cu.ips.id_manager.connector_id, my_session_info);
log!(cu.logger, "Inserting my own info. Unoptimized subtree map is {:?}", &unoptimized_map);
// acquire the optimized info...
let optimized_map = if let Some(parent) = comm.neighborhood.parent {
// ... as a message from my parent
log!(cu.logger, "Forwarding gathered info to parent {:?}", parent);
let msg = S(Sm::SessionGather { unoptimized_map });
comm.endpoint_manager.send_to_setup(parent, &msg)?;
'scatter_loop: loop {
log!(
cu.logger,
"Session scatter recv loop. awaiting info from children {:?}...",
awaiting.iter()
);
let (recv_index, msg) =
comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
match msg {
S(Sm::SessionScatter { optimized_map }) => {
if recv_index != parent {
log!(cu.logger, "I expected the scatter from my parent only!");
return Err(Ce::SetupAlgMisbehavior);
}
break 'scatter_loop optimized_map;
}
msg @ Msg::CommMsg { .. } => {
log!(cu.logger, "delaying msg {:?} during scatter recv", msg);
comm.endpoint_manager.delayed_messages.push((recv_index, msg));
}
msg @ S(Sm::SessionGather { .. })
| msg @ S(Sm::YouAreMyParent)
| msg @ S(Sm::MyPortInfo(..))
| msg @ S(Sm::LeaderAnnounce { .. })
| msg @ S(Sm::LeaderWave { .. }) => {
log!(cu.logger, "discarding old message {:?} during election", msg);
}
}
}
} else {
// by computing it myself
log!(cu.logger, "I am the leader! I will optimize this session");
leader_session_map_optimize(&mut *cu.logger, unoptimized_map)?
};
log!(
cu.logger,
"Optimized info map is {:?}. Sending to children {:?}",
&optimized_map,
comm.neighborhood.children.iter()
);
log!(cu.logger, "All session info dumped!: {:#?}", &optimized_map);
// extract my own ConnectorId's entry
let optimized_info =
optimized_map.get(&cu.ips.id_manager.connector_id).expect("HEY NO INFO FOR ME?").clone();
// broadcast the optimized session info to my children
let msg = S(Sm::SessionScatter { optimized_map });
for &child in comm.neighborhood.children.iter() {
comm.endpoint_manager.send_to_setup(child, &msg)?;
}
// apply local optimizations
apply_my_optimizations(cu, comm, optimized_info)?;
log!(cu.logger, "Session optimizations applied");
Ok(())
}
// Defines the optimization function, consuming an optimized map,
// and returning an optimized map.
fn leader_session_map_optimize(
logger: &mut dyn Logger,
mut m: HashMap<ConnectorId, SessionInfo>,
) -> Result<HashMap<ConnectorId, SessionInfo>, ConnectError> {
log!(logger, "Session map optimize START");
// currently, it's the identity function
log!(logger, "Session map optimize END");
Ok(m)
}
// Modify the given connector's internals to reflect
// the given session info
fn apply_my_optimizations(
cu: &mut ConnectorUnphased,
comm: &mut ConnectorCommunication,
session_info: SessionInfo,
) -> Result<(), ConnectError> {
let SessionInfo {
proto_components,
port_info,
serde_proto_description,
endpoint_incoming_to_getter,
} = session_info;
// simply overwrite the contents
println!("BEFORE: {:#?}\n{:#?}", cu, comm);
cu.ips.port_info = port_info;
assert!(cu.ips.port_info.invariant_preserved());
cu.proto_components = proto_components;
cu.proto_description = serde_proto_description.0;
for (ee, getter) in comm
.endpoint_manager
.net_endpoint_store
.endpoint_exts
.iter_mut()
.zip(endpoint_incoming_to_getter)
{
ee.getter_for_incoming = getter;
}
// println!("AFTER: {:#?}\n{:#?}", cu, comm);
Ok(())
}
|